The HOL-Omega Logic

August, 2011

Dr. Peter V. Homeier
palantir@trustworthytools.com

U.S. Department of Defense

Making formal methods
into normal methods

=
4

Outline

Motivation
Higher order logic (HOL) (including the lambda calculus)

= Types: Type constants, variables

» Terms: constants, variables, applications, abstractions
Type operators

= Kinds

= Types: adds abstractions of types, which have higher kinds
System F

= Types: adds universal types

= Terms: adds type abstractions, type applications
HOL-Omega logic = HOL + Type operators + System F
Applications: category theory and monads

June 24, 2011

= Monads are a practical device to cleanly represent
computations that involve state, I/O, exceptions, ...

Motivation: Monads

= A rich theory exists with many different kinds of monads
* Individual monads can (and have) been defined in HOL
= A general theory of monads cannot be defined in HOL

» Why? A monad 1s a type operator M together with two
term operations unit and >>= (“bind”, infix) such that
1) unita>>=k = ka left unit
2) m>>=ynit = m right unit
3) (m>>=k)>=h = m>>=(ha. ka>>=h) associativity
= [Inlaw (3), >>= has 4 occurrences and 3 distinct types,
but HOL requires a variable to have a single unique type!

June 24, 2011

Higher Order Logic (HOL4)
(Church’s Simple Theory of Types)

= Easy to use: natural to understand and simple to write:
= Completely decidable type inference (Hindley-Milner)
= (lassical logic with quantifiers over h.o. functions, excluded middle, and choice
= Function / predicate extensionality: (Vx. Px=Qx)=>P=Q
= Practical: used for many major projects
= Faithful model of ARM microprocessor (Anthony Fox)
= Large industrial-scale projects
= Powerful: many deep libraries and features:
= Full total recursive function definition
= Finite machine words library (e.g., bitvectors) using pseudo dependent types
= Simplifier and two first order automatic theorem provers built-in
= Higher order quotients with automatic lifting of types, constants, theorems
= Safe: LCF architecture, very small kernel, for high trustworthiness
= Mature: 23 years of development and application, still being actively developed

= [s imitation the sincerest form of flattery?
= [Isabelle/HOL, HOL-Light, ProofPower, HOL Zero all use essentially the same logic

June 24, 2011

Higher Order Logic %{/

(as 1n Gordon’s HOL system, 1988)

= Syntax = Constraints
to= terms: Types (Oy,... 0,)T :
c:0o COQStgflt arity of T must match n >0
X:0 variable S
’ Application termst .t
AXx. t abstraction ¢ or . aeg .
. ype of t_ .. must be a function type,
t,,r Cor application P
. oproarg , and domain of type of t
o= types: opr
o type variable must match type of t,,,,
(04,...)T type combination
0= type substitution: = Typing -t:o
[] empty substitution coET
(o |—> ©) :: 6 subst mapping Tl-c:00
= Environment T’ xcET
stores type arities, constant types F'-x:0
%ypes:. bi)(.)l’ ind, fun (—) T, x0, |-t : 0,
erms: =:a — o — bool I-Mx:0.1,:0 —0
=> : bool — bool — bool CUl 2 M 2
@ : (o. — bool) = a '-t:0,—0, I't:0)

June 24, 2011

deleted

Lambda-Omega =

HOL + type operators and kinds

Syntax "
t= terms:
cC:0 constant
X:0 variable
AX. t abstraction
topr targ application
o= types:

o'k

T:k

type variable .

type constant

\a. O type abstraction

Org Oop type application
k= kinds:

ty kind of proper types

k, =k, kind of type operators
0= type substitution:

[] empty substitution

(a|—=0)::0 subst mapping

June 24, 2011

Constraints

Application types ©,,, O,

kind of 0, must be an operator kind, and
domain otp kind of O,p must match kind of 0,

Application terms to S

type of t,,, must be a function type, and
domain of type of t,,. must match type of t,,,
Typing I'-t:o

coel

I'-c:00

xo€erl

I'-x:0

I'-o,:ty I''xo,|-t,:0,

I“|—)\x:01.t2 10, —> 0,
I-‘|_to 0,760, r|_ arg * 91

r | topr arg 02

System F (Girard, Reynolds)
adds type abstractions, applications

= Syntax » Constraints (continued)
t.= terms:

(Vo] constant

X:0 variable

- U o Typing Ftio

T arg bP coe’ll

I'-c:o

o type variable I'-x:0

Impredicativity!
n.p ca W’ I I_ topr . O — O, I |_ targ . O
= Constraints Tt :
T i . Oy
ypes (0},... G,)T :
arity of T must match n >0
Application terms t,,. t,,, :
type of t,, must be a function type, and
domain of type of t,,. must match type of t,,,
June 24, 2011

type combination

0, rtar

HOL-Omega = HOL4 +
_type operators, kinds, & ranks

Using ideas from HOL2P by Vélker and F,, by Pierce

= Syntax
t::= terms:
C.:0o constant
X:0 variable
AX. t abstraction
t,.t application

o= types:
a:k type variable
T:k type constant
Org Oopr type application
Ao. o tie abstraction
k= kinds:
ty:r kind of proper types
K :r kind variable
k,=k, kind of type operators
ri=n ranks: (natural nums)

June 24, 2011

= Constraints

and kind of a must match kind of o
andrankofamustbe>rankofo
Application types o,,, O

kind of ¢, must be an operator kind(=), and
domain of kind of 0, Must match kind of o,,,
and rank(domain(o Opr)) must > rank(o,,,,
Application terms t,,, t,,, :

type of t,,, must be a function type, and
domain of type of t,,,

» must match type of t,,,
and rank(domam(topr)) must = rank(t,,).
= Ranks are present to avoid impredicativity,
and so assure a set-theoretic model exists.

Types are stratified by increasing rank:

rank(a : k) = rank(k)
rank(t : k) =rank(k)
rank(o,,, 0,,,) = rank(range(c,,,))

rank()\.a o) =max(rank(a), rank(o))
rank(Va. o) = max(rank(a) + 1, rank(o))
rank(Ja. 6) = max(rank(a) + 1, rank(o))

Impredicativity

= A powerful form of parametric polymorphism,
but dangerous. Similar in power to ZF set theory.

= A definition is “impredicative” if it involves ranging over
a domain which includes the very thing being defined.

= In System F, the type variable a in the type 0 = Va.a—a
ranges over all types, including o itself.

= This is circular, but System F 1s not inconsistent.

= However, Girard discovered that the naive combination of
impredicativity and higher order logic is inconsistent!

= Qur design choice: disallow impredicativity of types.
= Stratify types by ranks 0, 1, 2, ... according to depth of V
= Type variable a in Vo.a—a ranges over types of rank <= a
= Rank of the type Va.a—a is then (rank of a) + 1

= Yields straightforward set-theoretic semantics
June 24, 2011

Universal and Existential Quantifica
of type variables over terms

= HOL-Omega has abstraction of a type variable a over a term ¢
" AM(ak). t (type abstraction)
= Note that the type variable can have any kind
= Type quantification over terms is defined using type abstraction:

. V: = AP.(P=\:(a:K). T)
. 1. = AP. (P #M:(a:K). F)
= Notation:
. Vi(ak).t = (V) (A(K). ?)
. (ak).t = () (M(aK).)

= Multiple type abstraction, quantification, application:

= (A:apf. Mx:p— a).x)[: bool, int :] = A(x: int — bool). x

June 24, 2011

Application: functors %{/

(ported from HOLZ2P by Volker)

= (Category Type: objects are types of kind ty & rank 0, arrows are term functions
= Functors: Two maps: 1) on objects 'F : ty=>ty and 2) on arrows F : ’F functor

= Functor type abbreviation:
functor=A'F : ty=ty. Vap. (a—= p) = (a 'F —= B 'F)
= Functor predicate: true if ' (of type 'F functor) 1s a functor
functor (F : ’F functor) =

1) (Via. FI=1) a (where 1 is the identity function \x. x)
2) (V:aBy.V(: B~ (g a—p)
F(f°g=Ff"Fg)
Full, unabbreviated version:
functor (F : 'F functor) =
1) VaFlaal](l:a—a)=1:a’F— a’F)) A
2) (VaBr.V(F 1) (g a—p. O
Fliayl(f g=FLBy1f " Fliap:lg)
Provable in HOL-Omega (but not expressable in HOL2P):
|- 3:°F. AF : 'Ffunctor. functor F

June 24, 2011

=
4

Theorems about functors

= Examples of functors:
Identity functorid=A :ap.(1: (a—) = (a— p)):
|- functor (id : | functor) (where | = oK. @)
MAP functor:
|- functor ((M:a B. (MAP : (o — B) — (alist = Blist))) : list functor)
where MAPf[]=][]
MAP f(x :: xs)=fx :: MAP fxs
= Define the composition of two functors (overloading °):
(G :’G functor) ° (F :’Ffunctor) =h:aB. G[:a’F, B'F:]°F[:a B:]
= Proved in HOL-Omega that the composition of functors is also a functor:
|- functor (F :’F functor) A functor (G :’G functor)
=> functor ((G ° F) : (’F o ’G)functor)
where the infix type operator 0 = A('F: 'k=>"1)('G:’l="m)(a: k). (a 'F)’G
= Example: the composition of the MAP functor with itself is a functor:
|- functor (((M:a . MAP) ° (Mh:a B. MAP)) : (list o list)functor)
(by defn.,) (h:a B.MAP) ° (h:a p. MAP) = (\:a . MAP ° MAP)
June 24, 2011

—"

Application: natural transformations™
(from Volker's HOL2P and Algebra of Programming)

Natural transformation type abbreviation: h
nattransf = A('F :ty=ty) ('G :ty=ty). Va. a 'F = a 'G a—>f

Natural transformation predicate:
nattransf (¢ : (’F, 'G)nattransf) (F :’F functor) (G :’G functor) =

Fh
YViap.V(h:a—p). Gh° ¢ =¢° Fh a’F —> BF
Read as “¢ 1s a natural transformation from functor F to functor G” p p
Identity natural transformation from any functor to itself:
ide.=M\:a.1: a’F— aF) : ('F, 'F)nattransf 0G G

|- nattransf (idy :('F, 'F)nattransf) (¥ : 'F functor) F G h
Example: INITS returns a list of all prefixes of its argument:

INITS : alist = «list list
INITS[]=[]
INITS (x::xs)=][]:: MAP (Ays.x :: ys) (INITS xs)
INITS is a natural transformation from MAP to MAP ° MAP:
|- nattransf ((M:a. INITS) : (list, list o list)nattransf)
((M:a B. MAP) . list functor)
((M:ax B. MAP ° MAP) : (list o list)functor)

June 24, 2011

=
4

Composing natural transformations

= Vertical composition of natural transformations:

(¢, : ('G,’H)nattransf) ° (¢, : (’F,’G)nattransf) = h:a. (@,[: a:]) ° (¢[: a:])
= Composing natural transformations with functors:

(¢ : CF,’G)nattransf) ° (H : 'H functor) = Ma. @[: a 'H:]

(H : 'H functor) °(@: (F,’G)nattransf) = M:a. H(¢[: a:])

= These definitions overload the ° composition operator.
All these compositions yield natural transformations.

= In HOL2P:
|- nattransf ¢ F G A functor H =
TYINST (6, |=> ha. (@6)6)) (6, | het. ()6)6,))
nattransf (.a. H ¢) (\.a p. H° F) (\:a B. H° G)
= [n HOL-Omega:
|- nattransf ¢ F G A functor H =
nattransf (H° @) (H° F) (H ° G)

June 24, 2011

>
4

Application: monads

= Monad type abbreviations:
unit = A('M ty=ty).Va. a— a’M
bind = A('M :ty=>ty). Vap.a M — (a— ’'M) — M
= Monad predicate, defined by three laws:
monad (unit : "M unit, >>= :’M bind) =

(V:a p.V(a:) (k: a— B M). (left unit)
unit a>>= k = ka) A

(V:a. V(m: a M). (right unit)
m >>= ynit = m)

V:a B y. V(m: aM) (k: a%ﬁM) (h: /J’%yM) (associativity)
(m>>=k)>=h = m>>=(\a. ka>>=h))

= Example: The state monad:
state =Aoca.o— ax o (remember that (o, o)state = o (o state)))

state unit = N:at. Mx: @) (s: 0). (x, s)
state bind = h.a B. Mw: (o, a)state) (f: @ — (o, P)state) (s: 0).
let (x,s)=ws in fxs’

HOL-Omega: |- monad (state unit : (o state)unit, state bind : (o state)bind)

June 24, 2011

=
4

Alternative definition of monads

Alternative definition of monads based on 7 laws:
map = A('M :ty=ty). Va . (a— p) = (o 'M — B 'M)
join =AM :ty=ty).Va. (a 'M)’M — a’'M

umj monad (unit : "M unit, map :’M map, join :’M join) =

1) V:ia map (I: a— a)=(1: a 'M — a 'M)
2) Viapy.V({fa—p)(g:B—=y).map (g°f)=map g° mapf

3) Viap. Y(fia— p). map f ° unit = unit ° f

4) Y:ap.V(f.a— p). map f ° join = join ° map (map f)
5) Ve join ° unit = (I: a 'M — o "M)

6) V:a. join ° map unit = (I: « ’'M — a M)
7) V:a. join ° map join = join ° join

Define map, join operators based on unit, >>=, or >>= based on map, join:
MMAP (unit, >>=) = Ma . Mf: a— p) (m: aa ’"M). m >>= (Aa. unit (f a))
JOIN (unit, >>=) = ha. Mz:(a 'M)'M). z>>=1)

BIND (map, join) = h:af.N(m: a 'M) (k: a— B 'M). join (map k m)
Proved in HOL-Omega that these two monad definitions are equivalent.

June 24, 2011

Monads defined 1n category theory

* Third definition: cat monad(map, join, unit) iff Diagrams in
= map 1s a functor of type 'M functor Functor Category
= join is a natural transformation between functors
" map ° map of type ("M o’M)functor and
- map of type "M functor,
= where join has type ('M o’M, 'M)nattransf, and

= ynit 1s a natural transformation between functors

o. .
, map_join 5
map> — > map

. . O ..
join map Jom

map?> ———> map

. id of type | functor and Jjoin
* map of type "M functor,
= where unit has type (I, 'M)nattransf map "4 “unj map? ynit’map map
= such that the diagrams commute, i.e., these hold:
= join ° (map ° join) = join ° (join ° map) g N join | #
= join® (map ° unit) =id,,, N " "
= join ° (unit ° map) = id,,, [/ map

= where ° is composition between functors and/or natural transformations,
as each situation requires (overloaded).

= This has been proven equivalent to the 7-law definition of monads (incl. types),
so all three definitions of monads are equivalent.

June 24, 2011

=
4

* The HOL-Omega theorem prover publicly released in 2009, now
upgraded together with HOL4 version Kananaskis-6

= Backwards compatible with the HOL4 theorem prover
= Both kernels (de Bruijn indicies and name-carrying) upgraded
= Builds using either Moscow ML or Poly/ML
= Upgraded tools:
= Rewriting (normal and higher-order)
= Simplification (including type beta reduction of terms)
= Definition of (mutual, nested, recursive) datatypes and records
= Definition of function on such datatypes and records

Implementation

= Not upgraded yet: rule induction definitions
= Most difficult part: correct integration of h.o. matching for terms, types

June 24, 2011

=
4

Status

* Implemented and working
= Virtually completely backwards compatible with HOL4
= Some facilities not yet upgraded to work with new types/terms
= Type inference incomplete, but needed user annotations seem reasonable.
= Seems good platform to study category theory, e.g. monads
= Used by Jeremy Dawson of the Australian National University
= Modeled a generalized version of monads
= Existential Types and Packages for data abstraction
= Current documentation is really scarce
= for now, see 2009 paper and examples in <homedir>/examples/HolOmega
= Hope to soon put out a tutorial for new users
= More information from author’s site:

= Available for download from SourceForge :

= svn checkout
June 24, 2011

=
4

* The HOL-Omega logic adds significant power over higher order logic

Conclusions

= Adds abstraction of type variables over terms
= Adds abstraction of type variables over types

= Additional power infrequently used in practice,
but when needed, it 1s absolutely required

= Type inference incomplete, but user annotations reasonable in practice

= Paper describes abstract syntax, set-theory semantics, axioms and rules
of inference beyond HOL, examples of use, and implementation

= Implemented in a theorem prover tool, as a backwards-compatible
extension of the Higher Order Logic HOL4 theorem prover

= Available for download from SourceForge or author’s site:

= Still experimental and under development but currently useful
= Supports mechanizing a substantial collection of new problems

June 24, 2011

