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Abstract. A new logic is posited for the widely used HOL theorem
prover, as an extension of the existing higher order logic of the HOL4
system. The logic is extended to three levels, adding kinds to the existing
levels of types and terms. New types include type operator variables and
universal types as in System F . Impredicativity is avoided through the
stratification of types by ranks according to the depth of universal types.
The new system, called HOL-Omega or HOLω, is a merging of HOL4,
HOL2P[11], and major aspects of System Fω from chapter 30 of [10].
This document presents the abstract syntax and semantics for the kinds,
types, and terms of the logic, as well as the new fundamental axioms
and rules of inference. As the new logic is constructed according to the
design principles of the LCF approach, the soundness of the entire system
depends critically and solely on the soundness of this core.

1 Introduction

The HOL theorem prover [3] has had a wide influence in the field of mechanical
theorem proving. Despite appearing in 1988 as one of the first tools in the field,
HOL has enjoyed wide acceptance around the world, and continues to be used
for many substantial projects, for example Anthony Fox’s model of the ARM
processor. HOL’s influence is seen in that three other major theorem provers,
HOL Light, ProofPower, and Isabelle/HOL, have used essentially the same logic.

One of the main reasons for HOL’s influence has been that the actual logic
implemented in the tool, higher order logic based on Church’s simple theory of
types, turns out to be both easy to work with and expressive enough to be able
to support most models of hardware and software that people have wished to
investigate. There are theorem provers with more powerful logics, and ones with
less powerful logics, but it seems that classical higher order logic fortuitously
found a “sweet-spot,” balancing strong expressivity with nimble ease of use.

However, despite HOL’s value, it has been recognized that there are some
useful concepts beyond the power of higher order logic to state. An example is
the practical device of monads. Monads are particularly useful in modelling, for
example, realistic computations involving state or exceptions, as a shallow em-
bedding in a logic which itself is strictly functional, without state or exceptions.

Individual monads can and have been expressed in HOL, and used to reduce
the complexity of proofs about such real-world computations.
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However, stating the general properties of all monads, and proving results
about the class of all monads, has not been possible. The following shows why.

Let M be a postfix unary type operator that maps a type α to a type α M ,
unit a prefix unary term operator of type α → α M , and �= an infix binary term
operator of type α M → (α → β M) → β M , where k a �= h is (k a) �= h.
Then M together with unit and �= is a monad iff the following properties hold:

left unit: unit a �= k = k a
right unit: m �= unit = m
associativity: m �= (λa. k a �= h) = (m �= k) �= h

There are two problems with this definition in higher order logic. First, while
higher order logic includes type operator constants like list and option, it does
not support type operator variables like M above.

But even if it did, consider the associativity property above. There are four
occurrences of �= in that property. Among these four instances are three dis-
tinct types. Unfortunately, in higher order logic, within a single expression a
variable may only have a single type. So this property would not type-check.

This is annoying because if �= were a constant instead of a variable, these
different instances of its basic type would be supported. What we need is a way
to give �= a single type which can then be specialized for each of �=’s four
instances to produce the three distinct types required.

One way is to introduce universal types, as in System F [10]. A universal type
is written ∀α.σ, where α is a type variable and σ is a type expression, possibly
including α. Such occurrences of α are bound by the universal quantification.

In addition, System F introduces abstractions of types over terms, written as
λ:α.t, where α is a type variable and t is a term. This yields a term, whose type
is a universal type. Specifically, if t has type σ, then λ:α.t has type ∀α.σ.

Given such an abstraction t, it is specialized for a particular type by t[:σ:].
This gives rise to a new form of beta-reduction on term-type applications, where
(λ:α.t)[:σ:] reduces to t[σ/α]. For convenience, we write t[:α, β:] for (t[:α:])[:β:].

Given these new forms, we can express the types of unit and �= as

unit : ∀α. α → α M
�= : ∀α β. α M → (α → β M) → β M

and the three monad properties as

unit [:α:] a (�=[:α, β:]) k = k a
m (�=[:α, α:]) (unit [:α:]) = m

m (�=[:α, γ:]) (λa. k a (�=[:β, γ:]) h) = (m (�=[:α, β:]) k) (�=[:β, γ:]) h

What we have done here is take manual control of the typing. Since the normal
HOL parametric polymorphism was inadequate, we have added facilities for type
abstraction and instantiation of terms. This allows the single type of a variable
to be specialized for different occurrences within the same expression.

Given the existing polymorphism in HOL, in practice universal types are
needed only rarely; but when they are needed, they are absolutely essential.



246 P.V. Homeier

In related work, as early as 1993 Tom Melham advocated adding quantification
over type variables [8]. HOL-Omega includes such quantification, defining it
using abstraction over type variables. Norbert Völker’s HOL2P [11], a direct
ancestor of this work, supports universal types quantifying over types of rank 0.
HOL2P is approximately the same as HOL-Omega, but without kinds, curried
type operators, or ranks > 1. Benjamin C. Pierce [10] describes a variety of
programming languages with advanced type systems. HOL-Omega is similar to
his system Fω of chapter 30, but avoids Fω’s impredicativity. HOL-Omega does
not include dependent types, such as found in the calculus of constructions.

In the remainder of this paper, we describe the core logic of the HOL-Omega
system, and some additions to the core. In Section 2, we present the abstract
syntax of HOL-Omega. Section 3 describes the set-theoretic semantics for the
logic. Section 4 gives the new core rules of inference and axioms. Section 5
covers additional type and term definitions on top of the core. Section 6 presents
a number of examples using the expanded logic, and in Section 7 we conclude.

2 Syntax of the HOL-Omega Logic

For reasons of space, we assume the reader is familiar with the types, terms,
axioms, and rules of inference of the HOL logic, as described in [3,4,5,6]. This
section presents the abstract syntax of the new HOL-Omega logic.

In HOL-Omega, the syntax consists of ranks, kinds, types, and terms.

2.1 Ranks

Ranks are natural numbers indicating the depth of universal type quantification
present or permitted in a type. We use the variable r to range over ranks.

rank ::= natural

The purpose of ranks is to avoid impredicativity, which is inconsistent with
HOL [2]. However, a näıve interpretation has been found to be too constrictive.
For example, the HOL identity operator I has type α → α, where α has rank
0. However, it is entirely natural to expect to apply I to values of higher ranks,
and to expect I to function as the identity function on those higher-rank values.
To have an infinite set of identity functions, one for each rank, would be absurd.

Inspired by new set theory, John Matthews suggested the idea of considering
all ranks as being formed as a sum of a variable and a natural, where there is
only one rank variable, z, ranging over naturals. This reflects the intuition that
if a mathematical development was properly constructed at one rank, it could as
easily have been constructed at the rank one higher, consistently at each step of
the development. Only one rank variable is necessary to capture this intuition,
representing the finite number of ranks that the entire development is promoted.

If there is only one rank variable, it may be understood to be always present
without being explicitly modeled. Thus rank 2 signifies z+2. A rank substitution
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θr indicates the single mapping z �→ z + θr, so applying θr to z + n yields
z + (n + θr). A rank r′ is an instance of r if r′ = r[θr ] for some θr, i.e., if r′ ≥ r.

2.2 Kinds

HOL-Omega introduces kinds as a new level in the logic, not present in HOL.
Kinds control the proper formation of types just as types do for terms.

There are three varieties of kinds, namely the base kind (the kind of proper
types), kind variables, and arrow kinds (the kinds of type operators).

kind ::= ty (base kind)
| κ (kind variable)
| k1 ⇒ k2 (arrow kind)

We use the variable k to range over kinds, and κ to range over kind variables.
The arrow kind k1 ⇒ k2 has domain k1 and range k2. Arrow kinds are also called
higher kinds, meaning higher than the base kind. A kind k′ is an instance of k
if k′ = k[θk] for some substitution θk, a mapping from kind variables to kinds.

2.3 Types

Replacing HOL’s two varieties of types, HOL-Omega has five: type variables,
type constants, type applications, type abstractions, and universal types.

type-variable ::= name × kind × rank
type-constant ::= name × kind × rank (instance of kind in env.)

type ::= α (type-variable)
| τ (type-constant)
| σarg σopr (type application, postfix syntax)
| λα. σ (type abstraction)
| ∀α. σ (universal type)

We will use α to range over type variables, τ to range over type constants,
and σ to range over types. Type constants must have kinds which are instances
of the environment’s kind for that type constant name.

Kinding: α : kind of α
σopr : k1⇒k2, σarg : k1

σarg σopr : k2

α : k1, σ : k2
λα.σ : k1⇒k2

σ : k
τ : kind of τ

α : k, σ : ty
∀α.σ : ty

Ranking: α :≤ rank of α
σopr :≤ r2, σarg :≤ r1

σarg σopr :≤ max(r1,r2)
α :≤ r1, σ :≤ r2

λα.σ :≤ max(r1,r2)

σ :≤ r
τ :≤ rank of τ

σ :≤ r, r ≤ r′

σ :≤ r′
α :≤ r1, σ :≤ r2

∀α.σ :≤ max(r1+1,r2)

Typing: x : type of x
topr : σ1→σ2, targ : σ1

topr targ : σ2

x : σ1, t : σ2
λx.t : σ1→σ2

t : σ
c : type of c

t : ∀α:k:≤r. σ′, σ : k :≤ r

t [:σ:] : σ′[σ/α]

α : k :≤ r, t : σ
λ:α.t : ∀α.σ
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Existing types of HOL are fully supported in HOL-Omega. HOL type variables
are represented as HOL-Omega type variables of kind ty and rank 0. HOL type
applications of a type constant to a list of type arguments are represented in
HOL-Omega as a curried type constant applied to the arguments in sequence,
as (α1, ..., αn)τ = αn (... (α1 τ)...).

We write σ : k :≤ r to say that type σ has kind k and rank r.
Proper types are types of kind ty; only these types can be the type of a term.
In a type application of a type operator to an argument, the operator must

have an arrow kind, and the domain of the kind of the operator must equal the
kind of the argument. If so, the kind of the result of the type application will be
the range of the kind of the operator. Also, the body of a universal type must
have the base kind. These restrictions ensure types are well-kinded.

In both universal types and type abstractions, the type variable is bound
over the type body. This binding structure introduces the notions of alpha and
beta equivalence, as direct analogs of the corresponding notions for terms. In
fact, types are identified up to alpha-beta equivalence. The following denote the
same type: λα.α, λβ.β, λβ.β(λα.α), γ(λα.λβ.β). Beta reduction is of the form
σ2(λα.σ1) = σ1[σ2/α], where σ1[σ2/α] is the result of substituting σ2 for all free
occurrences of α in σ1, with bound type variables in σ1 renamed as necessary.

A type σ′ is an instance of σ if σ′=σ[θr][θk][θσ] for some rank, kind, and type
substitutions θr ∈ N, θk mapping kind variables to kinds, and θσ mapping type
variables to types. The substitutions are applied in sequence, with θr first.

When matching two types, the matching is higher order, so the pattern
α → α μ (where μ : ty ⇒ ty) matches β → β, yielding [α �→ β, μ �→ λα.α].

The primeval environment contains the type constants bool, ind, and fun as
in HOL, where bool : ty, ind : ty, and fun : ty ⇒ ty ⇒ ty, and all three have
rank 0. fun is usually written as the binary infix type operator →, and for a
function type σ1 → σ2, we say that the domain is σ1 and the range is σ2. Also,
for a universal type ∀α.σ, we say that the domain is α and the range is σ.

2.4 Terms

HOL-Omega adds to the existing four varieties of terms two new varieties,
namely term-type applications and type-term abstractions. We use x to range
over term variables, c over term constants, and t over terms.

variable ::= name × type
constant ::= name × type (an instance of type stored in environment)

term ::= x (variable)
| c (constant)
| topr targ (application, prefix syntax)
| λx. t (abstraction)
| t [: σ :] (term-type application)
| λ:α. t (type-term abstraction)
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In applications t1 t2, the domain of the type of t1 must equal the type of t2.
As in System F, in abstractions of a type variable over a term λ:α.t, the type

variable α must not occur freely in the type of any free variable of the term t.
There are three important restrictions on term-type applications (t [: σ :]).

1. The type of the term t must be a universal type, say ∀α.σ′.
2. The kind of α must match the kind of the type argument σ.
3. The rank of α must contain (≥) the rank of the type argument σ.

The first and second restrictions ensure terms are well-typed and well-kinded.
The third restriction is necessary to avoid impredicativity, for a simpler set-

theoretic model. This restriction means that the type argument is validly one of
the types over which the universal type quantifies. On this key restriction, the
consistency of HOL-Omega rests.

3 Semantics of the HOL-Omega Logic

3.1 A Universe for HOL-Omega Kinds, Types, and Terms

We give the ZFC semantics of HOL-Omega kinds, types, and terms in terms of a
universe U , which is fixed set of sets of sets. This development draws heavily from
Pitts[6] and Völker[11]. We construct U as a result of first constructing sequences
of sets U0,U1,U2, ..., and T0, T1, T2, ..., where Ui and Ti will only involve types of
rank ≤ i. Kinds will be modeled as elements K of U , types will be modeled as
elements T of K ∈ U , and terms will be modeled as elements E of T ∈ T ∈ U .

There exist Ui and Ti for i = 0, 1, 2, ..., satisfying the following properties:

Inhab. Each element of Ui is a non-empty set of non-empty sets.
Typ. Ui contains a distinguished element Ti.
Arrow. If K ∈ Ui and L ∈ Ui, then K→L ∈ Ui, where X→Y is the set-theoretic
(total) function space from the set X to the set Y .
Clos. Ui has no elements except those by Typ or Arrow.
Ext. Ti+1 extends Ti: Ti ⊆ Ti+1.
Sub. If X ∈ Ti and ∅ �= Y ⊆ X , then Y ∈ Ti.
Fun. If X ∈ Ti and Y ∈ Ti, then X→Y ∈ Ti.
Univ. If K ∈ Ui and f : K → Ti+1, then

∏
X∈K fX ∈ Ti+1. The set theoretic

product
∏

X∈K fX is the set of all functions g : K →
⋃

X∈K fX such that for
all X ∈ K, gX ∈ fX .
Bool. T0 contains a distinguished 2-element set B = {true, false}.
Infty. T0 contains a distinguished infinite set I.
AllTyp. T is defined to be

⋃
i∈N Ti.

AllArr. U is the closure of {T } under set theoretic function space creation.
Choice. There are distinguished elements chtyi ∈

∏
K∈Ui

K and ch ∈
∏

X∈T X .
For all i and for all K ∈ Ui, K is nonempty and chtyi(K) ∈ K is an example of
this, and for all X ∈ T , X is nonempty and ch(X) ∈ X is an example of this.

The system consisting of the above properties is consistent. The following con-
struction is from William Schneeburger. Let Ui be the closure of {Ti} under
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Arrow. Given Ti and Ui, we can construct Ti+1 by iteration over the ordi-
nals [9]. Let S0 = Ti. For all ordinals α, let Sα+1 be the closure under Sub and
Fun of

Sα

⋃
{

∏
X∈K f X | K ∈ Ui ∧ f : K → Sα}.

For limit ordinals λ, let Sλ =
⋃

α<λ Sα, which is closed under Sub and Fun.
Let n = |

⋃
K∈Ui

K|. Then |K| ≤ n for all K ∈ Ui. Let m = n+, the least
cardinal > n. Then m is a regular cardinal [9, p. 146] > |K| for all K ∈ Ui. Then
we define Ti+1 = Sm, which is sufficiently large by the following theorem.

Theorem 1. Sm is closed under Univ (as well as Sub and Fun).

Proof. Suppose K ∈ Ui and f : K → Sm. Sm =
⋃

α<m Sα, so for each X∈K
define γX = the smallest α s.t. f X ∈ Sα, thus γX < m. Define Γ = {γX |X∈K}.
Then Γ ⊆ m, and |K| < m so |Γ | < m thus

⋃
Γ < m since m is regular. The

image of f ⊆ S⋃
Γ , so by the definition of Sα+1,

∏
X∈K f X ∈ S(

⋃
Γ )+1 ⊆ Sm. ��

3.2 Constraining Kinds and Types to a Particular Rank

The function ⇓r transforms an element K of U into an element of Ur:

T ⇓r = Tr

(K1 → K2)⇓r = K1⇓r → K2⇓r

We need to map some elements T ∈ K ∈ U down to the corresponding
elements in K⇓r ∈ Ur, when T is consistent with a type of rank r. Not all T can
be so mapped; we define the subset of K that can, and the mapping, as follows.

We define the subset K|r ⊆ K ∈ U as the elements consistent with rank r,
and the function ↓r which transforms an element T of K|r into one of K⇓r,
mutually recursively on the structure of K:

T |r = Tr

(K1 → K2)|r = {f | f ∈ K1 → K2 ∧
∀(x, y) ∈ f. (x ∈ K1|r ⇒ y ∈ K2|r) ∧
f↓r is a function}

If T ∈ T |r, then T ↓r = T
If T ∈ (K1 → K2)|r, then T ↓r = {(x↓r, y↓r) | (x, y) ∈ T ∧ x ∈ K1|r }

If K = K1 → K2, by the definition of T ↓r, T ↓r ⊆ K1⇓r×K2⇓r, and by T ∈ K|r,
T ↓r is a function, so T ↓r ∈ K1⇓r → K2⇓r = (K1 → K2)⇓r = K⇓r.

We can define ⇑r : Ur→U and ↑r : K⇓r→K|r as the inverses of ⇓r and ↓r,
so that (K⇑r)⇓r = K for all K ∈ Ur and (T ↑r)↓r = T for all T ∈ K ∈ Ur.

Tr⇑r = T
(K1 → K2)⇑r = K1⇑r → K2⇑r

If T ∈ T ⇓r, then T ↑r = T
If T ∈ (K1 → K2)⇓r, then T ↑r = λ(x ∈ K1). if x ∈ K1|r then (T (x↓r))↑r

else chtype(K2, r)
where chtype(K, r) = (chtyr(K⇓r))↑r
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3.3 Semantics of Ranks and Kinds

As mentioned earlier, ranks syntactically appear as natural numbers r, but are
actually combined with the hidden single rank variable z as z + r. A rank envi-
ronment ζ ∈ N gives the value of z. The semantics of ranks is then [[r]]ζ = ζ + r.

A kind environment ξ is a mapping from kind variables to elements of U .
The semantics of kinds [[k]]ξ is defined by recursion over the structure of k:

[[ty]]ξ = T
[[κ]]ξ = ξ κ

[[k1 ⇒ k2]]ξ = [[k1]]ξ → [[k2]]ξ

3.4 Semantics of Types

We will distinguish bool, ind, and function types σ1 → σ2 as special cases, in
order to ensure a standard model. We assume a model M that takes a rank and
kind environment (ζ, ξ) and gives a valuation of each type constant τ of kind k
and rank r as an element of [[k]]ξ | [[r]]ζ . For clarity we omit the decoration [[ ]]M .

A type environment ρ takes a rank and a kind environment (ζ, ξ) to a mapping
of each type variable α of kind k and rank r to a value T ∈ [[k]]ξ | [[r]]ζ .

[[σ]]ζ,ξ,ρ is defined by recursion over the structure of σ:

[[bool]]ζ,ξ,ρ = B
[[ind]]ζ,ξ,ρ = I

[[ σ1 → σ2 ]]ζ,ξ,ρ = [[σ1]]ζ,ξ,ρ → [[σ2]]ζ,ξ,ρ

[[τ ]]ζ,ξ,ρ = M (ζ, ξ) τ

[[α]]ζ,ξ,ρ = ρ (ζ, ξ) α

[[ σarg σopr ]]ζ,ξ,ρ = [[σopr ]]ζ,ξ,ρ [[σarg ]]ζ,ξ,ρ

[[ λ(α : k :≤ r). σ ]]ζ,ξ,ρ = λT ∈ [[k]]ξ.
{

[[σ]]ζ,ξ,ρ[α�→T ] if T ∈ [[k]]ξ | [[r]]ζ
chtype([[kσ]]ξ, [[rσ]]ζ) otherwise

[[ ∀(α : k :≤ r). σ ]]ζ,ξ,ρ =
∏

T∈[[k]]ξ⇓[[r]]ζ
[[σ]]ζ,ξ,ρ[α�→T↑[[r]]ζ ]

where for [[ λ(α : k :≤ r). σ ]]ζ,ξ,ρ, if T has rank larger than the variable α, an
arbitrary type of the kind kσ and rank rσ of σ is returned, essentially as an error.

By induction over the structure of types, it can be demonstrated that the
semantics of types is consistent with the semantics of kinds and ranks, i.e.,

[[ σ : k :≤ r ]]ζ,ξ,ρ ∈ [[k]]ξ | [[r]]ζ .

3.5 Semantics of Terms

In addition to the type mapping described above, the model M is assumed,
given a triple of a rank, kind, and type environments, to provide a valuation of
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each term constant c of type σ as an element of [[σ]]ζ,ξ,ρ. A term environment μ
takes a triple of a rank, kind, and type environments to a mapping of each term
variable x of type σ to a value v which is an element of [[σ]]ζ,ξ,ρ.

[[ t ]]ζ,ξ,ρ,μ is defined by recursion over the structure of t:

[[ c ]]ζ,ξ,ρ,μ = M (ζ, ξ, ρ) c

[[ x ]]ζ,ξ,ρ,μ = μ (ζ, ξ, ρ) x

[[ t1 t2 ]]ζ,ξ,ρ,μ = [[ t1 ]]ζ,ξ,ρ,μ [[ t2 ]]ζ,ξ,ρ,μ

[[ λ(x : σ). t ]]ζ,ξ,ρ,μ = λv ∈ [[σ]]ζ,ξ,ρ. [[ t ]]ζ,ξ,ρ,μ[x �→v]

[[ λ:(α : k :≤ r). t ]]ζ,ξ,ρ,μ = λT ∈ [[k]]ξ⇓[[r]]ζ . [[t]]ζ,ξ,ρ[α�→T↑[[r]]ζ ],μ

[[ t [:σ:] ]]ζ,ξ,ρ,μ = [[t]]ζ,ξ,ρ,μ ([[σ]]ζ,ξ,ρ ↓ [[r]]ζ)

where for t [: σ :], the type of t must have the form ∀α.σ′, and r is the rank of α.

4 Primitive Rules of Inference of the HOL-Omega Logic

HOL-Omega includes all of the axioms and rules of inference of HOL, reinter-
preting them in light of the expanded sets of types and terms, and extends them
with the following new rules of inference, directed at the new varieties of terms.

– Rule INST TYPE is revised; it says that consistently and properly substituting
types for free type variables throughout a theorem yields a theorem.

Γ � t
Γ [σ1, . . . , σn/α1, . . . , αn] � t[σ1, . . . , σn/α1, . . . , αn]

(INST TYPE)

– Rule INST KIND says that consistently substituting kinds for kind variables
throughout a theorem yields a theorem.

Γ � t
Γ [k1, . . . , kn/κ1, . . . , κn] � t[k1, . . . , kn/κ1, . . . , κn] (INST KIND)

– Rule INST RANK says that consistently incrementing by n ≥ 0 the rank of all
type variables throughout a theorem yields a theorem. z is the rank variable.

Γ � t
Γ [(z + n)/z] � t[(z + n)/z]

(INST RANK)

– Rule TY ABS says that if two terms are equal, then their type abstractions
are equal, where α is not free in Γ .

Γ � t1 = t2
Γ � (λ:α.t1) = (λ:α.t2)

(TY ABS)

– Rule TY BETA CONV describes the equality of type beta-conversion, where
t[σ/α] denotes the result of substituting σ for free occurrences of α in t.

� (λ:α.t)[:σ:] = t[σ/α]
(TY BETA CONV)
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HOL-Omega adds one new axiom.

– Axiom TY ETA AX says type eta reduction is valid.

� (λ:α:κ. t[:α:]) = t (TY ETA AX)

To ensure the soundness of the HOL-Omega logic, all of the axioms and rules
of inference need to have their semantic interpretations proven sound within set
theory for all rank, kind, type, and term environments. This has not yet been
formally done, but it is a priority for future work. When this is accomplished,
by the LCF approach, all theorems proven within HOL-Omega will be sound.

5 Additional Type and Term Definitions

Of course the core of any system is only a point from which to begin. This section
describes new type abbreviations and term constants not in HOL, defined as
conservative extensions of the core logic of HOL-Omega.

5.1 New Type Abbreviations

HOL-Omega introduces the type abbreviations

I = λ(α : ′k). α
K = λ(α : ′k) (β : ′l). α
S = λ(α : ′k ⇒ ′l ⇒ ′m) (β : ′k ⇒ ′l) (γ : ′k). γ β (γ α)
o = λ(′f : ′k ⇒ ′l) (′g : ′l ⇒ ′m) (α : ′k). α ′f ′g

The use of kind variables ′k, ′l, and ′m makes these type abbreviations appli-
cable as type operators to types with arrow kinds. o is an infix type operator,
written as ′f o ′g = λα. α ′f ′g. These are reminiscent of the term combinators,
e.g. I = λ(x:α).x, K = λ(x:α)(y:β).x, and (g : β → γ)◦(f : α → β) = λx. g (f x).

In HOL2P, both the arguments and the results of type operator applications
must have the base kind ty. In HOL-Omega, the arguments and results may
themselves be type operators of higher kind, as managed by the kind structure.
This is of great advantage, for example when using o to compose two type
operators, neither of which is applied to any arguments yet.

5.2 New Terms

HOL-Omega provides universal and existential quantification of type variables
over terms using the new type binder constants ∀: and ∃:, defined as

∀: = λP. (P = (λ:α:κ. T))
∃: = λP. (P �= (λ:α:κ. F))

To ease readability, the following forms are also supported:

∀:α:κ. P = ∀: (λα:κ. P ) ∀:α1:κ1 α2:κ2 ... . P = ∀:α1:κ1. ∀:α2:κ2. ... P
∃:α:κ. P = ∃: (λα:κ. P ) ∃:α1:κ1 α2:κ2 ... . P = ∃:α1:κ1. ∃:α2:κ2. ... P
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6 Examples

The HOL-Omega logic makes it straightforward to express many concepts from
category theory, such as functors and natural transformations. Much of the first
two examples below is ported from HOL2P [11]; the main difference is that
the higher-order type abbreviations and type inference of HOL-Omega allow a
more pleasing presentation. We focus on the category Type whose objects are
the proper types of the HOL-Omega logic, and whose arrows are the (total)
term functions from one type to another. The source and target of an arrow are
the domain and range of the type of the function. The identity arrows are the
identity functions on each type. The composition of arrows is normal functional
composition. The customary check that the target of one arrow is the source of
the other is accomplished automatically by the strong typing of the logic.

6.1 Functors

Functors map objects to objects and arrows to arrows. In the category Type,
the first mapping is represented as a type ′F of kind ty ⇒ ty, and the second as
a function of the type ′F functor, where functor is the type abbreviation

functor = λ′F. ∀α β. (α → β) → (α ′F → β ′F ).

To be a functor, a function of this type must satisfy the following predicate:

functor (F : ′F functor) =
(∀:α. F (I : α → α) = I) ∧ Identity
(∀:α β γ. ∀(f : α → β)(g : β → γ). F (g ◦ f) = F g ◦ F f ) Composition

where g ◦ f = λx. g (f x). This is actually an abbreviated version; the parser
and type inference fill in the necessary type applications, so the full version is

functor (F : ′F functor) =
(∀:α. F [:α, α:] (I : α → α) = I) ∧ Identity
(∀:α β γ. ∀(f : α → β)(g : β → γ).

F [:α, γ:] (g ◦ f) = F [:β, γ:] g ◦ F [:α, β:] f )
Composition

In what follows, these type applications will normally be omitted for clarity.
In HOL, list : ty ⇒ ty is the type of finite lists. It is defined as a recursive

datatype with two constructors, [] : α list and :: : α → α list → α list.
:: is infix. The function MAP : (α → β) → (α list → β list) is defined by

MAP f [] = []
MAP f (x :: xs) = f x :: MAP f xs

Then MAP can be proven to be a functor: � functor ((λ:α β. MAP) : list functor).
A simple functor is the identity function I: � functor ((λ:α β. I) : I functor).
The composition of two functors is a functor. We overload ◦ to define this:

(G : ′G functor) ◦ (F : ′F functor) = λ:α β. G[:α ′F , β ′F :] ◦ F [:α, β:]
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The result has type (′F o ′G)functor. As an example, (λ:α β. MAP) ◦ (λ:α β. MAP) =
(λ:α β. MAP ◦ MAP) : (list o list)functor is a functor. The type composition
operator o reflects the category theory composition of two functors’ mappings
on objects. In HOL2P, the MAP functor composition example is expressed as:

� TYINST (θ �→ λα. (α list)list) functor (λ:α β. λf. MAP (MAP f))

Here the notation has been adjusted to that of this paper, for ease of com-
parison. TYINST is needed to manually instantiate a free type variable θ of the
functor predicate with the type for this instance, which must be stated as a type
abstraction. HOL-Omega’s kinds and type inference enable a clearer statement:

� functor (λ:α β. MAP ◦ MAP)

Beyond the power of HOL2P, HOL-Omega supports quantification over functors:

� ∃:′F. ∃(F : ′F functor). functor F.

6.2 Natural Transformations

Given functors F and G, a natural transformation maps objects A to arrows
FA → GA. In the category Type, we represent natural transformations as
functions of the type (′F , ′G)nattransf, where nattransf is the type abbreviation

nattransf = λ′F ′G. ∀α. α ′F → α ′G.

A natural transformation φ from a functor F to a functor G (φ : F → G)
must satisfy the following predicate:

nattransf (φ : (′F , ′G)nattransf) (F : ′F functor) (G : ′G functor) =
∀:α β. ∀(h : α → β). G h ◦ φ = φ ◦ F h

Define the function INITS to take a list and return a list of all prefixes of it:

INITS [] = []
INITS (x :: xs) = [] :: MAP (λys. x :: ys) (INITS xs)

INITS can be proven to be a natural transformation from MAP to MAP ◦ MAP:

� nattransf ((λ:α. INITS) : (list, list o list)nattransf)
((λ:α β. MAP) : list functor)
((λ:α β. MAP ◦ MAP) : (list o list)functor).

The vertical composition of two natural transformations is defined as

(φ2 : (′G, ′H)nattransf) ◦ (φ1 : (′F , ′G)nattransf) = λ:α. φ2 ◦ (φ1[:α:])

The result of this vertical composition is a natural transformation:

� nattransf ( φ1 : (′F , ′G)nattransf) F G ∧
nattransf ( φ2 : (′G, ′H)nattransf) G H ⇒
nattransf ( φ2 ◦ φ1 : (′F , ′H)nattransf) F H
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A natural transformation may be composed with a functor in two ways, where
the functor is either applied first or last. We define these, again overloading ◦:

(φ : (′F , ′G)nattransf) ◦ (H : ′H functor) = λ:α. φ [:α ′H :]
(H : ′H functor) ◦ (φ : (′F , ′G)nattransf) = λ:α. H (φ [:α:])

That the last of these is a natural transformation is expressed in HOL2P as

� nattransf φ F G ∧ functor H ⇒
TYINST ((θ1 �→ λα. ((α)θ1)θ3) (θ2 �→ λα. ((α)θ2)θ3))

nattransf (λ:α. H φ) (λ:α β. H ◦ F ) (λ:α β. H ◦ G)

where in HOL-Omega, the type inference, higher kinds, and overloaded ◦ permit

� nattransf φ F G ∧ functor H ⇒
nattransf (H ◦ φ) (H ◦ F ) (H ◦ G).

6.3 Monads

Wadler [12] has proposed using monads to structure functional programming.
He defines a monad as a triple (′M , unit, �=) of a type operator ′M and two
term operators unit and �= (where �= is an infix operator) obeying three laws.
We express this definition in HOL-Omega as follows.

We define two type abbreviations unit and bind:

unit = λ′M. ∀α. α → α ′M
bind = λ′M. ∀α β. α ′M → (α → β ′M) → β ′M

We define a monad to be two term operators, unit and �=, with a single
common free type variable ′M : ty⇒ty, satisfying a predicate of the three laws:

monad (unit : ′M unit, �= : ′M bind) =
(∀:α β. ∀(a : α)(k : α → β ′M).

unit a �= k = k a) ∧
(Left unit)

(∀:α. ∀(m : α ′M).
m �= unit = m) ∧

(Right unit)

(∀:α β γ. ∀(m : α ′M)(k : α → β ′M)(h : β → γ ′M).
(m �= k) �= h = m �= (λα. k α �= h))

(Associative)

As an example, we define the unit and �= operations for a state monad as

state = λσ α. σ → α × σ

state unit = λ:α. λ(x:α) (s:σ). (x, s)
state bind = λ:α β. λ(w:(σ, α)state) (f :α→(σ, β)state) (s:σ). let (x, s′) = w s

in f x s′

Then we can prove these operations satisfy the monad predicate for ′M = σ state,
taking advantage of the curried nature of state, where (σ, α)state = α (σ state):

� monad ( state unit : (σ state)unit, state bind : (σ state)bind ).
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Wadler [12] also formulates an alternative definition of monads, expressed in
terms of three operators, unit, map, and join, satisfying seven laws:

map = λ′M. ∀α β. (α → β) → (α ′M → β ′M)
join = λ′M. ∀α. α ′M ′M → α ′M

umj monad (unit : ′M unit, map : ′M map, join : ′M join) =
(∀:α. map (I : α → α) = I) ∧ (map I)
(∀:α β γ. ∀(f : α → β)(g : β → γ).

map (g ◦ f) = map g ◦ map f) ∧
(map o)

(∀:α β. ∀(f : α → β).
map f ◦ unit = unit ◦ f) ∧

(map unit)

(∀:α β. ∀(f : α → β).
map f ◦ join = join ◦ map (map f)) ∧

(map join)

(∀:α. join ◦ unit = (I : α ′M → α ′M)) ∧ (join unit)
(∀:α. join ◦ map unit = (I : α ′M → α ′M)) ∧ (join map unit)
(∀:α. join [:α:] ◦ map join = join ◦ join) (join map join)

Given a monad defined using unit and �=, corresponding map and join op-
erators MMAP(unit,�=) and JOIN(unit,�=) may be constructed automatically:

MMAP (unit : ′M unit, �= : ′M bind)
= λ:α β. λ(f : α → β) (m : α ′M). m �= (λa. unit (f a))

JOIN (unit : ′M unit, �= : ′M bind)
= λ:α. λ(z : α ′M ′M). z �= I

Given a monad defined using unit, map, and join, the corresponding �=
operator BIND(map, join) may also be constructed automatically:

BIND (map : ′M map, join : ′M join)
= λ:α β. λ(m : α ′M) (k : α → β ′M). join (map k m)

E.g., for the state monad, state map = MMAP (state unit, state bind)
state join = JOIN (state unit, state bind)
state bind = BIND (state map, state join).

Then it can be proven that these two definitions of a monad are equivalent.

� monad (unit : ′M unit, �= : ′M bind) ⇔
(umj monad (unit, MMAP(unit,�=), JOIN(unit,�=)) ∧

�= = BIND (MMAP(unit,�=), JOIN(unit,�=)))

� umj monad(unit : ′M unit, map : ′M map, join : ′M join) ⇒
monad(unit, BIND(map, join))

Lack and Street [7] define monads as a category A, a functor t : A → A, and
natural transformations μ : t2 → t and η : 1A → t satisfying three equations, as
expressed by the commutative diagrams (in the functor category)
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This definition can be expressed in HOL-Omega as follows:

cat monad (t : ′M functor, μ : (′M o ′M, ′M)nattransf, η : (I, ′M)nattransf) =
functor t ∧ (t is a functor)
nattransf μ (t ◦ t) t ∧ (μ is a natural transformation)
nattransf η (λ:α β. I) t ∧ (η is a natural transformation)
(μ ◦ (t ◦ μ) = μ ◦ (μ ◦ t)) ∧ (square commutes)
(μ ◦ (t ◦ η) = λ:α. I) ∧ (left triangle commutes)
(μ ◦ (η ◦ t) = λ:α. I) (right triangle commutes).

It can be proven that this is equivalent to the (unit, map, join) definition:

� ∀(unit : ′M unit) map join.
cat monad(map, join, unit) ⇔ umj monad(unit, map, join).

Therefore all three definitions of monads are equivalent.

7 Conclusion

This document has presented a description of the core logic of the HOL-Omega
theorem prover. This has been implemented as a variant of the HOL4 theorem
prover. The implementation may be downloaded by the command

svn checkout https://hol.svn.sf.net/svnroot/hol/branches/HOL-Omega

Installation instructions are in the top directory.
This provides a practical workbench for developments in the HOL-Omega

logic, integrated in a natural and consistent manner with the existing HOL4
tools and libraries that have been refined and extended over many years.

This implementation was designed with particular concern for backward
compatibility.This was almost entirely achieved, which was possible only because
the fundamental data types representing types and terms were originally
encapsulated. This meant that the underlying representation could be changed
without affecting the abstract view of types and terms by the rest of the system.
Virtually all existing HOL4 code will build correctly, including the extensive
libraries. The simplifiers have been upgraded, including higher-order matching of
the new types and terms and automatic type beta-reduction. Algebraic types with
higher kinds and ranks may be constructed using the familiar Hol datatype tool
[5]. Not all of the tools will work as expected on the new terms and types, as the
revision process is ongoing, but they will function identically on the classic terms
and types. So nothing of HOL4’s power has been lost.



The HOL-Omega Logic 259

Also, the nimble ease of use of HOL has been largely preserved. For example, the
type inference algorithm is a pure extension, so that all classic terms have the same
types successfully inferred. Inferenceofmostgeneral types for all terms isnotalways
possible, as also seen in System F, and type inference may fail even for typeable
terms, but in practice a few user annotations are usually sufficient.

The systemis still beingdevelopedbut is currentlyuseful.All of theexamplespre-
sented have been mechanized in the examples/HolOmega subdirectory, along with
further examples from Algebra of Programming [1] ported straightforwardly from
HOL2P, including homomorphisms, initial algebras, catamorphisms, and the ba-
nana split theorem. While maintaining backwards compatibility with the existing
HOL4 system and libraries, the additional expressivity and power of HOL-Omega
makes this tool applicable to a great collection of new problems.

Acknowledgements. Norbert Völker’s HOL2P [11] was an vital inspiration.
Michael Norrish helped get the new branch of HOL4 established and to begin the
new parsers and prettyprinters. John Matthews suggested adding the single rank
variable to every rank. William Schneeburger justified an aggressive set-theoretic
semantics of ranks. Mike Gordon has consistently encouraged this work. We honor
his groundbreaking and seminal achievement in the original HOL system [3], with-
out which none of this work would have been possible.
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