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Outline 

  Motivation 
  Higher order logic (HOL) (including the lambda calculus) 

  Types: Type constants, variables 
  Terms: constants, variables, applications, abstractions 

  Type operators 
  Kinds 
  Types: adds abstractions of types, which have higher kinds 

  System F 
  Types: adds universal types 
  Terms: adds type abstractions, type applications 

  HOL-Omega logic = HOL + Type operators + System F 
  Applications: category theory and monads 
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Motivation: Monads 

  Monads are a practical device to cleanly represent 
computations that involve state, I/O, exceptions, … 

  A rich theory exists with many different kinds of monads 
  Individual monads can (and have) been defined in HOL 
  A general theory of monads cannot be defined in HOL 
  Why? A monad is a type operator M together with two 

term operations unit and >>= (“bind”, infix) such that 
1)         unit a >>= k  =  k a                    left unit 
2)         m >>= unit    =  m                  right unit 
3)  (m >>= k) >>= h  =  m >>= (λa. k a >>= h)      associativity 

  In law (3), >>= has 4 occurrences and 3 distinct types,  
but HOL requires a variable to have a single unique type! 



Higher Order Logic (HOL4) 
(Church’s Simple Theory of Types) 

  Easy to use: natural to understand and simple to write: 
  Completely decidable type inference (Hindley-Milner) 
  Classical logic with quantifiers over h.o. functions, excluded middle, and choice 
  Function / predicate extensionality: (∀x. P x = Q x) => P = Q 

  Practical: used for many major projects 
  Faithful model of ARM microprocessor (Anthony Fox) 
  Large industrial-scale projects 

  Powerful: many deep libraries and features: 
  Full total recursive function definition 
  Finite machine words library (e.g., bitvectors) using pseudo dependent types 
  Simplifier and two first order automatic theorem provers built-in 
  Higher order quotients with automatic lifting of types, constants, theorems 

  Safe: LCF architecture, very small kernel, for high trustworthiness 
  Mature: 23 years of development and application, still being actively developed 
  Is imitation the sincerest form of flattery?  

  Isabelle/HOL, HOL-Light, ProofPower, HOL Zero all use essentially the same logic 
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Higher Order Logic 
(as in Gordon’s HOL system, 1988) 

  Syntax 
t ::=   terms: 

 c : σ             constant 
 x : σ              variable 
 λx. t                         abstraction 
 topr targ                     application 

σ ::=   types: 
 α              type variable 
 (σ1,… σn)τ   type combination 

θ ::=   type substitution: 
 [ ]   empty substitution 
 (α |→ σ) :: θ    subst mapping 

  Environment Γ 
    stores type arities, constant types 
Types: bool, ind, fun (→) 
Terms:  = : α → α → bool 
            ⇒ : bool → bool → bool 
            @ : (α → bool) → α  

  Constraints   
Types (σ1,… σn)τ : 
arity of τ must match n ≥ 0 
Application terms topr targ : 
type of topr must be a function type, 
and domain of type of topr 
must match type of targ 

  Typing   Γ |– t : σ 
                c:σ ∈ Γ  
               Γ |– c : σ θ 
                x:σ ∈ Γ  
               Γ |– x : σ 
         Γ, x:σ1 |– t2 : σ2 
     Γ |– λx : σ1. t2 : σ1 → σ2 
Γ |– t1 : σ11 → σ12    Γ |– t2 : σ11  
              Γ |– t2 : σ11  
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  Syntax 
t ::=   terms: 

 c : σ              constant 
 x : σ              variable 
 λx. t                           abstraction 
 topr targ                                application 

σ ::=   types: 
 α : k                        type variable 
 (σ1,… σn)τ                                     type 
 τ : k                       type constant 
 λα. σ                   type abstraction 
 σarg σopr                     type application 

k ::=   kinds: 
 ty          kind of proper types 
 k1 ⇒ k2          kind of type operators 

θ ::=   type substitution: 
 [ ]               empty substitution 
 (α |→ σ) :: θ          subst mapping 

Lambda-Omega = 
HOL + type operators and kinds 

deleted 

  Constraints   
Application types σarg σopr : 
kind of σopr must be an operator kind, and 
domain of kind of σopr must match kind of σarg 
Application terms topr targ: 
type of topr must be a function type, and 
domain of type of topr must match type of targ 

  Typing                   Γ |– t : σ 
                c:σ ∈ Γ  
               Γ |– c : σ θ 
                x:σ ∈ Γ 
               Γ |– x : σ  
Γ |– σ1 : ty        Γ, x: σ1 |– t2 : σ2 
    Γ |– λx : σ1. t2  : σ1 → σ2 
Γ |– topr : σ1 → σ2    Γ |– targ : σ1  
              Γ |– topr targ : σ2 
Γ |– t : σ1       σ1 ≡αβ σ2        Γ |– σ2 : ty 
                Γ |– t : σ2  
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System F (Girard, Reynolds)  
adds type abstractions, applications 

  Constraints (continued)   
Type application terms t [: σ :] : 
type of t must be a universal type 

  Typing   Γ |– t : σ 
                c:σ ∈ Γ  
               Γ |– c : σ 
                x:σ ∈ Γ  
               Γ |– x : σ 
         Γ, x: σ1 |– t2 : σ2 
     Γ |– λx : σ1. t2 : σ1 → σ2 
Γ |– topr : σ1 → σ2    Γ |– targ : σ1  
              Γ |– topr targ : σ2 
            Γ, α |– t : σ 
       Γ |– λ:α. t : ∀α. σ 
           Γ |– t1 : ∀α. σ1 
Γ |– t1 [: σ2 :] : σ1[α |→ σ2]  

  Syntax 
t ::=   terms: 

 c : σ             constant 
 x : σ             variable 
 λx. t                          abstraction 
 topr targ                               application 
 λ:α. t          type abstraction term 
 t [: σ :]              type application term 

σ ::=   types: 
 α                       type variable 
 (σ1,… σn)τ             type combination 
 ∀α. σ                         universal type 

  Constraints   
Types (σ1,… σn)τ : 

 arity of τ must match n ≥ 0 
Application terms topr targ : 
type of topr must be a function type, and 
domain of type of topr must match type of targ 
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  Constraints   
Type application terms t [: σ :] : 
type of t must be universal type, say ∀α. σ1 
and kind of α must match kind of σ 
and rank of α must be ≥ rank of σ  
Application types σarg σopr : 
kind of σopr must be an operator kind(⇒), and 
domain of kind of σopr must match kind of σarg  
and rank(domain(σopr)) must ≥ rank(σarg).  
Application terms topr targ : 
type of topr must be a function type, and 
domain of type of topr must match type of targ  
and rank(domain(topr)) must ≥ rank(targ). 

  Ranks are present to avoid impredicativity, 
and so assure a set-theoretic model exists. 
Types are stratified by increasing rank: 
rank(α : k)    = rank(k) 
rank(τ  : k)    = rank(k) 
rank(σarg σopr) = rank(range(σopr)) 
rank(λα. σ)   = max(rank(α),  rank(σ))  
rank(∀α. σ)  = max(rank(α) + 1, rank(σ))  
rank(∃α. σ)  = max(rank(α) + 1, rank(σ)) 

HOL-Omega = HOL4 + 
System F, type operators, kinds, & ranks 
  Syntax 

t ::=   terms: 
 c : σ         constant 
 x : σ         variable 
 λx. t                     abstraction 
 topr targ                          application 
 λ:α. t     type abstraction term 
 t [: σ :]          type application term 

σ ::=   types: 
 α : k                          type variable 
 τ  : k                         type constant 
 σarg σopr                type application 
 λα. σ             type abstraction 
 ∀α. σ                      universal type 
 ∃α. σ                     existential type 

k ::=   kinds: 
 ty : r      kind of proper types 
 κ  : r                 kind variable 
 k1 ⇒ k2       kind of type operators 

r ::= n   ranks:    (natural nums) 

Using ideas from HOL2P by Völker and Fω by Pierce 
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Impredicativity 
  A powerful form of parametric polymorphism, 

but dangerous.  Similar in power to ZF set theory. 
  A definition is “impredicative” if it involves ranging over  

a domain which includes the very thing being defined. 
  In System F, the type variable α in the type σ = ∀α.α→α  

ranges over all types, including σ itself. 
  This is circular, but System F is not inconsistent. 
  However, Girard discovered that the naïve combination of 

impredicativity and higher order logic is inconsistent! 
  Our design choice: disallow impredicativity of types. 

  Stratify types by ranks 0, 1, 2, … according to depth of ∀ 
  Type variable α in ∀α.α→α ranges over types of rank <= α 
  Rank of the type ∀α.α→α is then (rank of α) + 1 
  Yields straightforward set-theoretic semantics 

0 

1 

… 

α 

∀α.α→α 

. 

. 

. 

r 

r+1 



June 24, 2011 

Universal and Existential Quantification 
of type variables over terms 

  HOL-Omega has abstraction of a type variable α over a term t 
  λ:(α:κ). t          (type abstraction) 

  Note that the type variable can have any kind κ 
  Type quantification over terms is defined using type abstraction: 

           ∀:  =  λP. (P = λ:(α:κ). T) 
            ∃:  =  λP. (P ≠ λ:(α:κ). F) 

  Notation: 
          ∀:(α:κ). t  =   (∀:) (λ:(α:κ). t) 
           ∃:(α:κ). t  =    (∃:) (λ:(α:κ). t) 

  Multiple type abstraction, quantification, application: 
  (λ:α β. λ(x:β → α). x) [: bool, int :] = λ(x: int → bool). x 
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Application: functors 
(ported from HOL2P by Völker) 

  Category Type: objects are types of kind ty & rank 0, arrows are term functions 
  Functors: Two maps: 1) on objects ’F : ty⇒ty and 2) on arrows F : ’F functor 
  Functor type abbreviation: 

  functor = λ’F : ty⇒ty. ∀α β. (α → β) → (α ’F → β ’F) 
  Functor predicate: true if F (of type ’F functor) is a functor   

functor (F : ’F functor) = 
1)  (∀:α. F I = I)   ∧    (where I is the identity function λx. x) 
2)  (∀:α β γ. ∀(f: β → γ) (g: α → β).  

  F (f  ° g) = F f  ° F g ) 
  Full, unabbreviated version:   

functor (F : ’F functor) = 
1)  (∀:α. F [: α, α :] (I : α → α) = (I : α ’F → α ’F))   ∧ 
2)  (∀:α β γ. ∀(f: β → γ) (g: α → β).  

  F [: α, γ :] (f  ° g) = F [: β, γ :] f  ° F [: α, β :] g ) 
  Provable in HOL-Omega (but not expressable in HOL2P): 

 |– ∃:’F.  ∃F : ’F functor.  functor F 



June 24, 2011 

Theorems about functors 

  Examples of functors: 
Identity functor id = λ:α β. (I : (α → β) → (α → β)) :  

  |– functor (id : I functor)        (where  I = λα:κ. α)  
MAP functor: 

  |– functor ((λ:α β. (MAP : (α → β) → (α list → β list))) : list functor) 
 where  MAP f [ ] = [ ] 
  MAP f (x :: xs) = f x :: MAP f xs 

  Define the composition of two functors (overloading °): 
(G :’G functor) ° (F :’F functor) = λ:α β. G [: α ’F, β ’F :] ° F [: α, β :] 

  Proved in HOL-Omega that the composition of functors is also a functor: 
|– functor (F :’F functor) ∧ functor (G :’G functor)  

 ⇒ functor ((G ° F) : (’F o’G)functor) 
where the infix type operator o = λ(’F:’k⇒’l)(’G:’l⇒’m)(α:’k). (α ’F)’G 

  Example: the composition of the MAP functor with itself is a functor: 
|– functor (((λ:α β. MAP) ° (λ:α β. MAP)) : (list o list)functor)  
(by defn.,)   (λ:α β. MAP) ° (λ:α β. MAP) = (λ:α β. MAP ° MAP) 
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Application: natural transformations 
(from Völker’s HOL2P and Algebra of Programming) 

  Natural transformation type abbreviation: 
     nattransf = λ(’F :ty⇒ty) (’G :ty⇒ty). ∀α. α ’F → α ’G 

  Natural transformation predicate:  
nattransf (φ : (’F, ’G)nattransf) (F :’F functor) (G :’G functor) = 

  ∀:α β. ∀(h: α → β).  G h ° φ  = φ ° F h 
  Read as “φ is a natural transformation from functor F to functor G” 
  Identity natural transformation from any functor to itself:  

 idF = (λ:α. I : α ’F → α ’F) : (’F,’F)nattransf 
 |– nattransf (idF :(’F,’F)nattransf) (F :’F functor) F 

  Example: INITS returns a list of all prefixes of its argument: 
INITS : α list → α list list 

INITS [ ] = [ ]  
INITS (x :: xs) = [ ] :: MAP (λys. x :: ys) (INITS xs) 

  INITS is a natural transformation from MAP to MAP ° MAP: 
 |– nattransf  ((λ:α.    INITS)    : (list, list o list)nattransf) 

  ((λ:α β. MAP)    :  list functor) 
  ((λ:α β. MAP ° MAP) : (list o list)functor) 

α ’F β ’F 

α ’G β ’G 

α β 

G h 

F h 

φ φ 

h 
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Composing natural transformations 

  Vertical composition of natural transformations: 
(φ2 : (’G,’H)nattransf) ° (φ1 : (’F,’G)nattransf)   =  λ:α. (φ2[: α :]) ° (φ1[: α :]) 

  Composing natural transformations with functors: 
(φ : (’F,’G)nattransf)  ° (H : ’H functor)        =  λ:α. φ [: α ’H :] 
(H : ’H functor)  ° (φ : (’F,’G)nattransf)   =  λ:α. H (φ [: α :]) 

  These definitions overload the ° composition operator. 
All these compositions yield natural transformations. 

  In HOL2P: 
|– nattransf φ F G ∧ functor H ⇒ 

 TYINST ((θ1 |→ λα. ((α)θ1)θ3) (θ2 |→ λα. ((α)θ2)θ3)) 
  nattransf (λ:α. H φ) (λ:α β. H ° F) (λ:α β. H ° G) 

  In HOL-Omega: 
|– nattransf φ F G ∧ functor H ⇒ 

 nattransf (H ° φ) (H ° F) (H ° G) 
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Application: monads 

  Monad type abbreviations: 
 unit  = λ(’M :ty⇒ty). ∀α. α → α ’M  
 bind = λ(’M :ty⇒ty). ∀α β. α ’M → (α → β ’M) → β ’M 

  Monad predicate, defined by three laws:  
monad (unit : ’M unit, >>= :’M bind) = 

 (∀:α β. ∀(a: α) (k: α → β M).      (left unit) 
  unit a >>=  k  =  k a)     ∧ 
 (∀:α. ∀(m: α M).       (right unit) 
  m >>= unit  =  m)       ∧ 

  (∀:α β γ. ∀(m: α M) (k: α→β M) (h: β→γ M).                (associativity) 
  (m >>= k) >>= h   =   m >>= (λa. k a >>= h)) 

  Example: The state monad: 
 state  = λσ α. σ → α × σ        (remember that (σ, α)state = α (σ state))) 

state_unit  = λ:α. λ(x: α) (s: σ). (x, s) 
state_bind = λ:α β. λ(w: (σ, α)state) (f: α → (σ, β)state) (s: σ). 

   let (x, s’) = w s  in  f x s’ 

HOL-Omega: |– monad (state_unit : (σ state)unit, state_bind : (σ state)bind) 
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Alternative definition of monads 

  Alternative definition of monads based on 7 laws: 
 map = λ(’M :ty⇒ty). ∀α β. (α → β) → (α ’M → β ’M) 
 join  = λ(’M :ty⇒ty). ∀α. (α ’M)’M → α ’M 

 umj_monad (unit :’M unit, map :’M map, join :’M join) = 
1)  ∀:α.      map (I: α → α) = (I: α ’M → α ’M)  
2)  ∀:α β γ. ∀(f:α → β) (g:β → γ). map (g ° f) = map g ° map f  
3)  ∀:α β. ∀(f:α → β).     map f  ° unit = unit ° f  
4)  ∀:α β. ∀(f:α → β).     map f  ° join = join ° map (map f)  
5)  ∀:α.       join ° unit = (I: α ’M → α ’M) 
6)  ∀:α.       join ° map unit = (I: α ’M → α ’M) 
7)  ∀:α.       join ° map join = join ° join 

  Define map, join operators based on unit, >>= , or  >>= based on map, join:  
MMAP (unit,  >>=)  =  λ:α β. λ(f : α → β) (m : α ’M). m >>= (λa. unit (f a))  
JOIN (unit,  >>=)  =  λ:α.    λ(z : (α ’M)’M).  z >>= I)  
BIND (map,  join )  =  λ:α β. λ(m : α ’M) (k : α → β ’M). join (map k m) 

  Proved in HOL-Omega that these two monad definitions are equivalent. 
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Monads defined in category theory 
  Third definition:  cat_monad(map, join, unit) iff 

  map is a functor of type ’M functor 
  join is a natural transformation between functors 

  map ° map of type (’M o’M)functor and 
       map       of type ’M functor,  
  where join has type (’M o’M, ’M)nattransf, and 

  unit is a natural transformation between functors 
    id   of type I functor and 
  map of type ’M functor, 
  where unit has type (I, ’M)nattransf 

  such that the diagrams commute, i.e., these hold: 
  join ° (map ° join) = join ° (join ° map) 
  join ° (map ° unit) = idmap 
  join ° (unit ° map) = idmap 

  where ° is composition between functors and/or natural transformations,  
as each situation requires (overloaded). 

  This has been proven equivalent to the 7-law definition of monads (incl. types), 
so all three definitions of monads are equivalent. 

map3 map2 

map2 

map°join 

map 

join°map join 

join 

Diagrams in 
Functor Category 

map map 

map 

map°unit unit°map map2 

join 
idmap idmap 
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Implementation 

  The HOL-Omega theorem prover publicly released in 2009, now 
upgraded together with HOL4 version Kananaskis-6 

  Backwards compatible with the HOL4 theorem prover 
  Both kernels (de Bruijn indicies and name-carrying) upgraded 
  Builds using either Moscow ML or Poly/ML 
  Upgraded tools: 

  Rewriting (normal and higher-order) 
  Simplification (including type beta reduction of terms) 
  Definition of (mutual, nested, recursive) datatypes and records 
  Definition of function on such datatypes and records 

  Not upgraded yet: rule induction definitions 
  Most difficult part: correct integration of h.o. matching for terms, types 
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Status 

  Implemented and working 
  Virtually completely backwards compatible with HOL4 
  Some facilities not yet upgraded to work with new types/terms 
  Type inference incomplete, but needed user annotations seem reasonable. 

  Seems good platform to study category theory, e.g. monads 
  Used by Jeremy Dawson of the Australian National University 

  Modeled a generalized version of monads 
  Existential Types and Packages for data abstraction 
  Current documentation is really scarce 

  for now, see 2009 paper and examples in <homedir>/examples/HolOmega 
  Hope to soon put out a tutorial for new users 
  More information from author’s site: 

  http://www.trustworthytools.com!
  Available for download from SourceForge : 

  svn checkout https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega 
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Conclusions 

  The HOL-Omega logic adds significant power over higher order logic 
  Adds abstraction of type variables over terms 
  Adds abstraction of type variables over types 

  Additional power infrequently used in practice,  
but when needed, it is absolutely required 

  Type inference incomplete, but user annotations reasonable in practice 
  Paper describes abstract syntax, set-theory semantics, axioms and rules 

of inference beyond HOL, examples of use, and implementation 
  Implemented in a theorem prover tool, as a backwards-compatible 

extension of the Higher Order Logic HOL4 theorem prover 
  Available for download from SourceForge or author’s site: 

  http://www.trustworthytools.com!
  Still experimental and under development but currently useful 
  Supports mechanizing a substantial collection of new problems 



The End 

Soli Deo Gloria. 


