
August, 2011

Dr. Peter V. Homeier
palantir@trustworthytools.com

U.S. Department of Defense

Making formal methods
into normal methods

The HOL-Omega Logic

June 24, 2011

Outline

  Motivation
  Higher order logic (HOL) (including the lambda calculus)

  Types: Type constants, variables
  Terms: constants, variables, applications, abstractions

  Type operators
  Kinds
  Types: adds abstractions of types, which have higher kinds

  System F
  Types: adds universal types
  Terms: adds type abstractions, type applications

  HOL-Omega logic = HOL + Type operators + System F
  Applications: category theory and monads

June 24, 2011

Motivation: Monads

  Monads are a practical device to cleanly represent
computations that involve state, I/O, exceptions, …

  A rich theory exists with many different kinds of monads
  Individual monads can (and have) been defined in HOL
  A general theory of monads cannot be defined in HOL
  Why? A monad is a type operator M together with two

term operations unit and >>= (“bind”, infix) such that
1)  unit a >>= k = k a left unit
2)  m >>= unit = m right unit
3)  (m >>= k) >>= h = m >>= (λa. k a >>= h) associativity

  In law (3), >>= has 4 occurrences and 3 distinct types,
but HOL requires a variable to have a single unique type!

Higher Order Logic (HOL4)
(Church’s Simple Theory of Types)

  Easy to use: natural to understand and simple to write:
  Completely decidable type inference (Hindley-Milner)
  Classical logic with quantifiers over h.o. functions, excluded middle, and choice
  Function / predicate extensionality: (∀x. P x = Q x) => P = Q

  Practical: used for many major projects
  Faithful model of ARM microprocessor (Anthony Fox)
  Large industrial-scale projects

  Powerful: many deep libraries and features:
  Full total recursive function definition
  Finite machine words library (e.g., bitvectors) using pseudo dependent types
  Simplifier and two first order automatic theorem provers built-in
  Higher order quotients with automatic lifting of types, constants, theorems

  Safe: LCF architecture, very small kernel, for high trustworthiness
  Mature: 23 years of development and application, still being actively developed
  Is imitation the sincerest form of flattery?

  Isabelle/HOL, HOL-Light, ProofPower, HOL Zero all use essentially the same logic

June 24, 2011

June 24, 2011

Higher Order Logic
(as in Gordon’s HOL system, 1988)

  Syntax
t ::= terms:

 c : σ constant
 x : σ variable
 λx. t abstraction
 topr targ application

σ ::= types:
 α type variable
 (σ1,… σn)τ type combination

θ ::= type substitution:
 [] empty substitution
 (α |→ σ) :: θ subst mapping

  Environment Γ
 stores type arities, constant types
Types: bool, ind, fun (→)
Terms: = : α → α → bool
 ⇒ : bool → bool → bool
 @ : (α → bool) → α

  Constraints
Types (σ1,… σn)τ :
arity of τ must match n ≥ 0
Application terms topr targ :
type of topr must be a function type,
and domain of type of topr
must match type of targ

  Typing Γ |– t : σ
 c:σ ∈ Γ
 Γ |– c : σ θ
 x:σ ∈ Γ
 Γ |– x : σ
 Γ, x:σ1 |– t2 : σ2
 Γ |– λx : σ1. t2 : σ1 → σ2
Γ |– t1 : σ11 → σ12 Γ |– t2 : σ11
 Γ |– t2 : σ11

June 24, 2011

  Syntax
t ::= terms:

 c : σ constant
 x : σ variable
 λx. t abstraction
 topr targ application

σ ::= types:
 α : k type variable
 (σ1,… σn)τ type
 τ : k type constant
 λα. σ type abstraction
 σarg σopr type application

k ::= kinds:
 ty kind of proper types
 k1 ⇒ k2 kind of type operators

θ ::= type substitution:
 [] empty substitution
 (α |→ σ) :: θ subst mapping

Lambda-Omega =
HOL + type operators and kinds

deleted

  Constraints
Application types σarg σopr :
kind of σopr must be an operator kind, and
domain of kind of σopr must match kind of σarg
Application terms topr targ:
type of topr must be a function type, and
domain of type of topr must match type of targ

  Typing Γ |– t : σ
 c:σ ∈ Γ
 Γ |– c : σ θ
 x:σ ∈ Γ
 Γ |– x : σ
Γ |– σ1 : ty Γ, x: σ1 |– t2 : σ2
 Γ |– λx : σ1. t2 : σ1 → σ2
Γ |– topr : σ1 → σ2 Γ |– targ : σ1
 Γ |– topr targ : σ2
Γ |– t : σ1 σ1 ≡αβ σ2 Γ |– σ2 : ty
 Γ |– t : σ2

June 24, 2011

System F (Girard, Reynolds)
adds type abstractions, applications

  Constraints (continued)
Type application terms t [: σ :] :
type of t must be a universal type

  Typing Γ |– t : σ
 c:σ ∈ Γ
 Γ |– c : σ
 x:σ ∈ Γ
 Γ |– x : σ
 Γ, x: σ1 |– t2 : σ2
 Γ |– λx : σ1. t2 : σ1 → σ2
Γ |– topr : σ1 → σ2 Γ |– targ : σ1
 Γ |– topr targ : σ2
 Γ, α |– t : σ
 Γ |– λ:α. t : ∀α. σ
 Γ |– t1 : ∀α. σ1
Γ |– t1 [: σ2 :] : σ1[α |→ σ2]

  Syntax
t ::= terms:

 c : σ constant
 x : σ variable
 λx. t abstraction
 topr targ application
 λ:α. t type abstraction term
 t [: σ :] type application term

σ ::= types:
 α type variable
 (σ1,… σn)τ type combination
 ∀α. σ universal type

  Constraints
Types (σ1,… σn)τ :

 arity of τ must match n ≥ 0
Application terms topr targ :
type of topr must be a function type, and
domain of type of topr must match type of targ

June 24, 2011

  Constraints
Type application terms t [: σ :] :
type of t must be universal type, say ∀α. σ1
and kind of α must match kind of σ
and rank of α must be ≥ rank of σ
Application types σarg σopr :
kind of σopr must be an operator kind(⇒), and
domain of kind of σopr must match kind of σarg
and rank(domain(σopr)) must ≥ rank(σarg).
Application terms topr targ :
type of topr must be a function type, and
domain of type of topr must match type of targ
and rank(domain(topr)) must ≥ rank(targ).

  Ranks are present to avoid impredicativity,
and so assure a set-theoretic model exists.
Types are stratified by increasing rank:
rank(α : k) = rank(k)
rank(τ : k) = rank(k)
rank(σarg σopr) = rank(range(σopr))
rank(λα. σ) = max(rank(α), rank(σ))
rank(∀α. σ) = max(rank(α) + 1, rank(σ))
rank(∃α. σ) = max(rank(α) + 1, rank(σ))

HOL-Omega = HOL4 +
System F, type operators, kinds, & ranks
  Syntax

t ::= terms:
 c : σ constant
 x : σ variable
 λx. t abstraction
 topr targ application
 λ:α. t type abstraction term
 t [: σ :] type application term

σ ::= types:
 α : k type variable
 τ : k type constant
 σarg σopr type application
 λα. σ type abstraction
 ∀α. σ universal type
 ∃α. σ existential type

k ::= kinds:
 ty : r kind of proper types
 κ : r kind variable
 k1 ⇒ k2 kind of type operators

r ::= n ranks: (natural nums)

Using ideas from HOL2P by Völker and Fω by Pierce

June 24, 2011

Impredicativity
  A powerful form of parametric polymorphism,

but dangerous. Similar in power to ZF set theory.
  A definition is “impredicative” if it involves ranging over

a domain which includes the very thing being defined.
  In System F, the type variable α in the type σ = ∀α.α→α

ranges over all types, including σ itself.
  This is circular, but System F is not inconsistent.
  However, Girard discovered that the naïve combination of

impredicativity and higher order logic is inconsistent!
  Our design choice: disallow impredicativity of types.

  Stratify types by ranks 0, 1, 2, … according to depth of ∀
  Type variable α in ∀α.α→α ranges over types of rank <= α
  Rank of the type ∀α.α→α is then (rank of α) + 1
  Yields straightforward set-theoretic semantics

0

1

…

α

∀α.α→α

.

.

.

r

r+1

June 24, 2011

Universal and Existential Quantification
of type variables over terms

  HOL-Omega has abstraction of a type variable α over a term t
  λ:(α:κ). t (type abstraction)

  Note that the type variable can have any kind κ
  Type quantification over terms is defined using type abstraction:

  ∀: = λP. (P = λ:(α:κ). T)
  ∃: = λP. (P ≠ λ:(α:κ). F)

  Notation:
  ∀:(α:κ). t = (∀:) (λ:(α:κ). t)
  ∃:(α:κ). t = (∃:) (λ:(α:κ). t)

  Multiple type abstraction, quantification, application:
  (λ:α β. λ(x:β → α). x) [: bool, int :] = λ(x: int → bool). x

June 24, 2011

Application: functors
(ported from HOL2P by Völker)

  Category Type: objects are types of kind ty & rank 0, arrows are term functions
  Functors: Two maps: 1) on objects ’F : ty⇒ty and 2) on arrows F : ’F functor
  Functor type abbreviation:

 functor = λ’F : ty⇒ty. ∀α β. (α → β) → (α ’F → β ’F)
  Functor predicate: true if F (of type ’F functor) is a functor

functor (F : ’F functor) =
1)  (∀:α. F I = I) ∧ (where I is the identity function λx. x)
2)  (∀:α β γ. ∀(f: β → γ) (g: α → β).

 F (f ° g) = F f ° F g)
  Full, unabbreviated version:

functor (F : ’F functor) =
1)  (∀:α. F [: α, α :] (I : α → α) = (I : α ’F → α ’F)) ∧
2)  (∀:α β γ. ∀(f: β → γ) (g: α → β).

 F [: α, γ :] (f ° g) = F [: β, γ :] f ° F [: α, β :] g)
  Provable in HOL-Omega (but not expressable in HOL2P):

 |– ∃:’F. ∃F : ’F functor. functor F

June 24, 2011

Theorems about functors

  Examples of functors:
Identity functor id = λ:α β. (I : (α → β) → (α → β)) :

 |– functor (id : I functor) (where I = λα:κ. α)
MAP functor:

 |– functor ((λ:α β. (MAP : (α → β) → (α list → β list))) : list functor)
 where MAP f [] = []
 MAP f (x :: xs) = f x :: MAP f xs

  Define the composition of two functors (overloading °):
(G :’G functor) ° (F :’F functor) = λ:α β. G [: α ’F, β ’F :] ° F [: α, β :]

  Proved in HOL-Omega that the composition of functors is also a functor:
|– functor (F :’F functor) ∧ functor (G :’G functor)

 ⇒ functor ((G ° F) : (’F o’G)functor)
where the infix type operator o = λ(’F:’k⇒’l)(’G:’l⇒’m)(α:’k). (α ’F)’G

  Example: the composition of the MAP functor with itself is a functor:
|– functor (((λ:α β. MAP) ° (λ:α β. MAP)) : (list o list)functor)
(by defn.,) (λ:α β. MAP) ° (λ:α β. MAP) = (λ:α β. MAP ° MAP)

June 24, 2011

Application: natural transformations
(from Völker’s HOL2P and Algebra of Programming)

  Natural transformation type abbreviation:
 nattransf = λ(’F :ty⇒ty) (’G :ty⇒ty). ∀α. α ’F → α ’G

  Natural transformation predicate:
nattransf (φ : (’F, ’G)nattransf) (F :’F functor) (G :’G functor) =

 ∀:α β. ∀(h: α → β). G h ° φ = φ ° F h
  Read as “φ is a natural transformation from functor F to functor G”
  Identity natural transformation from any functor to itself:

 idF = (λ:α. I : α ’F → α ’F) : (’F,’F)nattransf
 |– nattransf (idF :(’F,’F)nattransf) (F :’F functor) F

  Example: INITS returns a list of all prefixes of its argument:
INITS : α list → α list list

INITS [] = []
INITS (x :: xs) = [] :: MAP (λys. x :: ys) (INITS xs)

  INITS is a natural transformation from MAP to MAP ° MAP:
 |– nattransf ((λ:α. INITS) : (list, list o list)nattransf)

 ((λ:α β. MAP) : list functor)
 ((λ:α β. MAP ° MAP) : (list o list)functor)

α ’F β ’F

α ’G β ’G

α β

G h

F h

φ φ

h

June 24, 2011

Composing natural transformations

  Vertical composition of natural transformations:
(φ2 : (’G,’H)nattransf) ° (φ1 : (’F,’G)nattransf) = λ:α. (φ2[: α :]) ° (φ1[: α :])

  Composing natural transformations with functors:
(φ : (’F,’G)nattransf) ° (H : ’H functor) = λ:α. φ [: α ’H :]
(H : ’H functor) ° (φ : (’F,’G)nattransf) = λ:α. H (φ [: α :])

  These definitions overload the ° composition operator.
All these compositions yield natural transformations.

  In HOL2P:
|– nattransf φ F G ∧ functor H ⇒

 TYINST ((θ1 |→ λα. ((α)θ1)θ3) (θ2 |→ λα. ((α)θ2)θ3))
 nattransf (λ:α. H φ) (λ:α β. H ° F) (λ:α β. H ° G)

  In HOL-Omega:
|– nattransf φ F G ∧ functor H ⇒

 nattransf (H ° φ) (H ° F) (H ° G)

June 24, 2011

Application: monads

  Monad type abbreviations:
 unit = λ(’M :ty⇒ty). ∀α. α → α ’M
 bind = λ(’M :ty⇒ty). ∀α β. α ’M → (α → β ’M) → β ’M

  Monad predicate, defined by three laws:
monad (unit : ’M unit, >>= :’M bind) =

 (∀:α β. ∀(a: α) (k: α → β M). (left unit)
 unit a >>= k = k a) ∧
 (∀:α. ∀(m: α M). (right unit)
 m >>= unit = m) ∧

 (∀:α β γ. ∀(m: α M) (k: α→β M) (h: β→γ M). (associativity)
 (m >>= k) >>= h = m >>= (λa. k a >>= h))

  Example: The state monad:
 state = λσ α. σ → α × σ (remember that (σ, α)state = α (σ state)))

state_unit = λ:α. λ(x: α) (s: σ). (x, s)
state_bind = λ:α β. λ(w: (σ, α)state) (f: α → (σ, β)state) (s: σ).

 let (x, s’) = w s in f x s’

HOL-Omega: |– monad (state_unit : (σ state)unit, state_bind : (σ state)bind)

June 24, 2011

Alternative definition of monads

  Alternative definition of monads based on 7 laws:
 map = λ(’M :ty⇒ty). ∀α β. (α → β) → (α ’M → β ’M)
 join = λ(’M :ty⇒ty). ∀α. (α ’M)’M → α ’M

 umj_monad (unit :’M unit, map :’M map, join :’M join) =
1)  ∀:α. map (I: α → α) = (I: α ’M → α ’M)
2)  ∀:α β γ. ∀(f:α → β) (g:β → γ). map (g ° f) = map g ° map f
3)  ∀:α β. ∀(f:α → β). map f ° unit = unit ° f
4)  ∀:α β. ∀(f:α → β). map f ° join = join ° map (map f)
5)  ∀:α. join ° unit = (I: α ’M → α ’M)
6)  ∀:α. join ° map unit = (I: α ’M → α ’M)
7)  ∀:α. join ° map join = join ° join

  Define map, join operators based on unit, >>= , or >>= based on map, join:
MMAP (unit, >>=) = λ:α β. λ(f : α → β) (m : α ’M). m >>= (λa. unit (f a))
JOIN (unit, >>=) = λ:α. λ(z : (α ’M)’M). z >>= I)
BIND (map, join) = λ:α β. λ(m : α ’M) (k : α → β ’M). join (map k m)

  Proved in HOL-Omega that these two monad definitions are equivalent.

June 24, 2011

Monads defined in category theory
  Third definition: cat_monad(map, join, unit) iff

  map is a functor of type ’M functor
  join is a natural transformation between functors

  map ° map of type (’M o’M)functor and
  map of type ’M functor,
  where join has type (’M o’M, ’M)nattransf, and

  unit is a natural transformation between functors
  id of type I functor and
  map of type ’M functor,
  where unit has type (I, ’M)nattransf

  such that the diagrams commute, i.e., these hold:
  join ° (map ° join) = join ° (join ° map)
  join ° (map ° unit) = idmap
  join ° (unit ° map) = idmap

  where ° is composition between functors and/or natural transformations,
as each situation requires (overloaded).

  This has been proven equivalent to the 7-law definition of monads (incl. types),
so all three definitions of monads are equivalent.

map3 map2

map2

map°join

map

join°map join

join

Diagrams in
Functor Category

map map

map

map°unit unit°map map2

join
idmap idmap

June 24, 2011

Implementation

  The HOL-Omega theorem prover publicly released in 2009, now
upgraded together with HOL4 version Kananaskis-6

  Backwards compatible with the HOL4 theorem prover
  Both kernels (de Bruijn indicies and name-carrying) upgraded
  Builds using either Moscow ML or Poly/ML
  Upgraded tools:

  Rewriting (normal and higher-order)
  Simplification (including type beta reduction of terms)
  Definition of (mutual, nested, recursive) datatypes and records
  Definition of function on such datatypes and records

  Not upgraded yet: rule induction definitions
  Most difficult part: correct integration of h.o. matching for terms, types

June 24, 2011

Status

  Implemented and working
  Virtually completely backwards compatible with HOL4
  Some facilities not yet upgraded to work with new types/terms
  Type inference incomplete, but needed user annotations seem reasonable.

  Seems good platform to study category theory, e.g. monads
  Used by Jeremy Dawson of the Australian National University

  Modeled a generalized version of monads
  Existential Types and Packages for data abstraction
  Current documentation is really scarce

  for now, see 2009 paper and examples in <homedir>/examples/HolOmega
  Hope to soon put out a tutorial for new users
  More information from author’s site:

  http://www.trustworthytools.com!
  Available for download from SourceForge :

  svn checkout https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega

June 24, 2011

Conclusions

  The HOL-Omega logic adds significant power over higher order logic
  Adds abstraction of type variables over terms
  Adds abstraction of type variables over types

  Additional power infrequently used in practice,
but when needed, it is absolutely required

  Type inference incomplete, but user annotations reasonable in practice
  Paper describes abstract syntax, set-theory semantics, axioms and rules

of inference beyond HOL, examples of use, and implementation
  Implemented in a theorem prover tool, as a backwards-compatible

extension of the Higher Order Logic HOL4 theorem prover
  Available for download from SourceForge or author’s site:

  http://www.trustworthytools.com!
  Still experimental and under development but currently useful
  Supports mechanizing a substantial collection of new problems

The End

Soli Deo Gloria.

