

The HOL-Omega Logic

August, 2011

Dr. Peter V. Homeier palantir@trustworthytools.com U.S. Department of Defense

Making formal methods into normal methods

Outline

- Motivation
- Higher order logic (HOL) (including the lambda calculus)
 - Types: Type constants, variables
 - Terms: constants, variables, applications, abstractions
- Type operators
 - Kinds
 - Types: adds abstractions of types, which have higher kinds
- System F
 - Types: adds universal types
 - Terms: adds type abstractions, type applications
- HOL-Omega logic = HOL + Type operators + System F
- Applications: category theory and monads

Motivation: Monads

- Monads are a practical device to cleanly represent computations that involve state, I/O, exceptions, ...
- A rich theory exists with many different kinds of monads
- Individual monads can (and have) been defined in HOL
- A general theory of monads *cannot* be defined in HOL
- Why? A monad is a type operator M together with two term operations unit and >>= ("bind", infix) such that

1)	unit d	a >>= k	= k	a			left unit
2)	<i>m</i> >>	⊨ unit	= m				right unit
3) (2	m >>= k) >>= h	= m	$>>=(\lambda a$. k a >>	>= h)	associativity
In la	w (3), >	>= has	4 oc	currence	es and i	3 distir	ict types,
1 . 1	TOT	•	•	11 . 1		• 1	•

but HOL requires a variable to have a single unique type!

Higher Order Logic (HOL4) (Church's Simple Theory of Types)

- Easy to use: natural to understand and simple to write:
 - Completely decidable type inference (Hindley-Milner)
 - Classical logic with quantifiers over h.o. functions, excluded middle, and choice
 - Function / predicate extensionality: $(\forall x. P x = Q x) \Rightarrow P = Q$
- Practical: used for many major projects
 - Faithful model of ARM microprocessor (Anthony Fox)
 - Large industrial-scale projects
- Powerful: many deep libraries and features:
 - Full total recursive function definition
 - Finite machine words library (e.g., bitvectors) using pseudo dependent types
 - Simplifier and two first order automatic theorem provers built-in
 - Higher order quotients with automatic lifting of types, constants, theorems
- Safe: LCF architecture, very small kernel, for high trustworthiness
- Mature: 23 years of development and application, still being actively developed
- Is imitation the sincerest form of flattery?
 - Isabelle/HOL, HOL-Light, ProofPower, HOL Zero all use essentially the same logic

Manager and Manager

Higher Order Logic (as in Gordon's HOL system, 1988)

Syntax	
A	

t ::=	ter	<u>ms:</u>
	c:σ	constant
	x:σ	variable
	λx. t	abstraction
	$t_{opr} t_{arg}$	application
σ ::=	ty	bes:
	α	type variable
	$(\sigma_1,\ldots,\sigma_n)\tau$	type combination
θ ::=	ty	be substitution:
	[] er	npty substitution
	$(\alpha \mid \rightarrow \sigma) :: \Theta$	subst mapping
Fnvi	ronment F	

stores type arities, constant types Types: bool, ind, fun (\rightarrow) Terms: =: $\alpha \rightarrow \alpha \rightarrow bool$ \Rightarrow : bool $\rightarrow bool \rightarrow bool$ (\hat{a} : ($\alpha \rightarrow bool$) $\rightarrow \alpha$ Constraints <u>Types</u> $(\sigma_1, ..., \sigma_n)\tau$: arity of τ must match $n \ge 0$ <u>Application terms</u> $t_{opr} t_{arg}$: type of t_{opr} must be a function type, and domain of type of t_{opr} must match type of t_{arg}

 $\begin{array}{c} Typing & \Gamma \models t:\sigma \\ \hline c:\sigma \in \Gamma \\ \hline \Gamma \models c:\sigma \theta \\ \underline{x:\sigma \in \Gamma} \\ \hline \Gamma \models x:\sigma \\ \hline \Gamma \models x:\sigma \\ \hline \Gamma \models x:\sigma \\ \hline \Gamma \models x:\sigma_{1} \models t_{2}:\sigma_{2} \\ \hline \Gamma \models \lambda x:\sigma_{1}.t_{2}:\sigma_{1} \rightarrow \sigma_{2} \\ \hline \Gamma \models t_{1}:\sigma_{11} \rightarrow \sigma_{12} \quad \Gamma \models t_{2}:\sigma_{11} \\ \hline \Gamma \models t_{2}:\sigma_{11} \\ \end{array}$

Lambda-Omega = HOL + type operators and kinds

System F *(Girard, Reynolds)* [™] adds type abstractions, applications

Synta:	x					
t ::=	terms:					
	c : o	constant				
	x:σ	variable				
	λx. t	abstraction				
	$\mathbf{t}_{opr} \mathbf{t}_{arg}$	application				
	λ:α. t	type abstraction term				
	t [: σ :]	type application term				
σ::=	ty	/pes:				
	α	type variable				
	$(\sigma_1,\ldots,\sigma_n)\tau$	type combination				
	∀ α. σ	universal type				
Impredicativity !						

Constraints

Types $(\sigma_1, \dots, \sigma_n)\tau$:
arity of τ must match $n \ge 0$ Application terms $t_{opr} t_{arg}$:
type of t_{opr} must be a function type, and
domain of type of t_{opr} must match type of t_{arg} June 24, 2011

Constraints (continued) <u>Type application terms</u> t [: σ :] : type of t must be a universal type

 $\begin{array}{c} Typing & \Gamma \models t: \sigma \\ \hline c: \sigma \in \Gamma \\ \hline \Gamma \models c: \sigma \\ x: \sigma \in \Gamma \\ \hline \Gamma \models x: \sigma \\ \hline \Gamma \models x: \sigma \\ \hline \Gamma \models x: \sigma \\ \hline \Gamma \models x: \sigma_1 \Rightarrow \sigma_2 \\ \hline \Gamma \models \lambda x: \sigma_1 \cdot t_2: \sigma_1 \Rightarrow \sigma_2 \\ \hline \Gamma \models \lambda x: \sigma_1 \cdot t_2: \sigma_1 \Rightarrow \sigma_2 \\ \hline \Gamma \models t_{opr}: \sigma_1 \Rightarrow \sigma_2 \quad \Gamma \models t_{arg}: \sigma_1 \\ \hline \Gamma \models t_{opr} t_{arg}: \sigma_2 \\ \hline \Gamma \models \lambda: \alpha. t: \forall \alpha. \sigma \\ \hline \Gamma \models t_1: \forall \alpha. \sigma_1 \\ \hline \Gamma \models t_1 [: \sigma_2:]: \sigma_1[\alpha \models \sigma_2] \end{array}$

HOL-Omega = HOL4 +

System F, type operators, kinds, & ranks

Using ideas from HOL2P by Völker and F_{ω} by Pierce

Contan

t [: σ :] :
sal type, say $\forall \alpha$. σ_1
ch kind of σ
rank of σ
opr
operator kind(\Rightarrow), and
nust match kind of σ_{arg}
must \geq rank(σ_{arg}).
va ·
nction type, and
ust match type of t _{arg}
$nust \ge rank(t_{arg}).$
oid impredicativity
retic model exists
ncreasing rank
indicusing funit.
$nge(\sigma_{\alpha})$
$k(\alpha)$ rank (α)
$k(\alpha) + 1$ rank (σ)
$k(\alpha) + 1$ rank (σ)

Impredicativity

∀α.α→α/ r+1

α

r

1

0

- A powerful form of parametric polymorphism, but dangerous. Similar in power to ZF set theory.
- A definition is "impredicative" if it involves ranging over a domain which includes the very thing being defined.
- In System F, the type variable α in the type $\sigma = \forall \alpha.\alpha \rightarrow \alpha$ ranges over all types, including σ itself.
- This is circular, but System F is *not* inconsistent.
- However, Girard discovered that the naïve combination of impredicativity and higher order logic is inconsistent!
- Our design choice: disallow impredicativity of types.
 - Stratify types by ranks 0, 1, 2, ... according to depth of \forall
 - Type variable α in $\forall \alpha. \alpha \rightarrow \alpha$ ranges over types of rank $\leq \alpha$
 - Rank of the type $\forall \alpha.\alpha \rightarrow \alpha$ is then (rank of α) + 1
 - Yields straightforward set-theoretic semantics

Universal and Existential Quantification of type variables over terms

- HOL-Omega has abstraction of a type variable α over a term t
 - $\lambda:(\alpha:\kappa)$. *t* (type abstraction)
 - Note that the type variable can have any kind κ
- Type quantification over terms is defined using type abstraction:

•
$$\forall : = \lambda P. (P = \lambda : (\alpha : \kappa). T)$$

$$\exists : = \lambda P. (P \neq \lambda : (\alpha: \kappa). F)$$

• Notation:

•
$$\forall : (\alpha:\kappa). t = (\forall :) (\lambda: (\alpha:\kappa). t)$$

•
$$\exists:(\alpha:\kappa). t = (\exists:)(\lambda:(\alpha:\kappa). t)$$

- Multiple type abstraction, quantification, application:
 - $(\lambda: \alpha \beta, \lambda(x: \beta \rightarrow \alpha), x)$ [: bool, int :] = $\lambda(x: \text{ int } \rightarrow \text{ bool}), x$

Application: functors (ported from HOL2P by Völker)

- <u>Category Type</u>: objects are types of kind ty & rank 0, arrows are term functions
- <u>Functors</u>: Two maps: 1) on objects $F: ty \Rightarrow ty$ and 2) on arrows F: F functor
- <u>Functor type abbreviation</u>: functor = λF : ty \Rightarrow ty. $\forall \alpha \beta. (\alpha \rightarrow \beta) \rightarrow (\alpha F \rightarrow \beta F)$
- Functor predicate: true if F (of type 'F functor) is a functor functor (F: 'F functor) =
 - 1) $(\forall : \alpha. F I = I) \land$ (where I is the identity function $\lambda x. x$)

2)
$$(\forall : \alpha \beta \gamma, \forall (f: \beta \rightarrow \gamma) (g: \alpha \rightarrow \beta).$$

 $F(f^{\circ}g) = Ff^{\circ}Fg)$

- Full, unabbreviated version: functor (F: 'F functor) =
 - 1) $(\forall: \alpha, F [: \alpha, \alpha :] (I : \alpha \rightarrow \alpha) = (I : \alpha 'F \rightarrow \alpha 'F)) \land$

2)
$$(\forall: \alpha \beta \gamma. \forall (f: \beta \rightarrow \gamma) (g: \alpha \rightarrow \beta).$$

 $F [: \alpha, \gamma:] (f^{\circ}g) = F [: \beta, \gamma:] f^{\circ} F [: \alpha, \beta:] g)$

<u>Provable in HOL-Omega (but not expressable in HOL2P)</u>:
 |-∃:'F. ∃F: 'F functor. functor F

Theorems about functors

 $\frac{\text{Examples of functors}}{\text{Identity functor } id = \lambda : \alpha \beta. (I : (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \beta)) :$ $|-functor (id : I functor) \qquad (where I = \lambda \alpha : \kappa. \alpha)$ MAP functor: $|-functor((\lambda : \alpha \beta (MAP : (\alpha \rightarrow \beta) \rightarrow (\alpha \text{ list} \rightarrow \beta \text{ list}))) : \text{ list functor}$

 $[-functor ((\lambda: \alpha \beta. (MAP : (\alpha \rightarrow \beta) \rightarrow (\alpha \text{ list} \rightarrow \beta \text{ list}))) : \text{ list functor})$ where MAP f[] = []MAP f(x :: xs) = fx :: MAP fxs

- <u>Define the composition of two functors</u> (overloading °): $(G: G' \text{ functor}) \circ (F: F' \text{ functor}) = \lambda: \alpha \beta. G [: \alpha F, \beta F:] \circ F [: \alpha, \beta:]$
- Proved in HOL-Omega that the composition of functors is also a functor: |- functor (F : 'F functor) ∧ functor (G : 'G functor) ⇒ functor ((G ° F) : ('F o 'G)functor) where the infix type operator o = λ('F: 'k⇒'l)('G: 'l⇒'m)(α: 'k). (α 'F)'G
- <u>Example</u>: the composition of the MAP functor with itself is a functor: $|-functor(((\lambda:\alpha \beta. MAP)^{\circ}(\lambda:\alpha \beta. MAP)): (list o list)functor)$ (by defn.,) $(\lambda:\alpha \beta. MAP)^{\circ}(\lambda:\alpha \beta. MAP) = (\lambda:\alpha \beta. MAP^{\circ} MAP)$

Application: natural transformations (from Völker's HOL2P and <u>Algebra of Programming</u>)

- <u>Natural transformation type abbreviation</u>: nattransf = $\lambda(F:ty \Rightarrow ty)(G:ty \Rightarrow ty)$. $\forall \alpha. \alpha F \rightarrow \alpha G$
- <u>Natural transformation predicate</u>: $nattransf(\phi: (F, G))$ nattransf $(F: F \text{ functor}) (G: G \text{ functor}) = \forall: \alpha \beta. \forall (h: \alpha \rightarrow \beta). G h^{\circ} \phi = \phi^{\circ} F h$

• Read as " ϕ is a natural transformation from functor F to functor G"

- Identity natural transformation from any functor to itself: $id_F = (\lambda: \alpha. I: \alpha 'F \rightarrow \alpha 'F) : ('F, 'F)$ nattransf $|-nattransf(id_F: ('F, 'F)$ nattransf) (F: 'F functor) F
- <u>Example</u>: INITS returns a list of all prefixes of its argument:
 - **INITS** : α list $\rightarrow \alpha$ list list

INITS [] = []INITS $(x :: xs) = [] :: MAP (\lambda ys. x :: ys) (INITS xs)$

• INITS is a natural transformation from MAP to MAP ° MAP:

 $\begin{array}{l} -nattransf & ((\lambda:\alpha. \text{ INITS}) & : (\text{list, list o list})\text{nattransf}) \\ & ((\lambda:\alpha \beta. \text{ MAP}) & : \text{ list functor}) \\ & ((\lambda:\alpha \beta. \text{ MAP} \circ \text{ MAP}) : (\text{list o list})\text{functor}) \end{array}$

June 24, 2011

 $\alpha \xrightarrow{h} \beta$

Martin and Control of Control of

Composing natural transformations

- <u>Vertical composition of natural transformations</u>: $(\phi_2 : (G, H)$ nattransf) ° $(\phi_1 : (F, G)$ nattransf) = $\lambda : \alpha . (\phi_2 [: \alpha :])$ ° $(\phi_1 [: \alpha :])$
- These definitions overload the ° composition operator. All these compositions yield natural transformations.
- In HOL2P:

 $\begin{array}{l} |- \ nattransf \ \phi \ F \ G \ \land \ functor \ H \Rightarrow \\ \texttt{TYINST} \ ((\theta_1 \mid \rightarrow \lambda \alpha. \ ((\alpha)\theta_1)\theta_3) \ (\theta_2 \mid \rightarrow \lambda \alpha. \ ((\alpha)\theta_2)\theta_3)) \\ nattransf \ (\lambda: \alpha. \ H \ \phi) \ (\lambda: \alpha \ \beta. \ H^\circ \ F) \ (\lambda: \alpha \ \beta. \ H^\circ \ G) \end{array}$

In HOL-Omega:

|- nattransf ϕ F G ∧ functor H \Rightarrow nattransf (H ° ϕ) (H ° F) (H ° G)

Application: monads

• <u>Example</u>: The state monad:

state = $\lambda \sigma \alpha$. $\sigma \rightarrow \alpha \times \sigma$ (remember that (σ, α) state = $\alpha (\sigma \text{ state})$)) state_unit = $\lambda: \alpha$. $\lambda(x: \alpha) (s: \sigma)$. (x, s)state_bind = $\lambda: \alpha \beta$. $\lambda(w: (\sigma, \alpha)$ state) (f: $\alpha \rightarrow (\sigma, \beta)$ state) (s: σ). let (x, s') = w s in f x s'

HOL-Omega: \mid *monad* (*state_unit* : (σ state)unit, *state_bind* : (σ state)bind) June 24, 2011

Alternative definition of monads

Alternative definition of monads based on 7 laws:
$$map = \lambda('M:ty \Rightarrow ty). \forall \alpha \beta. (\alpha \rightarrow \beta) \rightarrow (\alpha 'M \rightarrow \beta 'M)$$

$$join = \lambda('M:ty \Rightarrow ty). \forall \alpha. (\alpha 'M) 'M \rightarrow \alpha 'M$$

$$umj_monad (unit: 'M unit, map: 'M map, join: 'M join) =$$

$$1) \forall : \alpha. \qquad map (I: \alpha \rightarrow \alpha) = (I: \alpha 'M \rightarrow \alpha 'M)$$

$$2) \forall : \alpha \beta \gamma. \forall (f: \alpha \rightarrow \beta) (g: \beta \rightarrow \gamma). map (g ^{\circ} f) = map g ^{\circ} map f$$

$$3) \forall : \alpha \beta. \forall (f: \alpha \rightarrow \beta). \qquad map f ^{\circ} unit = unit ^{\circ} f$$

$$4) \forall : \alpha \beta. \forall (f: \alpha \rightarrow \beta). \qquad map f ^{\circ} join = join ^{\circ} map (map f)$$

$$5) \forall : \alpha. \qquad join ^{\circ} unit = (I: \alpha 'M \rightarrow \alpha 'M)$$

$$6) \forall : \alpha. \qquad join ^{\circ} map unit = (I: \alpha 'M \rightarrow \alpha 'M)$$

$$7) \forall : \alpha. \qquad join ^{\circ} map join = join ^{\circ} join$$

- Define *map*, *join* operators based on *unit*, >>=, or >>= based on *map*, *join*: MMAP (*unit*, >>=) = $\lambda: \alpha \beta$. $\lambda(f: \alpha \rightarrow \beta)$ ($m: \alpha 'M$). $m >>= (\lambda a. unit (f a)$) JOIN (*unit*, >>=) = $\lambda: \alpha$. $\lambda(z: (\alpha 'M) 'M)$. z >>= I) BIND (*map*, *join*) = $\lambda: \alpha \beta$. $\lambda(m: \alpha 'M)$ ($k: \alpha \rightarrow \beta 'M$). *join* (*map* k m)
- Proved in HOL-Omega that these two monad definitions are equivalent.

Monads defined in category theory

Third definition: cat_monad(map, join, unit) iff

- map is a functor of type 'M functor
- *join* is a natural transformation between functors
 - map ° map of type ('M o'M)functor and
 - *map* of type '*M* functor,
 - where *join* has type ('*M* o'*M*, '*M*)nattransf, and
- *unit* is a natural transformation between functors
 - *id* of type I functor and
 - *map* of type '*M* functor,
 - where *unit* has type (I, 'M)nattransf
- such that the diagrams commute, i.e., these hold:
 - join ° (map ° join) = join ° (join ° map)
 - join ° (map ° unit) = id_{map}
 - join ° (unit ° map) = id_{map}
- where ° is composition between functors and/or natural transformations, as each situation requires (overloaded).
- This has been proven equivalent to the 7-law definition of monads (incl. types), so all three definitions of monads are equivalent.

Implementation

- The HOL-Omega theorem prover publicly released in 2009, now upgraded together with HOL4 version Kananaskis-6
- Backwards compatible with the HOL4 theorem prover
- Both kernels (de Bruijn indicies and name-carrying) upgraded
- Builds using either Moscow ML or Poly/ML
- Upgraded tools:
 - Rewriting (normal and higher-order)
 - Simplification (including type beta reduction of terms)
 - Definition of (mutual, nested, recursive) datatypes and records
 - Definition of function on such datatypes and records
- Not upgraded yet: rule induction definitions
- Most difficult part: correct integration of h.o. matching for terms, types

Manager and State

Status

- Implemented and working
 - Virtually completely backwards compatible with HOL4
 - Some facilities not yet upgraded to work with new types/terms
 - Type inference incomplete, but needed user annotations seem reasonable.
- Seems good platform to study category theory, e.g. monads
- Used by Jeremy Dawson of the Australian National University
 - Modeled a generalized version of monads
- Existential Types and Packages for data abstraction
- Current documentation is really scarce
 - for now, see 2009 paper and examples in <homedir>/examples/HolOmega
- Hope to soon put out a tutorial for new users
- More information from author's site:
 - http://www.trustworthytools.com
- Available for download from SourceForge :

svn checkout <u>https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega</u>
 June 24, 2011

Conclusions

- The HOL-Omega logic adds significant power over higher order logic
 - Adds abstraction of type variables over terms
 - Adds abstraction of type variables over types
- Additional power infrequently used in practice, but when needed, it is absolutely required
- Type inference incomplete, but user annotations reasonable in practice
- Paper describes abstract syntax, set-theory semantics, axioms and rules of inference beyond HOL, examples of use, and implementation
- Implemented in a theorem prover tool, as a backwards-compatible extension of the Higher Order Logic HOL4 theorem prover
- Available for download from SourceForge or author's site:
 - http://www.trustworthytools.com
- Still experimental and under development but currently useful
- Supports mechanizing a substantial collection of new problems

The End

1/1

Soli Deo Gloria.