
August, 2011

Dr. Peter V. Homeier
palantir@trustworthytools.com

U.S. Department of Defense

Making formal methods
into normal methods

The HOL-Omega Logic

June 24, 2011

Outline

  Motivation
  Higher order logic (HOL) (including the lambda calculus)

  Types: Type constants, variables
  Terms: constants, variables, applications, abstractions

  Type operators
  Kinds
  Types: adds abstractions of types, which have higher kinds

  System F
  Types: adds universal types
  Terms: adds type abstractions, type applications

  HOL-Omega logic = HOL + Type operators + System F
  Applications: category theory and monads

June 24, 2011

Motivation: Monads

  Monads are a practical device to cleanly represent
computations that involve state, I/O, exceptions, …

  A rich theory exists with many different kinds of monads
  Individual monads can (and have) been defined in HOL
  A general theory of monads cannot be defined in HOL
  Why? A monad is a type operator M together with two

term operations unit and >>= (“bind”, infix) such that
1)  unit a >>= k = k a left unit
2)  m >>= unit = m right unit
3)  (m >>= k) >>= h = m >>= (λa. k a >>= h) associativity

  In law (3), >>= has 4 occurrences and 3 distinct types,
but HOL requires a variable to have a single unique type!

Higher Order Logic (HOL4)
(Church’s Simple Theory of Types)

  Easy to use: natural to understand and simple to write:
  Completely decidable type inference (Hindley-Milner)
  Classical logic with quantifiers over h.o. functions, excluded middle, and choice
  Function / predicate extensionality: (∀x. P x = Q x) => P = Q

  Practical: used for many major projects
  Faithful model of ARM microprocessor (Anthony Fox)
  Large industrial-scale projects

  Powerful: many deep libraries and features:
  Full total recursive function definition
  Finite machine words library (e.g., bitvectors) using pseudo dependent types
  Simplifier and two first order automatic theorem provers built-in
  Higher order quotients with automatic lifting of types, constants, theorems

  Safe: LCF architecture, very small kernel, for high trustworthiness
  Mature: 23 years of development and application, still being actively developed
  Is imitation the sincerest form of flattery?

  Isabelle/HOL, HOL-Light, ProofPower, HOL Zero all use essentially the same logic

June 24, 2011

June 24, 2011

Higher Order Logic
(as in Gordon’s HOL system, 1988)

  Syntax
t ::= terms:

 c : σ constant
 x : σ variable
 λx. t abstraction
 topr targ application

σ ::= types:
 α type variable
 (σ1,… σn)τ type combination

θ ::= type substitution:
 [] empty substitution
 (α |→ σ) :: θ subst mapping

  Environment Γ
 stores type arities, constant types
Types: bool, ind, fun (→)
Terms: = : α → α → bool
 ⇒ : bool → bool → bool
 @ : (α → bool) → α

  Constraints
Types (σ1,… σn)τ :
arity of τ must match n ≥ 0
Application terms topr targ :
type of topr must be a function type,
and domain of type of topr
must match type of targ

  Typing Γ |– t : σ
 c:σ ∈ Γ
 Γ |– c : σ θ
 x:σ ∈ Γ
 Γ |– x : σ
 Γ, x:σ1 |– t2 : σ2
 Γ |– λx : σ1. t2 : σ1 → σ2
Γ |– t1 : σ11 → σ12 Γ |– t2 : σ11
 Γ |– t2 : σ11

June 24, 2011

  Syntax
t ::= terms:

 c : σ constant
 x : σ variable
 λx. t abstraction
 topr targ application

σ ::= types:
 α : k type variable
 (σ1,… σn)τ type
 τ : k type constant
 λα. σ type abstraction
 σarg σopr type application

k ::= kinds:
 ty kind of proper types
 k1 ⇒ k2 kind of type operators

θ ::= type substitution:
 [] empty substitution
 (α |→ σ) :: θ subst mapping

Lambda-Omega =
HOL + type operators and kinds

deleted

  Constraints
Application types σarg σopr :
kind of σopr must be an operator kind, and
domain of kind of σopr must match kind of σarg
Application terms topr targ:
type of topr must be a function type, and
domain of type of topr must match type of targ

  Typing Γ |– t : σ
 c:σ ∈ Γ
 Γ |– c : σ θ
 x:σ ∈ Γ
 Γ |– x : σ
Γ |– σ1 : ty Γ, x: σ1 |– t2 : σ2
 Γ |– λx : σ1. t2 : σ1 → σ2
Γ |– topr : σ1 → σ2 Γ |– targ : σ1
 Γ |– topr targ : σ2
Γ |– t : σ1 σ1 ≡αβ σ2 Γ |– σ2 : ty
 Γ |– t : σ2

June 24, 2011

System F (Girard, Reynolds)
adds type abstractions, applications

  Constraints (continued)
Type application terms t [: σ :] :
type of t must be a universal type

  Typing Γ |– t : σ
 c:σ ∈ Γ
 Γ |– c : σ
 x:σ ∈ Γ
 Γ |– x : σ
 Γ, x: σ1 |– t2 : σ2
 Γ |– λx : σ1. t2 : σ1 → σ2
Γ |– topr : σ1 → σ2 Γ |– targ : σ1
 Γ |– topr targ : σ2
 Γ, α |– t : σ
 Γ |– λ:α. t : ∀α. σ
 Γ |– t1 : ∀α. σ1
Γ |– t1 [: σ2 :] : σ1[α |→ σ2]

  Syntax
t ::= terms:

 c : σ constant
 x : σ variable
 λx. t abstraction
 topr targ application
 λ:α. t type abstraction term
 t [: σ :] type application term

σ ::= types:
 α type variable
 (σ1,… σn)τ type combination
 ∀α. σ universal type

  Constraints
Types (σ1,… σn)τ :

 arity of τ must match n ≥ 0
Application terms topr targ :
type of topr must be a function type, and
domain of type of topr must match type of targ

June 24, 2011

  Constraints
Type application terms t [: σ :] :
type of t must be universal type, say ∀α. σ1
and kind of α must match kind of σ
and rank of α must be ≥ rank of σ
Application types σarg σopr :
kind of σopr must be an operator kind(⇒), and
domain of kind of σopr must match kind of σarg
and rank(domain(σopr)) must ≥ rank(σarg).
Application terms topr targ :
type of topr must be a function type, and
domain of type of topr must match type of targ
and rank(domain(topr)) must ≥ rank(targ).

  Ranks are present to avoid impredicativity,
and so assure a set-theoretic model exists.
Types are stratified by increasing rank:
rank(α : k) = rank(k)
rank(τ : k) = rank(k)
rank(σarg σopr) = rank(range(σopr))
rank(λα. σ) = max(rank(α), rank(σ))
rank(∀α. σ) = max(rank(α) + 1, rank(σ))
rank(∃α. σ) = max(rank(α) + 1, rank(σ))

HOL-Omega = HOL4 +
System F, type operators, kinds, & ranks
  Syntax

t ::= terms:
 c : σ constant
 x : σ variable
 λx. t abstraction
 topr targ application
 λ:α. t type abstraction term
 t [: σ :] type application term

σ ::= types:
 α : k type variable
 τ : k type constant
 σarg σopr type application
 λα. σ type abstraction
 ∀α. σ universal type
 ∃α. σ existential type

k ::= kinds:
 ty : r kind of proper types
 κ : r kind variable
 k1 ⇒ k2 kind of type operators

r ::= n ranks: (natural nums)

Using ideas from HOL2P by Völker and Fω by Pierce

June 24, 2011

Impredicativity
  A powerful form of parametric polymorphism,

but dangerous. Similar in power to ZF set theory.
  A definition is “impredicative” if it involves ranging over

a domain which includes the very thing being defined.
  In System F, the type variable α in the type σ = ∀α.α→α

ranges over all types, including σ itself.
  This is circular, but System F is not inconsistent.
  However, Girard discovered that the naïve combination of

impredicativity and higher order logic is inconsistent!
  Our design choice: disallow impredicativity of types.

  Stratify types by ranks 0, 1, 2, … according to depth of ∀
  Type variable α in ∀α.α→α ranges over types of rank <= α
  Rank of the type ∀α.α→α is then (rank of α) + 1
  Yields straightforward set-theoretic semantics

0

1

…

α

∀α.α→α

.

.

.

r

r+1

June 24, 2011

Universal and Existential Quantification
of type variables over terms

  HOL-Omega has abstraction of a type variable α over a term t
  λ:(α:κ). t (type abstraction)

  Note that the type variable can have any kind κ
  Type quantification over terms is defined using type abstraction:

  ∀: = λP. (P = λ:(α:κ). T)
  ∃: = λP. (P ≠ λ:(α:κ). F)

  Notation:
  ∀:(α:κ). t = (∀:) (λ:(α:κ). t)
  ∃:(α:κ). t = (∃:) (λ:(α:κ). t)

  Multiple type abstraction, quantification, application:
  (λ:α β. λ(x:β → α). x) [: bool, int :] = λ(x: int → bool). x

June 24, 2011

Application: functors
(ported from HOL2P by Völker)

  Category Type: objects are types of kind ty & rank 0, arrows are term functions
  Functors: Two maps: 1) on objects ’F : ty⇒ty and 2) on arrows F : ’F functor
  Functor type abbreviation:

 functor = λ’F : ty⇒ty. ∀α β. (α → β) → (α ’F → β ’F)
  Functor predicate: true if F (of type ’F functor) is a functor

functor (F : ’F functor) =
1)  (∀:α. F I = I) ∧ (where I is the identity function λx. x)
2)  (∀:α β γ. ∀(f: β → γ) (g: α → β).

 F (f ° g) = F f ° F g)
  Full, unabbreviated version:

functor (F : ’F functor) =
1)  (∀:α. F [: α, α :] (I : α → α) = (I : α ’F → α ’F)) ∧
2)  (∀:α β γ. ∀(f: β → γ) (g: α → β).

 F [: α, γ :] (f ° g) = F [: β, γ :] f ° F [: α, β :] g)
  Provable in HOL-Omega (but not expressable in HOL2P):

 |– ∃:’F. ∃F : ’F functor. functor F

June 24, 2011

Theorems about functors

  Examples of functors:
Identity functor id = λ:α β. (I : (α → β) → (α → β)) :

 |– functor (id : I functor) (where I = λα:κ. α)
MAP functor:

 |– functor ((λ:α β. (MAP : (α → β) → (α list → β list))) : list functor)
 where MAP f [] = []
 MAP f (x :: xs) = f x :: MAP f xs

  Define the composition of two functors (overloading °):
(G :’G functor) ° (F :’F functor) = λ:α β. G [: α ’F, β ’F :] ° F [: α, β :]

  Proved in HOL-Omega that the composition of functors is also a functor:
|– functor (F :’F functor) ∧ functor (G :’G functor)

 ⇒ functor ((G ° F) : (’F o’G)functor)
where the infix type operator o = λ(’F:’k⇒’l)(’G:’l⇒’m)(α:’k). (α ’F)’G

  Example: the composition of the MAP functor with itself is a functor:
|– functor (((λ:α β. MAP) ° (λ:α β. MAP)) : (list o list)functor)
(by defn.,) (λ:α β. MAP) ° (λ:α β. MAP) = (λ:α β. MAP ° MAP)

June 24, 2011

Application: natural transformations
(from Völker’s HOL2P and Algebra of Programming)

  Natural transformation type abbreviation:
 nattransf = λ(’F :ty⇒ty) (’G :ty⇒ty). ∀α. α ’F → α ’G

  Natural transformation predicate:
nattransf (φ : (’F, ’G)nattransf) (F :’F functor) (G :’G functor) =

 ∀:α β. ∀(h: α → β). G h ° φ = φ ° F h
  Read as “φ is a natural transformation from functor F to functor G”
  Identity natural transformation from any functor to itself:

 idF = (λ:α. I : α ’F → α ’F) : (’F,’F)nattransf
 |– nattransf (idF :(’F,’F)nattransf) (F :’F functor) F

  Example: INITS returns a list of all prefixes of its argument:
INITS : α list → α list list

INITS [] = []
INITS (x :: xs) = [] :: MAP (λys. x :: ys) (INITS xs)

  INITS is a natural transformation from MAP to MAP ° MAP:
 |– nattransf ((λ:α. INITS) : (list, list o list)nattransf)

 ((λ:α β. MAP) : list functor)
 ((λ:α β. MAP ° MAP) : (list o list)functor)

α ’F β ’F

α ’G β ’G

α β

G h

F h

φ φ

h

June 24, 2011

Composing natural transformations

  Vertical composition of natural transformations:
(φ2 : (’G,’H)nattransf) ° (φ1 : (’F,’G)nattransf) = λ:α. (φ2[: α :]) ° (φ1[: α :])

  Composing natural transformations with functors:
(φ : (’F,’G)nattransf) ° (H : ’H functor) = λ:α. φ [: α ’H :]
(H : ’H functor) ° (φ : (’F,’G)nattransf) = λ:α. H (φ [: α :])

  These definitions overload the ° composition operator.
All these compositions yield natural transformations.

  In HOL2P:
|– nattransf φ F G ∧ functor H ⇒

 TYINST ((θ1 |→ λα. ((α)θ1)θ3) (θ2 |→ λα. ((α)θ2)θ3))
 nattransf (λ:α. H φ) (λ:α β. H ° F) (λ:α β. H ° G)

  In HOL-Omega:
|– nattransf φ F G ∧ functor H ⇒

 nattransf (H ° φ) (H ° F) (H ° G)

June 24, 2011

Application: monads

  Monad type abbreviations:
 unit = λ(’M :ty⇒ty). ∀α. α → α ’M
 bind = λ(’M :ty⇒ty). ∀α β. α ’M → (α → β ’M) → β ’M

  Monad predicate, defined by three laws:
monad (unit : ’M unit, >>= :’M bind) =

 (∀:α β. ∀(a: α) (k: α → β M). (left unit)
 unit a >>= k = k a) ∧
 (∀:α. ∀(m: α M). (right unit)
 m >>= unit = m) ∧

 (∀:α β γ. ∀(m: α M) (k: α→β M) (h: β→γ M). (associativity)
 (m >>= k) >>= h = m >>= (λa. k a >>= h))

  Example: The state monad:
 state = λσ α. σ → α × σ (remember that (σ, α)state = α (σ state)))

state_unit = λ:α. λ(x: α) (s: σ). (x, s)
state_bind = λ:α β. λ(w: (σ, α)state) (f: α → (σ, β)state) (s: σ).

 let (x, s’) = w s in f x s’

HOL-Omega: |– monad (state_unit : (σ state)unit, state_bind : (σ state)bind)

June 24, 2011

Alternative definition of monads

  Alternative definition of monads based on 7 laws:
 map = λ(’M :ty⇒ty). ∀α β. (α → β) → (α ’M → β ’M)
 join = λ(’M :ty⇒ty). ∀α. (α ’M)’M → α ’M

 umj_monad (unit :’M unit, map :’M map, join :’M join) =
1)  ∀:α. map (I: α → α) = (I: α ’M → α ’M)
2)  ∀:α β γ. ∀(f:α → β) (g:β → γ). map (g ° f) = map g ° map f
3)  ∀:α β. ∀(f:α → β). map f ° unit = unit ° f
4)  ∀:α β. ∀(f:α → β). map f ° join = join ° map (map f)
5)  ∀:α. join ° unit = (I: α ’M → α ’M)
6)  ∀:α. join ° map unit = (I: α ’M → α ’M)
7)  ∀:α. join ° map join = join ° join

  Define map, join operators based on unit, >>= , or >>= based on map, join:
MMAP (unit, >>=) = λ:α β. λ(f : α → β) (m : α ’M). m >>= (λa. unit (f a))
JOIN (unit, >>=) = λ:α. λ(z : (α ’M)’M). z >>= I)
BIND (map, join) = λ:α β. λ(m : α ’M) (k : α → β ’M). join (map k m)

  Proved in HOL-Omega that these two monad definitions are equivalent.

June 24, 2011

Monads defined in category theory
  Third definition: cat_monad(map, join, unit) iff

  map is a functor of type ’M functor
  join is a natural transformation between functors

  map ° map of type (’M o’M)functor and
  map of type ’M functor,
  where join has type (’M o’M, ’M)nattransf, and

  unit is a natural transformation between functors
  id of type I functor and
  map of type ’M functor,
  where unit has type (I, ’M)nattransf

  such that the diagrams commute, i.e., these hold:
  join ° (map ° join) = join ° (join ° map)
  join ° (map ° unit) = idmap
  join ° (unit ° map) = idmap

  where ° is composition between functors and/or natural transformations,
as each situation requires (overloaded).

  This has been proven equivalent to the 7-law definition of monads (incl. types),
so all three definitions of monads are equivalent.

map3 map2

map2

map°join

map

join°map join

join

Diagrams in
Functor Category

map map

map

map°unit unit°map map2

join
idmap idmap

June 24, 2011

Implementation

  The HOL-Omega theorem prover publicly released in 2009, now
upgraded together with HOL4 version Kananaskis-6

  Backwards compatible with the HOL4 theorem prover
  Both kernels (de Bruijn indicies and name-carrying) upgraded
  Builds using either Moscow ML or Poly/ML
  Upgraded tools:

  Rewriting (normal and higher-order)
  Simplification (including type beta reduction of terms)
  Definition of (mutual, nested, recursive) datatypes and records
  Definition of function on such datatypes and records

  Not upgraded yet: rule induction definitions
  Most difficult part: correct integration of h.o. matching for terms, types

June 24, 2011

Status

  Implemented and working
  Virtually completely backwards compatible with HOL4
  Some facilities not yet upgraded to work with new types/terms
  Type inference incomplete, but needed user annotations seem reasonable.

  Seems good platform to study category theory, e.g. monads
  Used by Jeremy Dawson of the Australian National University

  Modeled a generalized version of monads
  Existential Types and Packages for data abstraction
  Current documentation is really scarce

  for now, see 2009 paper and examples in <homedir>/examples/HolOmega
  Hope to soon put out a tutorial for new users
  More information from author’s site:

  http://www.trustworthytools.com!
  Available for download from SourceForge :

  svn checkout https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega

June 24, 2011

Conclusions

  The HOL-Omega logic adds significant power over higher order logic
  Adds abstraction of type variables over terms
  Adds abstraction of type variables over types

  Additional power infrequently used in practice,
but when needed, it is absolutely required

  Type inference incomplete, but user annotations reasonable in practice
  Paper describes abstract syntax, set-theory semantics, axioms and rules

of inference beyond HOL, examples of use, and implementation
  Implemented in a theorem prover tool, as a backwards-compatible

extension of the Higher Order Logic HOL4 theorem prover
  Available for download from SourceForge or author’s site:

  http://www.trustworthytools.com!
  Still experimental and under development but currently useful
  Supports mechanizing a substantial collection of new problems

The End

Soli Deo Gloria.

