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Prologue

This volume contains a short sample of material from the upcoming tutorial on the HOL-
Omega system. The tutorial will be one of four documents making up the documentation
for HOL-Omega:

(i) LOGIC: a formal description of the higher order logic implemented by the HOL-
Omega system.

(ii) TUTORIAL: a tutorial introduction to HOL-Omega, with case studies.

(iii) DESCRIPTION: a detailed user’s guide for the HOL-Omega system;

(iv) REFERENCE: the reference manual for HOL-Omega.

This document provides a brief and light set of examples of using HOL-Omega, as an
introduction, giving a taste of how the system might be used. Like an appetizer to a
main meal, it provides just a hint of the sustenance to come.

Getting started

Chapter 1 explains how to get and install HOL-Omega. Then the new, additional concepts
and features of the HOL-Omega logic (higher order logic extended with System F, kinds,
and ranks) are casually demonstrated, in chapter 2.

Chapter 3 briefly discusses some of the examples distributed with HOL-Omega in the
examples/HolOmega directory.
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Chapter 1

Getting and Installing HOL-Omega

This chapter describes how to get the HOL-Omega system and how to install it. It is
generally assumed that some sort of Unix system is being used, but the instructions that
follow should apply mutatis mutandis to other platforms. Unix is not a pre-requisite for
using the system. HOL-Omega may be run on PCs running Windows operating systems
from Windows NT onwards (i.e., Windows 2000, XP and Vista are also supported), as
well as Macintoshes running Mac OS X.

1.1 Getting HOL-Omega

HOL-Omega is part of the HOL system. The HOL system has several branches; branch
HOL-Omega contains the source of the HOL-Omega theorem prover. The naming scheme
for HOL-Omega releases is 〈name〉-〈number〉; the release described here is Kananaskis-8.

HOL development uses the Git version control system. Git is freely available from
http://git-scm.com/, and is well described in the book ProGit by Scott Chacon.

A fresh copy of the current developer version of HOL-Omega may be checked out into
a fresh subdirectory called hol-omega by the following Git command:

git clone -b HOL-Omega git://github.com/mn200/HOL.git hol-omega

As a developer, to check out a fresh copy of HOL-Omega that one could edit and write
back to the github repository, one would set up a SSH key with github and then do

git clone -b HOL-Omega git@github.com:mn200/HOL.git hol-omega

To set up a SSH key, see https://help.github.com/articles/generating-ssh-keys.
To become an HOL developer and have write access to the github repository, please

contact one of the administrators listed at http://sourceforge.net/projects/hol/.

1.2 The hol-info mailing list

The hol-info mailing list serves as a forum for discussing HOL-Omega and disseminating
news about it. If you wish to be on this list (which is recommended for all users of
HOL-Omega), visit http://lists.sourceforge.net/lists/listinfo/hol-info. This
web-page can also be used to unsubscribe from the mailing list.
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1.3 Installing HOL-Omega

It is assumed that the HOL-Omega sources have been obtained and the tar file unpacked
into a directory hol-omega.1 The contents of this directory are likely to change over
time, but it should contain the following:

Principal Files on the HOL-Omega Distribution Directory

File name Description File type
README Description of directory hol-omega Text
COPYRIGHT A copyright notice Text
INSTALL Installation instructions Text
tools Source code for building the system Directory
bin Directory for HOL-Omega executables Directory
sigobj Directory for ML object files Directory
src ML sources of HOL-Omega Directory
help Help files for HOL-Omega system Directory
examples Example source files Directory

The session in the box below shows a typical distribution directory. The HOL-Omega
distribution has been placed in the directory /Users/palantir/hol-omega/ on a Macin-
tosh running OS X for a user palantir.

All sessions in this documentation will be displayed in boxes with a number in the
top right hand corner. This number indicates whether the session is a new one (when
the number will be 1) or the continuation of a session started in an earlier box. Con-
secutively numbered boxes are assumed to be part of a single continuous session. The
Unix prompt for the sessions is $, so lines beginning with this prompt were typed by the
user. After entering the HOL-Omega system (see below), the user is prompted with - for
an expression or command of the HOL-Omega meta-language ML; lines beginning with
this are thus ML expressions or declarations. Lines not beginning with $ or - are system
output. Occasionally, system output will be replaced with a line containing ... when it
is of minimal interest. The meta-language ML is introduced in Chapter ??.

1$ pwd
/Users/palantir/hol-omega
$ ls -F
COPYRIGHT bin/ examples/ sigobj/ tools-poly/
INSTALL cleanall* help/ src/
Manual/ developers/ icon.gif* std.prelude
README doc/ merging tools/

1You may choose another name if you want; it is not important.
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Now you will need to rebuild HOL-Omega from the sources.2

Before beginning you must have a current version of Moscow ML or Poly/ML3. In
the case of Moscow ML, you must have version 2.01. Moscow ML is available on the
web from http://www.dina.kvl.dk/∼sestoft/mosml.html. Poly/ML is available from
http://polyml.org. When you have your ML system installed, and are in the root
directory of the distribution, the next step is to run smart-configure. With Moscow ML,
this looks like:

2$ mosml < tools/smart-configure.sml
Moscow ML version 2.01 (January 2004)
Enter ‘quit();’ to quit.
- [opening file "tools/smart-configure-mosml.sml"]

HOL-Omega smart configuration.

Determining configuration parameters: OS mosmldir holdir
OS: macosx
mosmldir: /Users/palantir/mosml/bin
holdir: /Users/palantir/hol-omega
dynlib_available: true

Configuration will begin with above values. If they are wrong
press Control-C.

If you are using Poly/ML, then write

poly < tools/smart-configure.sml

instead.
Assuming you don’t interrupt the configuration process, this will build the Holmake

and build programs, and move them into the hol-omega/bin directory. If something
goes wrong at this stage, consult Section 1.3.1 below.

The next step is to run the build program. This should result in a great deal of output
as all of the system code is compiled and the theories built. Eventually, a HOL-Omega
system4 is produced in the bin/ directory.

3$ bin/build
...
...

Uploading files to /Users/palantir/hol-omega/sigobj

Hol built successfully.
$

2It is possible that pre-built systems may soon be available from the web-page mentioned above.
3Poly/ML cannot be used with HOL-Omega on Windows.
4Four HOL-Omega executables are produced: hol, hol.noquote, hol.bare and hol.bare.noquote. The

first of these will be used for most examples in the TUTORIAL.
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1.3.1 Overriding smart-configure

If smart-configure is unable to guess correct values for the various parameters (holdir,
OS etc.) then you can create a file called to provide correct values. With Moscow ML,
this should be config-override in the root directory of the HOL-Omega distribution.
With Poly/ML, this should be poly-includes.ML in the tools-poly directory. In this
file, specify the correct value for the appropriate parameter by providing an ML binding
for it. All variables except dynlib available must be given a string as a possible value,
while dynlib available must be either true or false. So, one might write

4val OS = "unix";
val holdir = "/local/scratch/myholdir";
val dynlib_available = false;

The config-override file need only provide values for those variables that need over-
riding.

With this file in place, the smart-configure program will use the values specified
there rather than those it attempts to calculate itself. The value given for the OS variable
must be one of "unix", "linux", "solaris", "macosx" or "winNT".5

In extreme circumstances it is possible to edit the file tools/configure.sml your-
self to set configuration variables directly. (If you are using Poly/ML, you must edit
tools-poly/configure.sml instead.) At the top of this file various incomplete SML
declarations are present, but commented out. You will need to uncomment this sec-
tion (remove the (* and *) markers), and provide sensible values. All strings must be
enclosed in double quotes.

The holdir value must be the name of the top-level directory listed in the first ses-
sion above. The OS value should be one of the strings specified in the accompanying
comment.

When working with Moscow ML, the mosmldir value must be the name of the direc-
tory containing the Moscow ML binaries (mosmlc, mosml, mosmllex etc). When working
with Poly/ML, the poly string must be the path to the poly executable that begins an
interactive ML session. The polymllibdir must be a path to a directory that contains
the file libpolymain.a.

Subsequent values (CC and GNUMAKE) are needed for “optional” components of the
system. The first gives a string suitable for invoking the system’s C compiler, and the
second specifies a make program.

After editing, tools/configure.sml the lines above will look something like:

5The string "winNT" is used for Microsoft Windows operating systems that are at least as recent as
Windows NT. This includes Windows 2000, XP and Vista.
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5$ more configure.sml
...

val mosmldir:string = "/home/palantir/mosml";
val holdir :string = "/home/palantir/hol-omega";
val OS :string = "linux";

(* Operating system; choices are:
"linux", "solaris", "unix", "macosx",
"winNT" *)

val CC:string = "gcc"; (* C compiler *)
val GNUMAKE:string = "make"; (* for bdd library and SMV *)
val DEPDIR:string = ".HOLMK"; (* where Holmake dependencies kept *)
...

$

Now, at either this level (in the tools or tools-poly directory) or at the level above,
the script configure.sml must be piped into the ML interpreter (i.e., mosml or poly).
For example,

6$ mosml < tools/configure.sml
Moscow ML version 2.01 (January 2004)
Enter ‘quit();’ to quit.
- > val mosmldir = "/home/palantir/mosml" : string
val holdir = "/home/palantir/hol-omega" : string
val OS = "linux" : string

- > val CC = "gcc" : string
...

Beginning configuration.
Removing old quotation filter from bin/
Making tools/mllex/mllex.exe
Making bin/Holmake.
...

Making bin/build.
Making hol-mode.el (for Emacs/XEmacs)
Generating bin/hol.
Generating bin/hol.noquote.
...

Number of states = 170
Number of distinct rows = 90
Approx. memory size of trans. table = 23040 bytes
Analysing filter.sml
Compiling filter.sml
Compiling quote-filter.sml
...

Analysing selftest.sml
Quote-filter built
Setting up the muddy library Makefile.

Finished configuration!
$
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Chapter 2

HOL-Omega Appetizers

This chapter will introduce the HOL-Omega logic, with the idea of motivating it by a
series of examples. These examples are only discussed superficially, to showcase the
new ideas, and not all details are pursued. A more complete description of the HOL-
Omega extensions is provided in the next chapter in the tutorial. But these are presented
as appetizers, to lightly show how the new features might be used to good effect.

2.1 Collections

To begin, HOL is blessed with a number of different types in the logic that represent
different varieties of collections, like lists, sets, and bags. These are polymorphic types,
written e.g. α list, where α is the type of the elements of the list. All these collections
are similar, in that they all have an empty collection, they all have a way to insert a new
element into a collection, they all have a way to measure the size of a collection, etc.

Suppose one wanted to represent the notion of a collection as an abstraction of the
normal notions of a set or a list. In HOL there is no natural way to do this, but in HOL-
Omega one could use a type operator variable to stand for the various collection types,
and then create a record of some of the normal functions used on collections, as follows.

7- new_theory "appetizers";
<<HOL message: Created theory "appetizers">>
> val it = () : unit
> set_trace "Unicode" 0;
val it = () : unit

- Hol_datatype ‘collection_ops =
<| empty : ’x ’col;

insert : ’x -> ’x ’col -> ’x ’col;
length : ’x ’col -> num |>‘;

<<HOL message: Defined type: "collection_ops">>
> val it = () : unit

Here we have used the type variable ’col as a variable to stand for the type operator
we are talking about, whether list, option, or some other type. In HOL, type variables
can only stand for entire types, like num list, but not type operators like just list. But
here, ’col is being used as a function on types, that takes a type ’x, the type of the

15
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elements of the collection, and returns a type ’x ’col, the type of collections of such
elements. Such type operator variables are one of the new features of HOL-Omega.

Both ’col and ’x are free type variables in this definition, so the type being defined
takes two arguments, e.g., (’col, ’x)collection ops. The order of the two arguments
is by alphabetical order.

Now we can describe lists as collections:

8- val list_ops = Define
‘list_ops = <|empty := []:’a list; insert := CONS; length := LENGTH|>‘;

Definition has been stored under "list_ops_def"
> val list_ops =

|- list_ops = <|empty := []; insert := CONS; length := LENGTH|> : thm

- type_of ‘‘list_ops‘‘;
<<HOL message: inventing new type variable names: ’a>>
> val it =

‘‘:(list, ’a) collection_ops‘‘
: hol_type

The type of this collection is (list, ’a) collection ops. The first argument is the
type list, here being used without any type argument of its own. This is meaningful
in HOL-Omega, although it may look weird to HOL users who are used to always seeing
list with an argument, like num list or ’a list. But here list is itself an argument,
albeit a type operator alone, replacing ’col in the definition of collection ops above.

Here are sets described as collections:

9- val set_ops = Define
‘set_ops = <|empty := {}:’a set; insert := $INSERT; length := CARD|>‘;

Definition has been stored under "set_ops_def"
> val set_ops = |- set_ops = <|empty := {}; insert := $INSERT; length := CARD|>

: thm

- type_of ‘‘set_ops‘‘;
<<HOL message: inventing new type variable names: ’b>>
> val it =

‘‘:(\’a. ’a -> bool, ’b) collection_ops‘‘
: hol_type

Note that the first argument to this set collection type is \’a. ’a -> bool. This is an
abstraction type, similar to the normal lambda abstraction in terms, but this abstraction
is within the type language of HOL-Omega. The scope of the lambda binding of ’a in the
type above is up to but not including the comma, which ends the first type argument.

But, you may ask, why does this type abstraction \’a. ’a -> bool appear in this
collection type? The reason is that the type of sets in HOL, ’a set, is actually a type
abbreviation, not a real type. It is a feature of the parser and prettyprinter, not the
actual logic as such. The abbreviation ’a set stands for the real type ’a -> bool. The
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HOL-Omega system figures out the appropriate type to substitute for the type argument
’col to create the type ’a -> bool, and the substitution is [’col 7→ \’a. ’a -> bool].
The type resulting from the substitution is ’a (\’a. ’a -> bool) (in postfix notation),
which is equivalent to ’a -> bool through type beta-reduction.

HOL contains not only lists and sets, but also bags, which are sometimes called mul-
tisets. Bags are like sets which can include multiple copies of its elements, whereas sets
can only contain a single copy of each. Here are bags described as collections:

10- load "bagLib";
...
- val bag_ops = Define

‘bag_ops = <| empty := {||}:’a bag; insert := BAG_INSERT;
length := BAG_CARD|>‘;

Definition has been stored under "bag_ops_def"
> val bag_ops =

|- bag_ops = <|empty := {||}; insert := BAG_INSERT; length := BAG_CARD|> :
thm

- type_of ‘‘bag_ops‘‘;
<<HOL message: inventing new type variable names: ’b>>
> val it =

‘‘:(\’a. ’a -> num, ’b) collection_ops‘‘
: hol_type

Similar to sets, ’a bag is a type abbreviation for ’a -> num. In this case, HOL-Omega
figures out that the correct type to substitute for ’col is \’a. ’a -> num.

So we can represent lists, sets, and bags as collections using this record type with
fields for these three common operations.

2.1.1 Object-oriented collections

In fact we can go further, and try to model collections in an object-oriented way, com-
bining together the data values stored in the collection with the operations used to
manipulate them.

11- Hol_datatype ‘collection =
<| this : ’x ’col;

ops : (’col,’x) collection_ops |>‘;

Now we can define an operation to insert an element into a collection, without having
to know what particular kind of collection it is.
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12- val insert_def =
Define ‘insert x (c:(’col,’x)collection) =

<| this := c.ops.insert x c.this;
ops := c.ops |>‘;

Definition has been stored under "insert_def"
> val insert_def =

|- !x c. insert x c = <|this := c.ops.insert x c.this; ops := c.ops|>
: thm

Similarly, we can define an operation to measure the size of a collection.

13- val length_def =
Define ‘length (c:(’col,’x)collection) = c.ops.length c.this‘;

Definition has been stored under "length_def"
> val length_def =

|- !c. length c = c.ops.length c.this
: thm

So we can use the same functions, insert and length, to manipulate any lists, sets, or
bags, with the appropriate results for each type of collection.

2.1.2 Fold operation

But what if we want to add a “fold” operator, like the FOLDR function on lists:

14- type_of ‘‘FOLDR‘‘;
<<HOL message: inventing new type variable names: ’a, ’b>>
> val it =

‘‘:(’a -> ’b -> ’b) -> ’b -> ’a list -> ’b‘‘
: hol_type

- listTheory.FOLDR;
> val it =

|- (!f e. FOLDR f e [] = e) /\
!f e x l. FOLDR f e (x::l) = f x (FOLDR f e l)

: thm

We might add a new field fold to our new record of collection operations as follows.

15- Hol_datatype ‘collection_ops =
<| empty : ’x ’col;

insert : ’x -> ’x ’col -> ’x ’col;
length : ’x ’col -> num;
fold : (’x -> ’y -> ’y) -> ’y -> ’x ’col -> ’y |>‘;

<<HOL message: Defined type: "collection_ops">>
> val it = () : unit

Then we can construct a record of this type using FOLDR.



2.1. COLLECTIONS 19

16- val list_ops = Define
‘list_ops = <| empty := []:’a list; insert := CONS; length := LENGTH;

fold := FOLDR|>‘;
<<HOL message: inventing new type variable names: ’b>>
Definition has been stored under "list_ops_def"
> val list_ops =

|- list_ops =
<|empty := []; insert := CONS; length := LENGTH; fold := FOLDR|> : thm

- type_of ‘‘list_ops‘‘;
<<HOL message: inventing new type variable names: ’a, ’b>>
> val it =

‘‘:(list, ’a, ’b) collection_ops‘‘
: hol_type

Wait, this is not what we wanted. There is a third type argument in collection ops

now, ’b. This new type argument appears there because there are now three free type
variables in the definition of collection ops, ’col, ’x, and ’y. The third argument ’y
is the type of the value computed and returned by fold.

But having the ’y type variable free in this way fails to be fully general, as any partic-
ular instance of fold can produce only one type of result. No matter its arguments, no
different type of result can be produced.

To see this problem more clearly, suppose we follow this development further, using
this definition of collection ops, and upon it defining the collection type and the fold
operation on collections.

17- Hol_datatype ‘collection =
<| this : ’x ’col;

ops : (’col,’x,’y) collection_ops |>‘;
<<HOL message: Defined type: "collection">>
> val it = () : unit

- val fold_def = Define ‘fold f e c = c.ops.fold f e c.this‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c>>
Definition has been stored under "fold_def"
> val fold_def =

|- !f e c. fold f e c = c.ops.fold f e c.this
: thm

Now let’s make an example collection.

18- val ex1 = ‘‘<| this := [1;8;27]; ops := list_ops |>‘‘;
<<HOL message: inventing new type variable names: ’a>>
> val ex1 = ‘‘<|this := [1; 8; 27]; ops := list_ops|>‘‘ : term
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But when we try to do a fold on this example, we see a type error.

19- ‘‘fold (\x y. x+y) 0 ^ex1‘‘;

Type inference failure: unable to infer a type for the application of

(fold (\(x :num) (y :num). x + y) (0 :num) :
(list, num, num) collection -> num)

on line 16, characters 2-19

which has type

:(list, num, num) collection -> num

to

<|this := [(1 :num); (8 :num); (27 :num)];
ops := (list_ops :(list, num, ’a) collection_ops)|>

between beginning of frag 1 and end of frag 1

which has type

:(list, num, ’a) collection

unification failure message: unify failed
! Uncaught exception:
! HOL_ERR

This example failed type-checking because the type of the result that the collection
was able to provide (’a) was not the same as the type of the value that the actual fold
function, \x y.x+y, was trying to return (num).

We could try to patch this up by manually instantiating this example.

20- val ex1a = inst [‘‘:’a‘‘ |-> ‘‘:num‘‘] ex1;
> val ex1a = ‘‘<|this := [1; 8; 27]; ops := list_ops|>‘‘ : term
- ‘‘fold (\x y. x+y) 0 ^ex1a‘‘;
> val it =

‘‘fold (\x y. x + y) 0 <|this := [1; 8; 27]; ops := list_ops|>‘‘
: term

This does work and the term passes type-checking. But what if we try another exam-
ple that returns a result of a different type?



2.1. COLLECTIONS 21

21- ‘‘fold (\x y. EVEN x /\ y) T ^ex1a‘‘;

Type inference failure: unable to infer a type for the application of

(fold (\(x :num) (y :bool). EVEN x /\ y) T :
(list, num, bool) collection -> bool)

on line 21, characters 2-27

which has type

:(list, num, bool) collection -> bool

to

<|this := [(1 :num); (8 :num); (27 :num)];
ops := (list_ops :(list, num, num) collection_ops)|>

between beginning of frag 1 and end of frag 1

which has type

:(list, num, num) collection

unification failure message: unify failed
! Uncaught exception:
! HOL_ERR

The type of the result that the collection was able to provide (num) was not the same
as the type of the value that the fold function was trying to return (bool).

The point here is that the above version of fold is simply not general enough for
normal use. What we really want is the following version.

22- Hol_datatype ‘collection_ops =
<| empty : ’x ’col;

insert : ’x -> ’x ’col -> ’x ’col;
length : ’x ’col -> num;
fold : !’y. (’x -> ’y -> ’y) -> ’y -> ’x ’col -> ’y |>‘;

<<HOL message: Defined type: "collection_ops">>
> val it = () : unit

In this new defintion of collection ops, the type of the fold field begins with
“!’y.”. This indicates a universal type; the idea comes from a logic called System F.
The !’y. universally quantifies ’y over the body (’x -> ’y -> ’y) -> ’y -> ’x ’col

-> ’y. The quantification binds the occurrences of ’y within the universal type, so that
’y does not become a free type variable outside the binding, and thus not a free type
variable of the collection ops type. Then this version of the collection ops type is
created with just its normal two arguments ’col and ’x, not ’y.
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To create an example of this new type of fold operation, we need to provide a term
whose type is the above universal type. Such a term is \:’b. FOLDR.

23- val list_ops = Define
‘list_ops = <|empty := []:’a list; insert := CONS; length := LENGTH;

fold := \:’b. FOLDR|>‘;
Definition has been stored under "list_ops_def"
> val list_ops =

|- list_ops =
<|empty := []; insert := CONS; length := LENGTH;
fold := (\:’b. FOLDR)|> : thm

- type_of ‘‘list_ops‘‘;
<<HOL message: inventing new type variable names: ’a>>
> val it =

‘‘:(list, ’a) collection_ops‘‘
: hol_type

The term \:’b. FOLDR is a type abstraction term. It abstracts a term, here FOLDR, not
by a term variable, but by a type variable ’b. This is a new variety of term not present
in HOL, but added in HOL-Omega. The type of such a term is a universal type. Where the
type of FOLDR is (’a -> ’b -> ’b) -> ’b -> ’a ’col -> ’b, the type of \:’b. FOLDR

is instead !’b. (’a -> ’b -> ’b) -> ’b -> ’a ’col -> ’b.
The use of a universal type and a type abstraction term here provides the generality

we were looking for, so that fold can be used to return results of any desired type.

24- Hol_datatype ‘collection =
<| this : ’x ’col;

ops : (’col,’x) collection_ops |>‘;
<<HOL message: Defined type: "collection">>
> val it = () : unit

- val fold_def =
Define ‘fold f (e:’b) (c:(’col,’a)collection) = c.ops.fold f e c.this‘;

Definition has been stored under "fold_def"
> val fold_def =

|- !f e c. fold f e c = c.ops.fold f e c.this
: thm

If we turn on the printing of the types of terms, we can see in more detail the types
involved in the fold operation.

25- show_types := true;
> val it = () : unit
- fold_def;
> val it =

|- !(f :’a -> ’b -> ’b) (e :’b) (c :(’col :ty => ty, ’a) collection).
fold f e c = c.ops.fold [:’b:] f e c.this

: thm
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Now in the definition of fold, we see [:’b:]. This indicates an application of the
term c.ops.fold to the type ’b as a type argument. It is like an application of a term to
a term argument, except the argument is a type, not a term. In such a type application
term, the operator has to have a universal type; in this case, the type of c.ops.fold is
!’b. (’a -> ’b -> ’b) -> ’b -> ’a ’col -> ’b. The result of the type application
is to substitute the type argument for the bound type variable throughout the term. In
this case, the result has type (’a -> ’b -> ’b) -> ’b -> ’a ’col -> ’b. It is there-
fore ready to take as its next arguments the terms f, e, and c.this.

The type arguments to terms are important for the logic, but in practice they tend to
make terms harder to read, so by default their printing is turned off. Also, in many cases
the user need not mention them when writing terms; the parser’s type inference will try
to deduce where they are needed, and then exactly which type argument should be
inserted there. That is how the [:’b:] type argument was inserted into the definition
of fold above.

This version of the fold operation can be used easily to construct folds returning
different types, without any manual instantiations.

26- show_types := false;
> val it = () : unit
- val ex1 = ‘‘<| this := [2;3;5;7]; ops := list_ops |>‘‘;
> val ex1 = ‘‘<|this := [2; 3; 5; 7]; ops := list_ops|>‘‘ : term

- ‘‘fold (\x y. x+y) 0 ^ex1‘‘;
> val it =

‘‘fold (\x y. x + y) 0 <|this := [2; 3; 5; 7]; ops := list_ops|>‘‘
: term

- ‘‘fold (\x y. EVEN x /\ y) T ^ex1‘‘;
> val it =

‘‘fold (\x y. EVEN x /\ y) T <|this := [2; 3; 5; 7]; ops := list_ops|>‘‘
: term

2.1.3 Map operation

This seems to be working well. Let’s try another extension, adding a “map” operation
to the group of operations on collections. The basic idea of a map operation is to apply
a function to every element of a collection, and from all of the results form a new
collection. For lists, HOL contains the MAP function predefined, and there are similar
functions for sets and bags.

27- type_of ‘‘MAP‘‘;
<<HOL message: inventing new type variable names: ’a, ’b>>
> val it =

‘‘:(’a -> ’b) -> ’a list -> ’b list‘‘
: hol_type
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28- listTheory.MAP;
> val it =

|- (!f. MAP f [] = []) /\ !f h t. MAP f (h::t) = f h::MAP f t
: thm

Suppose we try to extend the set of operations with an entry for map, using a univer-
sally quantified type in the same style as we did for fold.

29- Hol_datatype ‘collection_ops =
<| length : ’x ’col -> num;

empty : ’x ’col;
insert : ’x -> ’x ’col -> ’x ’col;
fold : !’y. (’x -> ’y -> ’y) -> ’y -> ’x ’col -> ’y;
map : !’y. (’x -> ’y) -> ’x ’col -> ’y ’col |>‘;

<<HOL message: Defined type: "collection_ops">>
> val it = () : unit

To fashion an example of this map operation, we need to provide a term whose type is
the universal type !’y. (’x -> ’y) -> ’x ’col -> ’y ’col, such as \:’b. MAP.

30- val list_ops = Define
‘list_ops = <|empty := []:’a list; insert := CONS; length := LENGTH;

fold := \:’b. FOLDR; map := \:’b. MAP |>‘;
Definition has been stored under "list_ops_def"
> val list_ops =

|- list_ops =
<|empty := []; insert := CONS; length := LENGTH;
fold := (\:’b. FOLDR); map := (\:’b. MAP)|>

: thm

- type_of ‘‘list_ops‘‘;
<<HOL message: inventing new type variable names: ’a>>
> val it =

‘‘:(list, ’a) collection_ops‘‘
: hol_type

Next we can recreate the type of collections, using this expanded record of operations.

31- Hol_datatype ‘collection =
<| this : ’x ’col;

ops : (’col,’x) collection_ops |>‘;
<<HOL message: Defined type: "collection">>
> val it = () : unit

Now we define the “map” operation that takes a function and a collection and creates
a new collection from the results.

32- val map_def =
Define ‘map (f:’a -> ’b) c =

<| this := c.ops.map f c.this;
ops := c.ops |> ‘;
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Unfortunately, this definition runs into difficulties with the typing.

33Exception raised at Preterm.typecheck:
on line 113, characters 15-30:

Type inference failure: unable to infer a type for the application of

_ record fupdatethis
(K

((c :(’col :ty => ty, ’a) collection).ops.map [:’b:] (f :’a -> ’b)
c.this) :’b ’col -> ’b ’col)

between line 112, character 12 and line 113, character 30

which has type

:(’col :ty => ty, ’b) collection -> (’col, ’b) collection

to

<|ops := (c :(’col :ty => ty, ’a) collection).ops|>

on line 113, characters 15-30

which has type

:(’col :ty => ty, ’a) collection

unification failure message: unify failed

! Uncaught exception:
! HOL_ERR

The details of the above error message are not important. The real problem here is that
the type of the new collection created is (’col,’b)collection, while the type of the
original collection is (’col,’a)collection. The new collection being formed has its
this field given a value of the new collection type, but the ops field is given a record of
operations on the old collection type, not the new one.

This problem can be resolved by using one more universal type for the ops field itself.

34- Hol_datatype ‘collection =
<| this : ’x ’col;

ops : !’x. (’col,’x) collection_ops |>‘;
<<HOL message: Defined type: "collection">>
> val it = () : unit

Now the map function can be defined as we desire, with no type problems.
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35- val map_def =
Define ‘map (f:’a -> ’b) c =

<| this := c.ops.map f c.this;
ops := c.ops |> ‘;

Definition has been stored under "map_def"
> val map_def =

|- !f c. map f c = <|this := c.ops.map f c.this; ops := c.ops|>
: thm

To check on the types involved, let’s turn on the display of types.

36- show_types := true;
> val it = () : unit

- map_def;
> val it =

|- !(f :’a -> ’b) (c :(’col :ty => ty, ’a) collection).
map f c =
<|this := (c.ops [:’a:]).map [:’b:] f c.this; ops := c.ops|>

: thm

Here we can see not only the type argument [:’b:] inserted for map, as was done before
for fold, but also the operations record itself c.ops is given the type argument [:’a:].
The parser’s type inference was able to deduce the necessary type arguments from the
actual user input and insert them in the appropriate places.

As a final example in this section, let’s consider an operation that takes two col-
lections, which may use different underlying data structures, and combines their el-
ements into a single collection. We can do this without expanding the definition of
collection ops, but just using the operations that are already present.

37- val union_def =
Define ‘union (c1: (’col1,’a)collection) (c2: (’col2,’a)collection) =

<| this := fold c2.ops.insert c2.this c1 : ’a ’col2;
ops := c2.ops |>‘;

Definition has been stored under "union_def"
> val union_def =

|- !(c1 :(’col1 :ty => ty, ’a) collection)
(c2 :(’col2 :ty => ty, ’a) collection).
union c1 c2 =
<|this := fold (c2.ops [:’a:]).insert c2.this c1; ops := c2.ops|>

: thm

- type_of ‘‘union‘‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c>>
> val it =

‘‘:(’a :ty => ty, ’b) collection ->
(’c :ty => ty, ’b) collection -> (’c, ’b) collection‘‘

: hol_type
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So the use of universal types provides the needed type polymorphism, which could
not have been accomplished using simply the traditional higher order logic type system.

Much of the advantage of HOL-Omega comes because of the new universal types. The
free type variables in classic HOL types could be thought of as being implicitly univerally
quantified, as they can be substituted by any other type to form a type instance. But in
HOL-Omega, the ∀ quantification can be found within a type, as in (∀α.α → α) → bool.
This use of the ∀ in the left hand side of a function type (→) is key to much of the new
functionality of HOL-Omega.

2.1.4 Abstract collections

We have seen how one could create a very nice version of collections, modeled in an
object-oriented way, so that the operations that obtain the size of a collection, fold over
a collection, etc., are invoked the same whether the actual internal data structure is a
list, set, or bag. But what that internal data structure is, is still apparent from the type
of the collection.

38- val ex1 = ‘‘<| this := [2;3;5;7]; ops := list_ops |>‘‘;
> val ex1 = ‘‘<|this := [2; 3; 5; 7]; ops := list_ops|>‘‘ : term
- type_of ex1;
> val it =

‘‘:(list, num) collection‘‘
: hol_type

- val ex2 = ‘‘<| this := {2;3;5;7}; ops := set_ops |>‘‘;
> val ex2 = ‘‘<|this := {2; 3; 5; 7}; ops := set_ops|>‘‘ : term
- type_of ex2;
> val it =

‘‘:(\’b. ’b -> bool, num) collection‘‘
: hol_type

The internal data structure is visible as list in example ex1 and as \’b. ’b -> bool

in example ex2.
That internal data structure can be represented by a HOL-Omega type operator vari-

able, and that is how a general routine could be written to handle arguments built using
any collection structure, as was done above.

But suppose one wanted to completely hide the actual data structure used, abstracting
that information away from the external use of the collection, considering it a detail of
the implementation. This could be very useful in modularizing a proof, where certain
parts of the proof know about the particular implementation data structure, but above a
certain layer that information is hidden, and the rest of the proof cannot know or rely on
that choice, but instead must work the same irrespective of what data structure is used.
This makes it possible, at a later time, to change the implementation data structure to
another structure, perhaps better suited to the task at hand, and to have that change
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not affect any of the proof work done above the layer where that choice was abstracted,
like the edge of a module where internal implementation details cannot leak across
the module boundary. This kind of information hiding is very helpful in creating large
software systems that are still maintainable and modifiable, and the same ideas apply
for large proofs as well.

To accomplish this information hiding, HOL-Omega provides a new variety of type
called an existential type.

39- ‘‘:?’col. (’col, ’a) collection‘‘;
> val it =

‘‘:?’col :ty => ty. (’col, ’a) collection‘‘
: hol_type

- type_vars it;
> val it = [‘‘:’a‘‘] : hol_type list

Existential types are written in the type language, similar to universal types, but using
an existential type operator. In the example above, the existential notation binds the
type variable ’col across the body of the type, (’col,’a)collection, so that the free
type variables of the type contain just the type variable ’a, not ’col.

Terms of existential type are called packages. They can be constructed as a special
form using the pack keyword, as follows.

40- val list_pack = ‘‘pack (:list, <|this := [2;3;2]; ops := list_ops|>)‘‘;
> val list_pack =

‘‘pack (:list,<|this := [2; 3; 2]; ops := list_ops|>)‘‘
: term

- type_of list_pack;
> val it =

‘‘:?’x :ty => ty. (’x, num) collection‘‘
: hol_type

The keyword pack is followed by a pair where the first element is a type, preceeded
by a colon, and the second element is a term. The term, which normally involves the
type mentioned, is packaged up so that the type mentioned is hidden, being replaced
by a type variable, which becomes the bound type variable of the existential type of the
resulting package.

In the case above, the fact that list pack actually contains a list has been removed
from the package’s type, where list has been replaced by the type variable ’x.

There is the possibility of ambiguity in the types when creating such a package. Given
a pair of a type and a term as above, there many be multiple ways that a resulting
existential type may be formed. In such cases, the ambiguity can be resolved by using
a type annotation on the package. For example, in the session below two different
packages are created from exactly the same ingredients, except that one of them has a
type annotation. Note that the resulting packages have different existential types; they
are therefore different packages.
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41- val list_pack2 =
‘‘pack (:list, <| this := [[2];[3;5];[7]]; ops := list_ops |> )‘‘;

> val list_pack2 =
‘‘pack (:list,<|this := [[2]; [3; 5]; [7]]; ops := list_ops|>)‘‘
: term

- type_of list_pack2;
> val it =

‘‘:?’x :ty => ty. (’x, num ’x) collection‘‘
: hol_type

- val list_pack3 =
‘‘pack (:list, <| this := [[2];[3;5];[7]]; ops := list_ops |> )

: ?’x. (’x,num list) collection‘‘;
> val list_pack3 =

‘‘pack (:list,<|this := [[2]; [3; 5]; [7]]; ops := list_ops|>)‘‘
: term

- type_of list_pack3;
> val it =

‘‘:?’x :ty => ty. (’x, num list) collection‘‘
: hol_type

We can construct packages of any kind of collection, and if the collections contain
elements of the same type, then the packages themselves have the same type.

42- val set_pack =
‘‘pack (:\’a.’a set, <| this := {2;3;2}; ops := set_ops |> )‘‘;

> val set_pack =
‘‘pack (:\’a. ’a -> bool,<|this := {2; 3; 2}; ops := set_ops|>)‘‘
: term

- type_of set_pack;
> val it =

‘‘:?’x :ty => ty. (’x, num) collection‘‘
: hol_type

- val bag_pack =
‘‘pack (:\’a.’a bag, <| this := {|2;3;2|}; ops := bag_ops |> )‘‘;

> val bag_pack =
‘‘pack (:\’a. ’a -> num,<|this := {|2; 3; 2|}; ops := bag_ops|>)‘‘
: term

- type_of bag_pack;
> val it =

‘‘:?’x :ty => ty. (’x, num) collection‘‘
: hol_type

Since all these packages have the same type, it is easy to write routines to take them
as arguments. The new feature needed is an extension of the let ... in form to
deconstruct a package into a pair of a type variable and a term, where the type variable
represents the actual type that was hidden, and where the term represents the body of
the package, but where the hidden type is again represented by the type variable.
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43- val lengthp_def =
Define ‘lengthp (p: ?’col. (’col,’a)collection) =

let (:’col, c) = p in
c.ops.length c.this ‘;

Definition has been stored under "lengthp_def"
> val lengthp_def =

|- !p. lengthp p = (let (:’col :ty => ty,c) = p in c.ops.length c.this)
: thm

In the let form above, the package p (of type ?’col.(’col,’a)collection) is un-
packed into the pair of the type variable ’col and the term variable c, where c has
the type (’col,’a)collection. The scopes of both ’col and c include the body of the
let...in form. But the scope of ’col also includes the term variable c, so that the ’col

that appears in the type of c, (’col,’a)collection, is that ’col that was just bound.
Both ’col and c have no meaning outside the let, so in particular it is meaningless to
have the body of the let return a value of a type involving ’col. Such an escape of
’col from its scope is prevented by the strong typing of the HOL-Omega logic.

Suppose we try to violate this rule, by defining an operation that returns the internal
data structure of a collection. Such a definition produces the following error message:

44- val this_def =
Define ‘this (p: ?’col. (’col,’a)collection) =

let (:’col, c) = p in
c.this ‘;

Exception raised at Preterm.typecheck:
roughly on line 85, characters 14-19:

Type inference failure: unable to infer a type for the application of

(UNPACK :(!(’x :ty => ty). (’x, ’a) collection -> ’a (’col :ty => ty))
-> (?(’x :ty => ty). (’x, ’a) collection) -> ’a ’col)

roughly on line 84, characters 16-29

to

\:’col :ty => ty. (\(c :(’col, ’a) collection). c.this)

roughly on line 85, characters 14-19

which has type

:!’col :ty => ty. (’col, ’a) collection -> ’a ’col

unification failure message: unify failed

! Uncaught exception:
! HOL_ERR
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But as long as we don’t violate the rules, we are fine, and can define operations to
return packages newly constructed out of parts of other packages. Here is an example of
an operation that takes a package as an argument, inserts an element, and then returns
the result as a new package.

45- val insertp_def =
Define ‘insertp (e:’a) (p: ?’col. (’col,’a)collection) =

let (:’col, c) = p in
pack (:’col,

<| this := c.ops.insert e c.this : ’a ’col;
ops := c.ops |>) ‘;

Definition has been stored under "insertp_def"
> val insertp_def =

|- !e p.
insertp e p =
(let (:’col :ty => ty,c) = p
in
pack
(:’col :ty => ty,
<|this := c.ops.insert e c.this; ops := c.ops|>))

: thm

We can define operations to do folds and maps on collections using the operators fold
and map defined before, but where the new operations now work on packages, where
the data structure is hidden internally.

46- val foldp_def =
Define ‘foldp (f:’a -> ’b -> ’b) (e:’b) (p: ?’col. (’col,’a)collection) =

let (:’col, c) = p in
fold f e c ‘;

Definition has been stored under "foldp_def"
> val foldp_def =

|- !f e p. foldp f e p = (let (:’col :ty => ty,c) = p in fold f e c)
: thm

- val mapp_def =
Define ‘mapp (f:’a -> ’b) (p: ?’col. (’col,’a)collection) =

let (:’col, c) = p in
pack (:’col, map f c) ‘;

Definition has been stored under "mapp_def"
> val mapp_def =

|- !f p.
mapp f p =
(let (:’col :ty => ty,c) = p in pack (:’col :ty => ty,map f c))

: thm

In fact, we can actually build a single operation that takes any two collection pacakges
and combines their elements, even if they happen to have different underlying data
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structures, like lists and bags. The result here is calculated to have the same underlying
data structure as the second argument.

47- val unionp_def =
Define ‘unionp (p1: ?’col. (’col,’a)collection)

(p2: ?’col. (’col,’a)collection) =
let (:’col1, c1) = p1 in
let (:’col2, c2) = p2 in

pack (:’col2, union c1 c2) ‘;
Definition has been stored under "unionp_def"
> val unionp_def =

|- !p1 p2.
unionp p1 p2 =
(let (:’col1 :ty => ty,c1) = p1 in
let (:’col2 :ty => ty,c2) = p2
in
pack (:’col2 :ty => ty,union c1 c2))

: thm

Using packages in this way makes it easier to modularize a large proof, by provid-
ing a way to hide the information about which particular types are being used at a
lower level in the overall proof. This information hiding has major advantages for proof
maintenance and modification over time.
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Epilogue

This small sample of the use of the HOL-Omega theorem prover is only intended to give
a taste of what kinds of things are possible. A more complete tutorial is expected to be
released soon. When it is, there will be an announcement on the hol-info mailing list,
hol-info@lists.sourceforge.net.

In addition to the examples covered in this text, the full tutorial contains a more
complete description of the elements of the HOL-Omega logic, and provides a variety of
instructive worked examples. The code for these examples is currently present in the
./examples/HolOmega/ directory. There the following examples (among others) are to
be found:

functorScript.sml This example shows how a simple version of category theory can
be nicely realized as a shallow embedding within the new logic. Both functors
and natural transformations are defined, and examples of each are demonstrated.
This is similar to a development for HOL2P originally written by Norbert Völker.

aopScript.sml Building on the functor theory above, this shows several examples
taken from The Algebra of Programming, by Richard Bird and Oege de Moor. These
include homomorphisms, initial algebras, catamorphisms, and the banana split
theorem. This development was originally written by Norbert Völker for HOL2P.

monadScript.sml Also building on the functor theory above, this defines the concept
of a monad in three different ways, and proves the three are equivalent. Multiple
examples of monads are presented, and also how one can convert a monad from
one of the styles of definition to another style.

type specScript.sml This file contains examples of creating new types using the new
definitial principle for type specification which has been added to the HOL-Omega
theorem prover. In particular, this is used to create a new type by specifying it as
the initial algebra of a signature. The example used is taken from a 1993 paper by
Tom Melham, “The HOL Logic Extended with Quantification over Type Variables.”

packageScript.sml This example shows more completely how packages and existen-
tial types may be created and used to hide the information about data types. Many
of the examples are taken from and related to chapter 24 of the book ”Types and
Programmng Languages” by Benjamin C. Pierce, MIT Press, 2002.

33
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interim This directory contains an extensive, worked example of a generalized version
of category theory, created by Jeremy Dawson of the Australian National Uni-
versity. This generalizes the notions of functor and natural transformation from
those in functorScript.sml, to allow for a much richer realization of category
theory. For example, multiple categories, each with their own composition and
identity operations, may have functors defined between them. The development
of category theory is continued through the definition of adjoints, and introduces
an innovative extension of monads. This example extensively exercises the kind
structure of HOL-Omega, to manage the types relating different categories and the
operations among them.

Some of these examples will be described at length in the upcoming Tutorial. Until
then, the reader is encouraged to try out these examples on their own.


