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Outline 

  Motivation 
  Higher order logic (HOL) (including the lambda calculus) 

  Types: Type constants, variables 
  Terms: constants, variables, applications, abstractions 

  Type operators 
  Kinds 
  Types: adds abstractions of types, which have higher kinds 

  System F 
  Types: adds universal types 
  Terms: adds type abstractions, type applications 

  HOL-Omega logic = HOL + Type operators + System F 
  Applications: category theory and monads 
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Motivation: Monads 

  Monads are a practical device to cleanly represent 
computations that involve state, I/O, exceptions, … 

  A rich theory exists with many different kinds of monads 
  Individual monads can (and have) been defined in HOL 
  A general theory of monads cannot be defined in HOL 
  Why? A monad is a type operator M together with two 

term operations unit and >>= (“bind”, infix) such that 
1)         unit a >>= k  =  k a                    left unit 
2)         m >>= unit    =  m                  right unit 
3)  (m >>= k) >>= h  =  m >>= (λa. k a >>= h)      associativity 

  In law (3), >>= has 4 occurrences and 3 distinct types,  
but HOL requires a variable to have a single unique type! 



Higher Order Logic (HOL4) 
(Church’s Simple Theory of Types) 

  Easy to use: natural to understand and simple to write: 
  Completely decidable type inference (Hindley-Milner) 
  Classical logic with quantifiers over h.o. functions, excluded middle, and choice 
  Function / predicate extensionality: (∀x. P x = Q x) => P = Q 

  Practical: used for many major projects 
  Faithful model of ARM microprocessor (Anthony Fox) 
  Large industrial-scale projects 

  Powerful: many deep libraries and features: 
  Full total recursive function definition 
  Finite machine words library (e.g., bitvectors) using pseudo dependent types 
  Simplifier and two first order automatic theorem provers built-in 
  Higher order quotients with automatic lifting of types, constants, theorems 

  Safe: LCF architecture, very small kernel, for high trustworthiness 
  Mature: 23 years of development and application, still being actively developed 
  Is imitation the sincerest form of flattery?  

  Isabelle/HOL, HOL-Light, ProofPower, HOL Zero all use essentially the same logic 

June 24, 2011 



June 24, 2011 

Higher Order Logic 
(as in Gordon’s HOL system, 1988) 

  Syntax 
t ::=   terms: 

 c : σ             constant 
 x : σ              variable 
 λx. t                         abstraction 
 topr targ                     application 

σ ::=   types: 
 α              type variable 
 (σ1,… σn)τ   type combination 

θ ::=   type substitution: 
 [ ]   empty substitution 
 (α |→ σ) :: θ    subst mapping 

  Environment Γ 
    stores type arities, constant types 
Types: bool, ind, fun (→) 
Terms:  = : α → α → bool 
            ⇒ : bool → bool → bool 
            @ : (α → bool) → α  

  Constraints   
Types (σ1,… σn)τ : 
arity of τ must match n ≥ 0 
Application terms topr targ : 
type of topr must be a function type, 
and domain of type of topr 
must match type of targ 

  Typing   Γ |– t : σ 
                c:σ ∈ Γ  
               Γ |– c : σ θ 
                x:σ ∈ Γ  
               Γ |– x : σ 
         Γ, x:σ1 |– t2 : σ2 
     Γ |– λx : σ1. t2 : σ1 → σ2 
Γ |– t1 : σ11 → σ12    Γ |– t2 : σ11  
              Γ |– t2 : σ11  
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  Syntax 
t ::=   terms: 

 c : σ              constant 
 x : σ              variable 
 λx. t                           abstraction 
 topr targ                                application 

σ ::=   types: 
 α : k                        type variable 
 (σ1,… σn)τ                                     type 
 τ : k                       type constant 
 λα. σ                   type abstraction 
 σarg σopr                     type application 

k ::=   kinds: 
 ty          kind of proper types 
 k1 ⇒ k2          kind of type operators 

θ ::=   type substitution: 
 [ ]               empty substitution 
 (α |→ σ) :: θ          subst mapping 

Lambda-Omega = 
HOL + type operators and kinds 

deleted 

  Constraints   
Application types σarg σopr : 
kind of σopr must be an operator kind, and 
domain of kind of σopr must match kind of σarg 
Application terms topr targ: 
type of topr must be a function type, and 
domain of type of topr must match type of targ 

  Typing                   Γ |– t : σ 
                c:σ ∈ Γ  
               Γ |– c : σ θ 
                x:σ ∈ Γ 
               Γ |– x : σ  
Γ |– σ1 : ty        Γ, x: σ1 |– t2 : σ2 
    Γ |– λx : σ1. t2  : σ1 → σ2 
Γ |– topr : σ1 → σ2    Γ |– targ : σ1  
              Γ |– topr targ : σ2 
Γ |– t : σ1       σ1 ≡αβ σ2        Γ |– σ2 : ty 
                Γ |– t : σ2  
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System F (Girard, Reynolds)  
adds type abstractions, applications 

  Constraints (continued)   
Type application terms t [: σ :] : 
type of t must be a universal type 

  Typing   Γ |– t : σ 
                c:σ ∈ Γ  
               Γ |– c : σ 
                x:σ ∈ Γ  
               Γ |– x : σ 
         Γ, x: σ1 |– t2 : σ2 
     Γ |– λx : σ1. t2 : σ1 → σ2 
Γ |– topr : σ1 → σ2    Γ |– targ : σ1  
              Γ |– topr targ : σ2 
            Γ, α |– t : σ 
       Γ |– λ:α. t : ∀α. σ 
           Γ |– t1 : ∀α. σ1 
Γ |– t1 [: σ2 :] : σ1[α |→ σ2]  

  Syntax 
t ::=   terms: 

 c : σ             constant 
 x : σ             variable 
 λx. t                          abstraction 
 topr targ                               application 
 λ:α. t          type abstraction term 
 t [: σ :]              type application term 

σ ::=   types: 
 α                       type variable 
 (σ1,… σn)τ             type combination 
 ∀α. σ                         universal type 

  Constraints   
Types (σ1,… σn)τ : 

 arity of τ must match n ≥ 0 
Application terms topr targ : 
type of topr must be a function type, and 
domain of type of topr must match type of targ 
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  Constraints   
Type application terms t [: σ :] : 
type of t must be universal type, say ∀α. σ1 
and kind of α must match kind of σ 
and rank of α must be ≥ rank of σ  
Application types σarg σopr : 
kind of σopr must be an operator kind(⇒), and 
domain of kind of σopr must match kind of σarg  
and rank(domain(σopr)) must ≥ rank(σarg).  
Application terms topr targ : 
type of topr must be a function type, and 
domain of type of topr must match type of targ  
and rank(domain(topr)) must ≥ rank(targ). 

  Ranks are present to avoid impredicativity, 
and so assure a set-theoretic model exists. 
Types are stratified by increasing rank: 
rank(α : k)    = rank(k) 
rank(τ  : k)    = rank(k) 
rank(σarg σopr) = rank(range(σopr)) 
rank(λα. σ)   = max(rank(α),  rank(σ))  
rank(∀α. σ)  = max(rank(α) + 1, rank(σ))  
rank(∃α. σ)  = max(rank(α) + 1, rank(σ)) 

HOL-Omega = HOL4 + 
System F, type operators, kinds, & ranks 
  Syntax 

t ::=   terms: 
 c : σ         constant 
 x : σ         variable 
 λx. t                     abstraction 
 topr targ                          application 
 λ:α. t     type abstraction term 
 t [: σ :]          type application term 

σ ::=   types: 
 α : k                          type variable 
 τ  : k                         type constant 
 σarg σopr                type application 
 λα. σ             type abstraction 
 ∀α. σ                      universal type 
 ∃α. σ                     existential type 

k ::=   kinds: 
 ty : r      kind of proper types 
 κ  : r                 kind variable 
 k1 ⇒ k2       kind of type operators 

r ::= n   ranks:    (natural nums) 

Using ideas from HOL2P by Völker and Fω by Pierce 
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Impredicativity 
  A powerful form of parametric polymorphism, 

but dangerous.  Similar in power to ZF set theory. 
  A definition is “impredicative” if it involves ranging over  

a domain which includes the very thing being defined. 
  In System F, the type variable α in the type σ = ∀α.α→α  

ranges over all types, including σ itself. 
  This is circular, but System F is not inconsistent. 
  However, Girard discovered that the naïve combination of 

impredicativity and higher order logic is inconsistent! 
  Our design choice: disallow impredicativity of types. 

  Stratify types by ranks 0, 1, 2, … according to depth of ∀ 
  Type variable α in ∀α.α→α ranges over types of rank <= α 
  Rank of the type ∀α.α→α is then (rank of α) + 1 
  Yields straightforward set-theoretic semantics 

0 

1 

… 

α 

∀α.α→α 

. 

. 

. 

r 
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Universal and Existential Quantification 
of type variables over terms 

  HOL-Omega has abstraction of a type variable α over a term t 
  λ:(α:κ). t          (type abstraction) 

  Note that the type variable can have any kind κ 
  Type quantification over terms is defined using type abstraction: 

           ∀:  =  λP. (P = λ:(α:κ). T) 
            ∃:  =  λP. (P ≠ λ:(α:κ). F) 

  Notation: 
          ∀:(α:κ). t  =   (∀:) (λ:(α:κ). t) 
           ∃:(α:κ). t  =    (∃:) (λ:(α:κ). t) 

  Multiple type abstraction, quantification, application: 
  (λ:α β. λ(x:β → α). x) [: bool, int :] = λ(x: int → bool). x 
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Application: functors 
(ported from HOL2P by Völker) 

  Category Type: objects are types of kind ty & rank 0, arrows are term functions 
  Functors: Two maps: 1) on objects ’F : ty⇒ty and 2) on arrows F : ’F functor 
  Functor type abbreviation: 

  functor = λ’F : ty⇒ty. ∀α β. (α → β) → (α ’F → β ’F) 
  Functor predicate: true if F (of type ’F functor) is a functor   

functor (F : ’F functor) = 
1)  (∀:α. F I = I)   ∧    (where I is the identity function λx. x) 
2)  (∀:α β γ. ∀(f: β → γ) (g: α → β).  

  F (f  ° g) = F f  ° F g ) 
  Full, unabbreviated version:   

functor (F : ’F functor) = 
1)  (∀:α. F [: α, α :] (I : α → α) = (I : α ’F → α ’F))   ∧ 
2)  (∀:α β γ. ∀(f: β → γ) (g: α → β).  

  F [: α, γ :] (f  ° g) = F [: β, γ :] f  ° F [: α, β :] g ) 
  Provable in HOL-Omega (but not expressable in HOL2P): 

 |– ∃:’F.  ∃F : ’F functor.  functor F 
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Theorems about functors 

  Examples of functors: 
Identity functor id = λ:α β. (I : (α → β) → (α → β)) :  

  |– functor (id : I functor)        (where  I = λα:κ. α)  
MAP functor: 

  |– functor ((λ:α β. (MAP : (α → β) → (α list → β list))) : list functor) 
 where  MAP f [ ] = [ ] 
  MAP f (x :: xs) = f x :: MAP f xs 

  Define the composition of two functors (overloading °): 
(G :’G functor) ° (F :’F functor) = λ:α β. G [: α ’F, β ’F :] ° F [: α, β :] 

  Proved in HOL-Omega that the composition of functors is also a functor: 
|– functor (F :’F functor) ∧ functor (G :’G functor)  

 ⇒ functor ((G ° F) : (’F o’G)functor) 
where the infix type operator o = λ(’F:’k⇒’l)(’G:’l⇒’m)(α:’k). (α ’F)’G 

  Example: the composition of the MAP functor with itself is a functor: 
|– functor (((λ:α β. MAP) ° (λ:α β. MAP)) : (list o list)functor)  
(by defn.,)   (λ:α β. MAP) ° (λ:α β. MAP) = (λ:α β. MAP ° MAP) 
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Application: natural transformations 
(from Völker’s HOL2P and Algebra of Programming) 

  Natural transformation type abbreviation: 
     nattransf = λ(’F :ty⇒ty) (’G :ty⇒ty). ∀α. α ’F → α ’G 

  Natural transformation predicate:  
nattransf (φ : (’F, ’G)nattransf) (F :’F functor) (G :’G functor) = 

  ∀:α β. ∀(h: α → β).  G h ° φ  = φ ° F h 
  Read as “φ is a natural transformation from functor F to functor G” 
  Identity natural transformation from any functor to itself:  

 idF = (λ:α. I : α ’F → α ’F) : (’F,’F)nattransf 
 |– nattransf (idF :(’F,’F)nattransf) (F :’F functor) F 

  Example: INITS returns a list of all prefixes of its argument: 
INITS : α list → α list list 

INITS [ ] = [ ]  
INITS (x :: xs) = [ ] :: MAP (λys. x :: ys) (INITS xs) 

  INITS is a natural transformation from MAP to MAP ° MAP: 
 |– nattransf  ((λ:α.    INITS)    : (list, list o list)nattransf) 

  ((λ:α β. MAP)    :  list functor) 
  ((λ:α β. MAP ° MAP) : (list o list)functor) 

α ’F β ’F 

α ’G β ’G 

α β 

G h 

F h 

φ φ 

h 
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Composing natural transformations 

  Vertical composition of natural transformations: 
(φ2 : (’G,’H)nattransf) ° (φ1 : (’F,’G)nattransf)   =  λ:α. (φ2[: α :]) ° (φ1[: α :]) 

  Composing natural transformations with functors: 
(φ : (’F,’G)nattransf)  ° (H : ’H functor)        =  λ:α. φ [: α ’H :] 
(H : ’H functor)  ° (φ : (’F,’G)nattransf)   =  λ:α. H (φ [: α :]) 

  These definitions overload the ° composition operator. 
All these compositions yield natural transformations. 

  In HOL2P: 
|– nattransf φ F G ∧ functor H ⇒ 

 TYINST ((θ1 |→ λα. ((α)θ1)θ3) (θ2 |→ λα. ((α)θ2)θ3)) 
  nattransf (λ:α. H φ) (λ:α β. H ° F) (λ:α β. H ° G) 

  In HOL-Omega: 
|– nattransf φ F G ∧ functor H ⇒ 

 nattransf (H ° φ) (H ° F) (H ° G) 



June 24, 2011 

Application: monads 

  Monad type abbreviations: 
 unit  = λ(’M :ty⇒ty). ∀α. α → α ’M  
 bind = λ(’M :ty⇒ty). ∀α β. α ’M → (α → β ’M) → β ’M 

  Monad predicate, defined by three laws:  
monad (unit : ’M unit, >>= :’M bind) = 

 (∀:α β. ∀(a: α) (k: α → β M).      (left unit) 
  unit a >>=  k  =  k a)     ∧ 
 (∀:α. ∀(m: α M).       (right unit) 
  m >>= unit  =  m)       ∧ 

  (∀:α β γ. ∀(m: α M) (k: α→β M) (h: β→γ M).                (associativity) 
  (m >>= k) >>= h   =   m >>= (λa. k a >>= h)) 

  Example: The state monad: 
 state  = λσ α. σ → α × σ        (remember that (σ, α)state = α (σ state))) 

state_unit  = λ:α. λ(x: α) (s: σ). (x, s) 
state_bind = λ:α β. λ(w: (σ, α)state) (f: α → (σ, β)state) (s: σ). 

   let (x, s’) = w s  in  f x s’ 

HOL-Omega: |– monad (state_unit : (σ state)unit, state_bind : (σ state)bind) 
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Alternative definition of monads 

  Alternative definition of monads based on 7 laws: 
 map = λ(’M :ty⇒ty). ∀α β. (α → β) → (α ’M → β ’M) 
 join  = λ(’M :ty⇒ty). ∀α. (α ’M)’M → α ’M 

 umj_monad (unit :’M unit, map :’M map, join :’M join) = 
1)  ∀:α.      map (I: α → α) = (I: α ’M → α ’M)  
2)  ∀:α β γ. ∀(f:α → β) (g:β → γ). map (g ° f) = map g ° map f  
3)  ∀:α β. ∀(f:α → β).     map f  ° unit = unit ° f  
4)  ∀:α β. ∀(f:α → β).     map f  ° join = join ° map (map f)  
5)  ∀:α.       join ° unit = (I: α ’M → α ’M) 
6)  ∀:α.       join ° map unit = (I: α ’M → α ’M) 
7)  ∀:α.       join ° map join = join ° join 

  Define map, join operators based on unit, >>= , or  >>= based on map, join:  
MMAP (unit,  >>=)  =  λ:α β. λ(f : α → β) (m : α ’M). m >>= (λa. unit (f a))  
JOIN (unit,  >>=)  =  λ:α.    λ(z : (α ’M)’M).  z >>= I)  
BIND (map,  join )  =  λ:α β. λ(m : α ’M) (k : α → β ’M). join (map k m) 

  Proved in HOL-Omega that these two monad definitions are equivalent. 
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Monads defined in category theory 
  Third definition:  cat_monad(map, join, unit) iff 

  map is a functor of type ’M functor 
  join is a natural transformation between functors 

  map ° map of type (’M o’M)functor and 
       map       of type ’M functor,  
  where join has type (’M o’M, ’M)nattransf, and 

  unit is a natural transformation between functors 
    id   of type I functor and 
  map of type ’M functor, 
  where unit has type (I, ’M)nattransf 

  such that the diagrams commute, i.e., these hold: 
  join ° (map ° join) = join ° (join ° map) 
  join ° (map ° unit) = idmap 
  join ° (unit ° map) = idmap 

  where ° is composition between functors and/or natural transformations,  
as each situation requires (overloaded). 

  This has been proven equivalent to the 7-law definition of monads (incl. types), 
so all three definitions of monads are equivalent. 

map3 map2 

map2 

map°join 

map 

join°map join 

join 

Diagrams in 
Functor Category 

map map 

map 

map°unit unit°map map2 

join 
idmap idmap 
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Implementation 

  The HOL-Omega theorem prover publicly released in 2009, now 
upgraded together with HOL4 version Kananaskis-6 

  Backwards compatible with the HOL4 theorem prover 
  Both kernels (de Bruijn indicies and name-carrying) upgraded 
  Builds using either Moscow ML or Poly/ML 
  Upgraded tools: 

  Rewriting (normal and higher-order) 
  Simplification (including type beta reduction of terms) 
  Definition of (mutual, nested, recursive) datatypes and records 
  Definition of function on such datatypes and records 

  Not upgraded yet: rule induction definitions 
  Most difficult part: correct integration of h.o. matching for terms, types 
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Status 

  Implemented and working 
  Virtually completely backwards compatible with HOL4 
  Some facilities not yet upgraded to work with new types/terms 
  Type inference incomplete, but needed user annotations seem reasonable. 

  Seems good platform to study category theory, e.g. monads 
  Used by Jeremy Dawson of the Australian National University 

  Modeled a generalized version of monads 
  Existential Types and Packages for data abstraction 
  Current documentation is really scarce 

  for now, see 2009 paper and examples in <homedir>/examples/HolOmega 
  Hope to soon put out a tutorial for new users 
  More information from author’s site: 

  http://www.trustworthytools.com!
  Available for download from SourceForge : 

  svn checkout https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega 
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Conclusions 

  The HOL-Omega logic adds significant power over higher order logic 
  Adds abstraction of type variables over terms 
  Adds abstraction of type variables over types 

  Additional power infrequently used in practice,  
but when needed, it is absolutely required 

  Type inference incomplete, but user annotations reasonable in practice 
  Paper describes abstract syntax, set-theory semantics, axioms and rules 

of inference beyond HOL, examples of use, and implementation 
  Implemented in a theorem prover tool, as a backwards-compatible 

extension of the Higher Order Logic HOL4 theorem prover 
  Available for download from SourceForge or author’s site: 

  http://www.trustworthytools.com!
  Still experimental and under development but currently useful 
  Supports mechanizing a substantial collection of new problems 



The End 

Soli Deo Gloria. 


