
[For HOL-Omega Kananaskis-8] February 9, 2013

The HOL-Omega System
TUTORIAL

Preface

This volume contains a tutorial on the HOL-Omega system. It is one of four documents
making up the documentation for HOL-Omega:

(i) LOGIC: a formal description of the higher order logic implemented by the HOL-
Omega system.

(ii) TUTORIAL: a tutorial introduction to HOL-Omega, with case studies.

(iii) DESCRIPTION: a detailed user’s guide for the HOL-Omega system;

(iv) REFERENCE: the reference manual for HOL-Omega.

These four documents will be referred to by the short names (in small slanted capitals)
given above.

This document, TUTORIAL, is intended to be the first item read by new users of HOL-
Omega. It provides a self-study introduction to the structure and use of the system. The
tutorial is intended to give a ‘hands-on’ feel for the way HOL-Omega is used, but it does
not systematically explain all the underlying principles (DESCRIPTION and LOGIC explain
these). After working through TUTORIAL the reader should be capable of using HOL-
Omega for simple tasks, and should also be in a position to consult the other documents.

Getting started

Experienced HOL users who are eager to get started with HOL-Omega will want to read
chapters 1, 4, 5, and 10 through 12. Others who are not familiar with HOL should read
chapters 1 through 5 and then select chapters with examples that match their interests.
Chapter 1 explains how to get and install HOL-Omega. Once this is done, the potential
HOL-Omega user should become familiar with the following subjects:

1. The programming meta-language ML, and how to interact with it.

2. The formal logic supported by the HOL-Omega system and its manipulation via ML.

3. Forward proof and derived rules of inference.

4. Goal directed proof, tactics, and tacticals.

3

4 Preface

Chapters 2 and 3 introduce these topics. Then the new, additional concepts and features
of the HOL-Omega logic (higher order logic extended with System F, kinds, and ranks)
are first casually demonstrated, as an appetizer, and then discussed in more detail, in
chapters 4 and 5. After this, a series of examples are presented using the HOL-Omega
system. Chapters 6 through 9 use only the classical higher order logic subset of HOL-
Omega, and are the same as for the existing HOL theorem prover. The new, extended
features of HOL-Omega are demonstrated in examples in chapters 10 through 12.

Chapter 6 develops an extended example — Euclid’s proof of the infinitude of primes—
to illustrate how HOL-Omega is used to prove theorems.

Chapter 7 features another worked example: the specification and verification of a
simple sequential parity checker. The intention is to accomplish two things: (i) to
present another complete piece of work with HOL-Omega; and (ii) to give an idea of
what it is like to use the HOL-Omega system for a tricky proof. Chapter 8 is a more
extensive example: the proof of confluence for combinatory logic. Again, the aim is to
present a complete piece of non-trivial work.

Chapter 9 gives an example of implementing a proof tool of one’s own. This demon-
strates the programmability of HOL-Omega: the way in which technology for solving spe-
cific problems can be implemented on top of the underlying kernel. With high-powered
tools to draw on, it is possible to write prototypes very quickly.

Chapter 10 shows how one can construct an abstract data type in the HOL-Omega
logic, where a new type representing an abstract algebra can be created where the only
thing known about it is its defining property. This property might not completely specify
its behavior in all circumstances, which allows for under-specification of the new type.
This is a means for information hiding and proper modularization of large proofs.

Chapter 11 exercises the kind system of the new logic, exploiting the ability to have
type variables which represent type operators, as well as the ability to quantify type
variables over expressions, to explore some of the concepts of category theory, defining
functors and natural transformations as a shallow embedding in the HOL-Omega logic,
and showing how they may be combined in a fluid way.

Chapter 12 gives a thorough discussion and exercise of existential types and packages.
It shows how these can be used to support in a practical and principled way good
software engineering practices such as modularity and information hiding.

Chapter 13 briefly discusses some of the examples distributed with HOL-Omega in the
examples directory.

TUTORIAL has been kept short so that new users of HOL-Omega can get going as fast as
possible. Sometimes details have been simplified. It is recommended that as soon as a
topic in TUTORIAL has been digested, the relevant parts of DESCRIPTION and REFERENCE

be studied.

Acknowledgements

The bulk of HOL-Omega is based on code written by—in alphabetical order—Hasan
Amjad, Richard Boulton, Anthony Fox, Mike Gordon, Elsa Gunter, John Harrison, Pe-
ter Homeier, Gérard Huet (and others at INRIA), Joe Hurd, Ramana Kumar, Ken Friis
Larsen, Tom Melham, Robin Milner, Lockwood Morris, Magnus Myreen, Malcolm Newey,
Michael Norrish, Larry Paulson, Konrad Slind, Don Syme, Thomas Türk, Chris Wadsworth,
and Tjark Weber. Many others have supplied parts of the system, bug fixes, etc.

Current edition

The current edition of all four volumes (LOGIC, TUTORIAL, DESCRIPTION and REFERENCE)
has been prepared by Michael Norrish and Konrad Slind, where the current edition of
TUTORIAL has been extended for HOL-Omega by Peter Homeier. Further contributions
to these volumes came from: Hasan Amjad, who developed a model checking library
and wrote sections describing its use; Jens Brandt, who developed and documented a
library for the rational numbers; Anthony Fox, who formalized and documented new
word theories and the associated libraries; Mike Gordon, who documented the libraries
for BDDs and SAT; Peter Homeier, who implemented and documented the quotient
library; Joe Hurd, who added material on first order proof search; and Tjark Weber,
who wrote libraries for Satisfiability Modulo Theories (SMT) and Quantified Boolean
Formulae (QBF).

The material in the third edition constitutes a thorough re-working and extension
of previous editions. The semantics by Andy Pitts (in LOGIC) had remained essentially
unaltered until HOL-Omega, reflecting the fact that, although the HOL system has un-
dergone continual development and improvement, the HOL logic had been unchanged
since the first edition (1988) until the introduction of HOL-Omega in 2009.

Finally (Peter Homeier writing), I would like to give thanks to the Lord God Almighty
for His inspiration, wisdom, and revelations. HOL-Omega is a gift from His hand.

Soli Deo Gloria.

5

6 Acknowledgements

Second edition

The second edition of REFERENCE was a joint effort by the Cambridge HOL group.

First edition

The three volumes TUTORIAL, DESCRIPTION and REFERENCE were produced at the Cam-
bridge Research Center of SRI International with the support of DSTO Australia.

The HOL documentation project was managed by Mike Gordon, who also wrote parts
of DESCRIPTION and TUTORIAL using material based on an early paper describing the
HOL system1 and The ML Handbook 2. Other contributers to DESCRIPTION incude Avra
Cohn, who contributed material on theorems, rules, conversions and tactics, and also
composed the index (which was typeset by Juanito Camilleri); Tom Melham, who wrote
the sections describing type definitions, the concrete type package and the ‘resolution’
tactics; and Andy Pitts, who devised the set-theoretic semantics of the HOL logic and
wrote the material describing it.

The original document design used LATEX macros supplied by Elsa Gunter, Tom Melham
and Larry Paulson. The typesetting of all three volumes was managed by Tom Melham.
The cover design is by Arnold Smith, who used a photograph of a ‘snow watching
lantern’ taken by Avra Cohn (in whose garden the original object resides). John Van
Tassel composed the LATEX picture of the lantern.

Many people other than those listed above have contributed to the HOL-Omega doc-
umentation effort, either by providing material, or by sending lists of errors in the first
edition. Thanks to everyone who helped, and thanks to DSTO and SRI for their gener-
ous support.

1M.J.C. Gordon, ‘HOL: a Proof Generating System for Higher Order Logic’, in: VLSI Specification,
Verification and Synthesis, edited by G. Birtwistle and P.A. Subrahmanyam, (Kluwer Academic Publishers,
1988), pp. 73–128.

2The ML Handbook, unpublished report from Inria by Guy Cousineau, Mike Gordon, Gérard Huet,
Robin Milner, Larry Paulson and Chris Wadsworth.

Contents

1 Getting and Installing HOL-Omega 11
1.1 Getting HOL-Omega . 11
1.2 The hol-info mailing list . 11
1.3 Installing HOL-Omega . 12

1.3.1 Overriding smart-configure . 14

2 Introduction to ML 17
2.1 How to interact with ML . 17

3 The HOL Logic 21
3.1 Proof in HOL . 27
3.2 Forward proof . 29

3.2.1 Derived rules . 31
3.3 Goal Oriented Proof: Tactics and Tacticals 34

3.3.1 Using tactics to prove theorems 38
3.3.2 Tacticals . 39
3.3.3 Some tactics built into HOL . 42

4 HOL-Omega Appetizers 47
4.1 Collections . 47

4.1.1 Object-oriented collections . 49
4.1.2 Fold operation . 50
4.1.3 Map operation . 55
4.1.4 Abstract collections . 59

5 The HOL-Omega Logic 65
5.1 New notation . 65
5.2 Proof in HOL-Omega . 92

5.2.1 Primitive rules of inference . 92
5.2.2 New axioms . 95
5.2.3 Basic derived rules of inference 97

5.3 Backwards Proof . 102
5.3.1 New Basic Tactics . 103

7

8 Contents

5.3.2 Extended Tactics . 105
5.3.3 Other Rules, Tactics, and Automation 106

5.4 Backwards Compatibility . 106

6 Example: Euclid’s Theorem 109
6.1 Divisibility . 111

6.1.1 Divisibility and factorial . 118
6.1.2 Divisibility and factorial (again!) 124

6.2 Primality . 129
6.3 Existence of prime factors . 129
6.4 Euclid’s theorem . 133
6.5 Turning the script into a theory . 136
6.6 Summary . 138

7 Example: a Simple Parity Checker 141
7.1 Introduction . 141
7.2 Specification . 142
7.3 Implementation . 145
7.4 Verification . 148
7.5 Exercises . 152

7.5.1 Exercise 1 . 152
7.5.2 Exercise 2 . 153

8 Example: Combinatory Logic 155
8.1 Introduction . 155
8.2 The type of combinators . 155
8.3 Combinator reductions . 155
8.4 Transitive closure and confluence . 157
8.5 Back to combinators . 168

8.5.1 Parallel reduction . 168
8.5.2 Using RTC . 169
8.5.3 Proving the RTCs are the same 170
8.5.4 Proving a diamond property for parallel reduction 175

8.6 Exercises . 182

9 Proof Tools: Propositional Logic 185
9.1 Method 1: Truth Tables . 185
9.2 Method 2: the DPLL Algorithm . 186

9.2.1 Conversion to Conjunctive Normal Form 189
9.2.2 The Core DPLL Procedure . 191
9.2.3 Performance . 196

Contents 9

9.3 Extending our Procedure’s Applicability 196

10 Example: Abstract Data Types 199
10.1 New term and type constants . 201

10.1.1 New term constant definition . 201
10.1.2 New term constant specification 202
10.1.3 New type constant definition . 203
10.1.4 New type constant specification 204

10.2 Bit Vectors . 205
10.2.1 Defining a new type . 207
10.2.2 Abstraction and representation bijections 208
10.2.3 Defining new term constants of the new type 210
10.2.4 Induction on the new type . 210
10.2.5 Combinator for recursive functions 212
10.2.6 Proof of initiality . 215
10.2.7 Existence and creation of bit vector type 222
10.2.8 Creation of bit vector constants 224
10.2.9 Bit vectors as an abstract data type 225

11 Example: The Category of Types 227
11.1 Categories . 227
11.2 Functors . 228

11.2.1 Examples of functors . 231
11.2.2 Composition of functors . 235

11.3 Natural Transformations . 238
11.3.1 Examples of Natural Transformations 239
11.3.2 Vertical composition of natural transformations 242
11.3.3 Horizontal composition of natural transformations 243
11.3.4 Composition of natural transformations with functors 245

11.4 Algebras and Initial Algebras . 247
11.5 Catamorphisms . 252

12 Example: Packages 257
12.1 Existential Types . 258
12.2 Packages . 260
12.3 Underlying Implementation of Packages 264

12.3.1 Package Axioms . 264
12.4 Example: Counters . 265
12.5 Example: Scheduling Queues . 267

13 More Examples 291

10 Contents

Chapter 1

Getting and Installing HOL-Omega

This chapter describes how to get the HOL-Omega system and how to install it. It is
generally assumed that some sort of Unix system is being used, but the instructions that
follow should apply mutatis mutandis to other platforms. Unix is not a pre-requisite for
using the system. HOL-Omega may be run on PCs running Windows operating systems
from Windows NT onwards (i.e., Windows 2000, XP and Vista are also supported), as
well as Macintoshes running Mac OS X.

1.1 Getting HOL-Omega

HOL-Omega is part of the HOL system. The HOL system has several branches; branch
HOL-Omega contains the source of the HOL-Omega theorem prover. The naming scheme
for HOL-Omega releases is 〈name〉-〈number〉; the release described here is Kananaskis-8.

HOL development uses the Git version control system. Git is freely available from
http://git-scm.com/, and is well described in the book ProGit by Scott Chacon.

A fresh copy of the current developer version of HOL-Omega may be checked out into
a fresh subdirectory called hol-omega by the following Git command:

git clone -b HOL-Omega git://github.com/mn200/HOL.git hol-omega

As a developer, to check out a fresh copy of HOL-Omega that one could edit and write
back to the github repository, one would set up a SSH key with github and then do

git clone -b HOL-Omega git@github.com:mn200/HOL.git hol-omega

To set up a SSH key, see https://help.github.com/articles/generating-ssh-keys.
To become an HOL developer and have write access to the github repository, please

contact one of the administrators listed at http://sourceforge.net/projects/hol/.

1.2 The hol-info mailing list

The hol-info mailing list serves as a forum for discussing HOL-Omega and disseminating
news about it. If you wish to be on this list (which is recommended for all users of
HOL-Omega), visit http://lists.sourceforge.net/lists/listinfo/hol-info. This
web-page can also be used to unsubscribe from the mailing list.

11

12 CHAPTER 1. GETTING AND INSTALLING HOL-OMEGA

1.3 Installing HOL-Omega

It is assumed that the HOL-Omega sources have been obtained and the tar file unpacked
into a directory hol-omega.1 The contents of this directory are likely to change over
time, but it should contain the following:

Principal Files on the HOL-Omega Distribution Directory

File name Description File type
README Description of directory hol-omega Text
COPYRIGHT A copyright notice Text
INSTALL Installation instructions Text
tools Source code for building the system Directory
bin Directory for HOL-Omega executables Directory
sigobj Directory for ML object files Directory
src ML sources of HOL-Omega Directory
help Help files for HOL-Omega system Directory
examples Example source files Directory

The session in the box below shows a typical distribution directory. The HOL-Omega
distribution has been placed in the directory /Users/palantir/hol-omega/ on a Macin-
tosh running OS X for a user palantir.

All sessions in this documentation will be displayed in boxes with a number in the
top right hand corner. This number indicates whether the session is a new one (when
the number will be 1) or the continuation of a session started in an earlier box. Con-
secutively numbered boxes are assumed to be part of a single continuous session. The
Unix prompt for the sessions is $, so lines beginning with this prompt were typed by the
user. After entering the HOL-Omega system (see below), the user is prompted with - for
an expression or command of the HOL-Omega meta-language ML; lines beginning with
this are thus ML expressions or declarations. Lines not beginning with $ or - are system
output. Occasionally, system output will be replaced with a line containing ... when it
is of minimal interest. The meta-language ML is introduced in Chapter 2.

1$ pwd
/Users/palantir/hol-omega
$ ls -F
COPYRIGHT bin/ examples/ sigobj/ tools-poly/
INSTALL cleanall* help/ src/
Manual/ developers/ icon.gif* std.prelude
README doc/ merging tools/

1You may choose another name if you want; it is not important.

1.3. INSTALLING HOL-OMEGA 13

Now you will need to rebuild HOL-Omega from the sources.2 Detailed installation
instructions may be found at http://hol.sourceforge.net/InstallKananaskis.html.

Before beginning you must have a current version of Moscow ML or Poly/ML3. In
the case of Moscow ML, you must have version 2.01. Moscow ML is available on the
web from http://www.dina.kvl.dk/∼sestoft/mosml.html. Poly/ML is available from
http://polyml.org. When you have your ML system installed, and are in the root
directory of the distribution, the next step is to run smart-configure. With Moscow ML,
this looks like:

2$ mosml < tools/smart-configure.sml
Moscow ML version 2.01 (January 2004)
Enter ‘quit();’ to quit.
- [opening file "tools/smart-configure-mosml.sml"]

HOL-Omega smart configuration.

Determining configuration parameters: OS mosmldir holdir
OS: macosx
mosmldir: /Users/palantir/mosml/bin
holdir: /Users/palantir/hol-omega
dynlib_available: true

Configuration will begin with above values. If they are wrong
press Control-C.

If you are using Poly/ML, then write

poly < tools/smart-configure.sml

instead.
Assuming you don’t interrupt the configuration process, this will build the Holmake

and build programs, and move them into the hol-omega/bin directory. If something
goes wrong at this stage, consult Section 1.3.1 below.

The next step is to run the build program. This should result in a great deal of output
as all of the system code is compiled and the theories built. Eventually, a HOL-Omega
system4 is produced in the bin/ directory.

3$ bin/build
...
...

Uploading files to /Users/palantir/hol-omega/sigobj

Hol built successfully.
$

2It is possible that pre-built systems may soon be available from the web-page mentioned above.
3Poly/ML cannot be used with HOL-Omega on Windows.
4Four HOL-Omega executables are produced: hol, hol.noquote, hol.bare and hol.bare.noquote. The

first of these will be used for most examples in the TUTORIAL.

14 CHAPTER 1. GETTING AND INSTALLING HOL-OMEGA

1.3.1 Overriding smart-configure

If smart-configure is unable to guess correct values for the various parameters (holdir,
OS etc.) then you can create a file called to provide correct values. With Moscow ML,
this should be config-override in the root directory of the HOL-Omega distribution.
With Poly/ML, this should be poly-includes.ML in the tools-poly directory. In this
file, specify the correct value for the appropriate parameter by providing an ML binding
for it. All variables except dynlib available must be given a string as a possible value,
while dynlib available must be either true or false. So, one might write

4val OS = "unix";
val holdir = "/local/scratch/myholdir";
val dynlib_available = false;

The config-override file need only provide values for those variables that need over-
riding.

With this file in place, the smart-configure program will use the values specified
there rather than those it attempts to calculate itself. The value given for the OS variable
must be one of "unix", "linux", "solaris", "macosx" or "winNT".5

In extreme circumstances it is possible to edit the file tools/configure.sml your-
self to set configuration variables directly. (If you are using Poly/ML, you must edit
tools-poly/configure.sml instead.) At the top of this file various incomplete SML
declarations are present, but commented out. You will need to uncomment this sec-
tion (remove the (* and *) markers), and provide sensible values. All strings must be
enclosed in double quotes.

The holdir value must be the name of the top-level directory listed in the first ses-
sion above. The OS value should be one of the strings specified in the accompanying
comment.

When working with Moscow ML, the mosmldir value must be the name of the direc-
tory containing the Moscow ML binaries (mosmlc, mosml, mosmllex etc). When working
with Poly/ML, the poly string must be the path to the poly executable that begins an
interactive ML session. The polymllibdir must be a path to a directory that contains
the file libpolymain.a.

Subsequent values (CC and GNUMAKE) are needed for “optional” components of the
system. The first gives a string suitable for invoking the system’s C compiler, and the
second specifies a make program.

After editing, tools/configure.sml the lines above will look something like:

5The string "winNT" is used for Microsoft Windows operating systems that are at least as recent as
Windows NT. This includes Windows 2000, XP and Vista.

1.3. INSTALLING HOL-OMEGA 15

5$ more configure.sml
...

val mosmldir:string = "/home/palantir/mosml";
val holdir :string = "/home/palantir/hol-omega";
val OS :string = "linux";

(* Operating system; choices are:
"linux", "solaris", "unix", "macosx",
"winNT" *)

val CC:string = "gcc"; (* C compiler *)
val GNUMAKE:string = "make"; (* for bdd library and SMV *)
val DEPDIR:string = ".HOLMK"; (* where Holmake dependencies kept *)
...

$

Now, at either this level (in the tools or tools-poly directory) or at the level above,
the script configure.sml must be piped into the ML interpreter (i.e., mosml or poly).
For example,

6$ mosml < tools/configure.sml
Moscow ML version 2.01 (January 2004)
Enter ‘quit();’ to quit.
- > val mosmldir = "/home/palantir/mosml" : string
val holdir = "/home/palantir/hol-omega" : string
val OS = "linux" : string

- > val CC = "gcc" : string
...

Beginning configuration.
Removing old quotation filter from bin/
Making tools/mllex/mllex.exe
Making bin/Holmake.
...

Making bin/build.
Making hol-mode.el (for Emacs/XEmacs)
Generating bin/hol.
Generating bin/hol.noquote.
...

Number of states = 170
Number of distinct rows = 90
Approx. memory size of trans. table = 23040 bytes
Analysing filter.sml
Compiling filter.sml
Compiling quote-filter.sml
...

Analysing selftest.sml
Quote-filter built
Setting up the muddy library Makefile.

Finished configuration!
$

16 CHAPTER 1. GETTING AND INSTALLING HOL-OMEGA

Chapter 2

Introduction to ML

This chapter is a brief introduction to the meta-language ML. The aim is just to give a
feel for what it is like to interact with the language. A more detailed introduction can
be found in numerous textbooks and web-pages; see for example the list of resources
on the MoscowML home-page1, or the comp.lang.ml FAQ2.

2.1 How to interact with ML

ML is an interactive programming language like Lisp. At top level one can evaluate
expressions and perform declarations. The former results in the expression’s value and
type being printed, the latter in a value being bound to a name.

A standard way to interact with ML is to configure the workstation screen so that
there are two windows:

(i) An editor window into which ML commands are initially typed and recorded.

(ii) A shell window (or non-Unix equivalent) which is used to evaluate the com-
mands.

A common way to achieve this is to work inside Emacs with a text window and a shell
window.

After typing a command into the edit (text) window it can be transferred to the shell
and evaluated in HOL by ‘cut-and-paste’. In Emacs this is done by copying the text into
a buffer and then ‘yanking’ it into the shell. The advantage of working via an editor is
that if the command has an error, then the text can simply be edited and used again;
it also records the commands in a file which can then be used again (via a batch load)
later. In Emacs, the shell window also records the session, including both input from the
user and the system’s response. The sessions in this tutorial were produced this way.
These sessions are split into segments displayed in boxes with a number in their top
right hand corner (to indicate their position in the complete session).

The interactions in these boxes should be understood as occurring in sequence. For
example, variable bindings made in earlier boxes are assumed to persist to later ones.

1http://www.dina.kvl.dk/∼sestoft/mosml.html
2http://www.faqs.org/faqs/meta-lang-faq/

17

18 CHAPTER 2. INTRODUCTION TO ML

To enter the HOL system one types hol or hol.noquote to Unix, possibly preceded by path
information if the HOL system’s bin directory is not in one’s path. The HOL system then
prints a sign-on message and puts one into ML. The ML prompt is -, so lines beginning
with - are typed by the user and other lines are the system’s responses.

Here, as elsewhere in the TUTORIAL, we will be assuming use of hol.

1$ bin/hol

HOL-4 [Kananaskis 8 (built Fri Apr 12 15:34:35 2002)]

For introductory HOL help, type: help "hol";

[loading theories and proof tools *************]
[closing file "/local/scratch/mn200/Work/hol98/tools/end-init-boss.sml"]
- 1 :: [2,3,4,5];
> val it = [1, 2, 3, 4, 5] : int list

The ML expression 1 :: [2,3,4,5] has the form e1 op e2 where e1 is the expression 1

(whose value is the integer 1), e2 is the expression [2,3,4,5] (whose value is a list of
four integers) and op is the infixed operator ‘::’ which is like Lisp’s cons function. Other
list processing functions include hd (car in Lisp), tl (cdr in Lisp) and null (null in Lisp).
The semicolon ‘;’ terminates a top-level phrase. The system’s response is shown on the
line starting with the > prompt. It consists of the value of the expression followed, after
a colon, by its type. The ML type checker infers the type of expressions using methods
invented by Robin Milner [8]. The type int list is the type of ‘lists of integers’; list is
a unary type operator. The type system of ML is very similar to the type system of the
HOL logic which is explained in Chapter 3.

The value of the last expression evaluated at top-level in ML is always remembered in
a variable called it.

2- val l = it;
> val l = [1, 2, 3, 4, 5] : int list

- tl l;
> val it = [2, 3, 4, 5] : int list

- hd it;
> val it = 2 : int

- tl(tl(tl(tl(tl l))));
> val it = [] : int list

Following standard λ-calculus usage, the application of a function f to an argument
x can be written without brackets as f x (although the more conventional f(x) is also

2.1. HOW TO INTERACT WITH ML 19

allowed). The expression f x1 x2 · · · xn abbreviates the less intelligible expression
(· · ·((f x1)x2)· · ·)xn (function application is left associative).

Declarations have the form val x1=e1 and · · · and xn=en and result in the value of
each expression ei being bound to the name xi.

3- val l1 = [1,2,3] and l2 = ["a","b","c"];
> val l1 = [1, 2, 3] : int list
val l2 = ["a", "b", "c"] : string list

ML expressions like "a", "b", "foo" etc. are strings and have type string. Any sequence
of ASCII characters can be written between the quotes.3 The function explode splits a
string into a list of single characters, which are written like single character strings, with
a # character prepended.

4- explode "a b c";
> val it = [#"a", #" ", #"b", #" ", #"c"] : char list

An expression of the form (e1,e2) evaluates to a pair of the values of e1 and e2. If
e1 has type σ1 and e2 has type σ2 then (e1,e2) has type σ1*σ2. The first and second
components of a pair can be extracted with the ML functions #1 and #2 respectively.
If a tuple has more than two components, its n-th component can be extracted with a
function #n.

The values (1,2,3), (1,(2,3)) and ((1,2), 3) are all distinct and have types
int * int * int, int * (int * int) and (int * int) * int respectively.

5- val triple1 = (1,true,"abc");
> val triple1 = (1, true, "abc") : int * bool * string
- #2 triple1;
> val it = true : bool

- val triple2 = (1, (true, "abc"));
> val triple2 = (1, (true, "abc")) : int * (bool * string)
- #2 triple2;;
> val it = (true, "abc") : bool * string

The ML expressions true and false denote the two truth values of type bool.
ML types can contain the type variables ’a, ’b, ’c, etc. Such types are called polymor-

phic. A function with a polymorphic type should be thought of as possessing all the
types obtainable by replacing type variables by types. This is illustrated below with the
function zip.

Functions are defined with declarations of the form fun f v1 . . . vn = e where each vi

is either a variable or a pattern built out of variables.
The function zip, below, converts a pair of lists ([x1,. . .,xn], [y1,. . .,yn]) to a list of

pairs [(x1,y1),. . .,(xn,yn)].

3Newlines must be written as \n, and quotes as \".

20 CHAPTER 2. INTRODUCTION TO ML

6- fun zip(l1,l2) =
if null l1 orelse null l2 then []
else (hd l1,hd l2) :: zip(tl l1,tl l2);

> val zip = fn : ’a list * ’b list -> (’a * ’b) list

- zip([1,2,3],["a","b","c"]);
> val it = [(1, "a"), (2, "b"), (3, "c")] : (int * string) list

Functions may be curried, i.e. take their arguments ‘one at a time’ instead of as a
tuple. This is illustrated with the function curried_zip below:

7- fun curried_zip l1 l2 = zip(l1,l2);
> val curried_zip = fn : ’a list -> ’b list -> (’a * ’b) list

- fun zip_num l2 = curried_zip [0,1,2] l2;
> val zip_num = fn : ’a list -> (int * ’a) list

- zip_num ["a","b","c"];
> val it = [(0, "a"), (1, "b"), (2, "c")] : (int * string) list

The evaluation of an expression either succeeds or fails. In the former case, the eval-
uation returns a value; in the latter case the evaluation is aborted and an exception is
raised. This exception passed to whatever invoked the evaluation. This context can
either propagate the failure (this is the default) or it can trap it. These two possibilities
are illustrated below. An exception trap is an expression of the form e1 handle _ => e2.
An expression of this form is evaluated by first evaluating e1. If the evaluation succeeds
(i.e. doesn’t fail) then the value of the whole expression is the value of e1. If the eval-
uation of e1 raises an exception, then the value of the whole is obtained by evaluating
e2.4

8- 3 div 0;
! Uncaught exception:
! Div

- 3 div 0 handle _ => 0;
> val it = 0 : int

The sessions above are enough to give a feel for ML. In the next chapter, the logic
supported by the HOL system (higher order logic) will be introduced, together with the
tools in ML for manipulating it.

4This description of exception handling is actually a gross simplification of the way exceptions can be
handled in ML; consult a proper text for a better explanation.

Chapter 3

The HOL Logic

The HOL system supports higher order logic. This is a version of predicate calculus with
three main extensions:

• Variables can range over functions and predicates (hence ‘higher order’).

• The logic is typed.

• There is no separate syntactic category of formulae (terms of type bool fulfill that
role).

The HOL-Omega system is an extension of the HOL system. It is backwards compatible,
so that virtually anything that can be done in HOL can also be done in exactly the same
way in HOL-Omega. No logical power is lost. Rather, HOL-Omega goes beyond the logic
of HOL with two conceptual extensions:

• Types can be abstracted by type variables (similar to how terms are abstracted by
term variables in the lambda calculus).

– Type operators are curried, so that they may take one argument at a time.

– Every type has a kind; kinds manage type applications just as types manage
term applications.

– Type variables can represent type operators.

• Terms can be abstracted by type variables (similar to System F).

– The type of such an abstraction is a universal type.

– Such an abstraction may be applied as a function to a type argument.

– Such applications are managed by classifying all types by ranks.

Since HOL-Omega is backwards compatible, it makes sense to learn HOL-Omega in two
stages; first to study just the classical higher order logic of HOL, and then add to that the
extensions provided by HOL-Omega. This chapter will concentrate on the HOL subset,
and the next chapter will discuss the full HOL-Omega logic.

21

22 CHAPTER 3. THE HOL LOGIC

In this chapter, we will give a brief overview of the notation used to write expressions
of the HOL logic in ML, and also discuss standard HOL proof techniques. It is assumed
the reader is familiar with predicate logic. The syntax and semantics of the particular
logical system supported by HOL-Omega is described in detail in DESCRIPTION.

The table below summarizes a useful subset of the notation used in HOL.

Terms of the HOL Logic

Kind of term HOL notation Standard notation Description

Truth T > true
Falsity F ⊥ false
Negation ~t ¬t not t
Disjunction t1\/t2 t1 ∨ t2 t1 or t2
Conjunction t1/\t2 t1 ∧ t2 t1 and t2
Implication t1==>t2 t1 ⇒ t2 t1 implies t2
Equality t1=t2 t1 = t2 t1 equals t2
∀-quantification !x.t ∀x. t for all x : t
∃-quantification ?x.t ∃x. t for some x : t
ε-term @x.t εx. t an x such that: t
Conditional if t then t1 else t2 (t→ t1, t2) if t then t1 else t2

Terms of the HOL logic are represented in ML by an abstract type called term. They
are normally input between double back-quote marks. For example, the expression
‘‘x /\ y ==> z‘‘ evaluates in ML to a term representing x∧y⇒z. Terms can be manip-
ulated by various built-in ML functions. For example, the ML function dest_imp with ML
type term -> term * term splits an implication into a pair of terms consisting of its an-
tecedent and consequent, and the ML function dest_conj of type term -> term * term

splits a conjunction into its two conjuncts. 1

1- ‘‘x /\ y ==> z‘‘;
> val it = ‘‘x /\ y ==> z‘‘ : term

- dest_imp it;
> val it = (‘‘x /\ y‘‘, ‘‘z‘‘) : term * term

- dest_conj(#1 it);
> val it = (‘‘x‘‘, ‘‘y‘‘) : term * term

Terms of the HOL logic are quite similar to ML expressions, and this can at first be
confusing. Indeed, terms of the logic have types similar to those of ML expressions. For

1All of the examples below assume that the user is running hol, the executable for which is in the
bin/ directory.

23

example, ‘‘(1,2)‘‘ is an ML expression with ML type term. The HOL type of this term is
num # num. By contrast, the ML expression (‘‘1‘‘, ‘‘2‘‘) has type term * term.

Syntax of HOL types The types of HOL terms form an ML type called hol_type. Ex-
pressions having the form ‘‘: · · · ‘‘ evaluate to logical types. The built-in function
type_of has ML type term->hol_type and returns the logical type of a term.

2- ‘‘(1,2)‘‘;
> val it = ‘‘(1,2)‘‘ : term

- type_of it;
> val it = ‘‘:num # num‘‘ : hol_type

- (‘‘1‘‘, ‘‘2‘‘);
> val it = (‘‘1‘‘, ‘‘2‘‘) : term * term

- type_of(#1 it);
> val it = ‘‘:num‘‘ : hol_type

To try to minimise confusion between the logical types of HOL terms and the ML types
of ML expressions, the former will be referred to as object language types and the latter
as meta-language types. For example, ‘‘(1,T)‘‘ is an ML expression that has meta-
language type term and evaluates to a term with object language type ‘‘:num#bool‘‘.

3- ‘‘(1,T)‘‘;
> val it = ‘‘(1,T)‘‘ : term

- type_of it;
> val it = ‘‘:num # bool‘‘ : hol_type

Term constructors HOL terms can be input, as above, by using explicit quotation,
or they can be constructed by calling ML constructor functions. The function mk_var

constructs a variable from a string and a type. In the example below, three variables of
type bool are constructed. These are used later.

4- val x = mk_var("x", ‘‘:bool‘‘)
and y = mk_var("y", ‘‘:bool‘‘)
and z = mk_var("z", ‘‘:bool‘‘);

> val x = ‘‘x‘‘ : term
val y = ‘‘y‘‘ : term
val z = ‘‘z‘‘ : term

The constructors mk_conj and mk_imp construct conjunctions and implications respec-
tively. A large collection of term constructors and destructors is available for the core
theories in HOL.

5- val t = mk_imp(mk_conj(x,y),z);
> val t = ‘‘x /\ y ==> z‘‘ : term

24 CHAPTER 3. THE HOL LOGIC

Type checking There are actually only four different kinds of term in HOL: variables,
constants, function applications (‘‘t1 t2‘‘), and lambda abstractions (‘‘\x.t‘‘). More
complex terms, such as those we have already seen above, are just compositions of terms
from this simple set. In order to understand the behaviour of the quotation parser, it
is necessary to understand how the type checker infers types for the four basic term
categories.

Both variables and constants have a name and a type; the difference is that constants
cannot be bound by quantifiers, and their type is fixed when they are declared (see
below). When a quotation is entered into HOL, the type checking algorithm uses the
types of constants to infer the types of variables in the same quotation. For example, in
the following case, the HOL type checker used the known type bool->bool of boolean
negation (~) to deduce that the variable x must have type bool.

6- ‘‘~x‘‘;
val it = ‘‘~x‘‘ : term

In the next two cases, the type of x and y cannot be deduced. (The default ‘scope’
of type information for type checking is a single quotation, so a type in one quotation
cannot affect the type-checking of another. Thus x is not constrained to have the the
type bool in the second quotation.)

7- ‘‘x‘‘;
<<HOL message: inventing new type variable names: ’a.>>
> val it = ‘‘x‘‘ : Term.term

- type_of it;
> val it = ‘‘:’a‘‘ : hol_type

- ‘‘(x,y)‘‘;
<<HOL message: inventing new type variable names: ’a, ’b.>>
> val it = ‘‘(x,y)‘‘ : term

- type_of it;
> val it = ‘‘:’a # ’b‘‘ : hol_type

If there is not enough contextually-determined type information to resolve the types
of all variables in a quotation, then the system will guess different type variables for all
the unconstrained variables.

Type constraints Alternatively, it is possible to explicitly indicate the required types
by using the notation ‘‘term:type‘‘, as illustrated below.

8- ‘‘x:num‘‘;
> val it = ‘‘x‘‘ : term

- type_of it;
> val it = ‘‘:num‘‘ : hol_type

25

Function application types An application (t1 t2) is well-typed if t1 is a function with
type τ1 → τ2 and t2 has type τ1. Contrarily, an application (t1 t2) is badly typed if t1 is
not a function:

9- ‘‘1 2‘‘;

Type inference failure: unable to infer a type for the application of

(1 :num)

to

(2 :num)

unification failure message: unify failed
! Uncaught exception:
! HOL_ERR

or if it is a function, but t2 is not in its domain:

10- ‘‘~1‘‘;

Type inference failure: unable to infer a type for the application of

$~

to

(1 :num)

unification failure message: unify failed
! Uncaught exception:
! HOL_ERR

The dollar symbol in front of ~ indicates that the boolean negation constant has a
special syntactic status (in this case a non-standard precedence). Putting $ in front of
any symbol causes the parser to ignore any special syntactic status (like being an infix)
it might have.

11- ‘‘$==> t1 t2‘‘;
> val it = ‘‘t1 ==> t2‘‘ : term

- ‘‘$/\ t1 t2‘‘;
> val it = ‘‘t1 /\ t2‘‘ : term

26 CHAPTER 3. THE HOL LOGIC

Function types Functions have types of the form σ1->σ2, where σ1 and σ2 are the
types of the domain and range of the function, respectively.

12- type_of ‘‘$==>‘‘;
> val it = ‘‘:bool -> bool -> bool‘‘ : hol_type

- type_of ‘‘$+‘‘;
> val it = ‘‘:num -> num -> num‘‘ : hol_type

Both + and ==> are infixes, so their use in contexts where they are not being used as
such requires their prefixing by the $-sign. This is analogous to the way in which op is
used in ML. The session below illustrates the use of these constants as infixes; it also
illustrates object language versus meta-language types.

13- ‘‘(x + 1, t1 ==> t2)‘‘;
> val it = ‘‘(x + 1,t1 ==> t2)‘‘ : term

- type_of it;
> val it = ‘‘:num # bool‘‘ : hol_type

- (‘‘x=1‘‘, ‘‘t1==>t2‘‘);
> val it = (‘‘x = 1‘‘, ‘‘t1 ==> t2‘‘) : term * term

- (type_of (#1 it), type_of (#2 it));
> val it = (‘‘:bool‘‘, ‘‘:bool‘‘) : hol_type * hol_type

Lambda-terms, or λ-terms, denote functions. The symbol ‘\’ is used as an ASCII ap-
proximation to λ. Thus ‘\x.t’ should be read as ‘λx. t’. For example, ‘‘\x. x+1‘‘ is a
term that denotes the function n 7→ n+1.

14- ‘‘\x. x + 1‘‘;
> val it = ‘‘\x. x + 1‘‘ : term

- type_of it;
> val it = ‘‘:num -> num‘‘ : hol_type

Other binding symbols in the logic are its two most important quantifiers: ! and
?, universal and existential quantifiers. For example, the logical statement that every
number is either even or odd might be phrased as

!n. (n MOD 2 = 1) \/ (n MOD 2 = 0)

while a version of Euclid’s result about the infinitude of primes is:

!n. ?p. prime p /\ p > n

Binding symbols such as these can be used over multiple symbols thus:

3.1. PROOF IN HOL 27

15- ‘‘\x y. (x, y * x)‘‘;
> val it = ‘‘\x y. (x,y * x)‘‘ : term

- type_of it;
> val it = ‘‘:num -> num -> num # num‘‘ : hol_type

- ‘‘!x y. x <= x + y‘‘;
> val it = ‘‘!x y. x <= x + y‘‘ : term

3.1 Proof in HOL

This section discusses the nature of proof in HOL. For a logician, one definition of a
formal proof is that it is a sequence, each of whose elements is either an axiom or
follows from earlier members of the sequence by a rule of inference. A theorem is the
last element of a proof.

Theorems are represented in HOL by values of an abstract type thm. The only way to
create theorems is by generating such a proof. In HOL, following LCF, this consists in
applying ML functions representing rules of inference to axioms or previously generated
theorems. The sequence of such applications directly corresponds to a logician’s proof.

There are five axioms of the HOL logic and eight primitive inference rules. The axioms
are bound to ML names. For example, the Law of Excluded Middle is bound to the ML
name BOOL_CASES_AX:

1- BOOL_CASES_AX;
> val it = |- !t. (t = T) \/ (t = F) : thm

Theorems are printed with a preceding turnstile |- as illustrated above; the symbol
‘!’ is the universal quantifier ‘∀’. Rules of inference are ML functions that return values
of type thm. An example of a rule of inference is specialization (or ∀-elimination). In
standard ‘natural deduction’ notation this is:

Γ ` ∀x. t
Γ ` t[t′/x]

• t[t′/x] denotes the result of substituting t′ for free occurrences of x in t, with the
restriction that no free variables in t′ become bound after substitution.

This rule is represented in ML by a function SPEC,2 which takes as arguments a term
‘‘a‘‘ and a theorem |- !x.t[x] and returns the theorem |- t[a], the result of substitut-
ing a for x in t[x].

2SPEC is not a primitive rule of inference in the HOL logic, but is a derived rule. Derived rules are
described in Section 3.2.

28 CHAPTER 3. THE HOL LOGIC

2- val Th1 = BOOL_CASES_AX;
> val Th1 = |- !t. (t = T) \/ (t = F) : thm

- val Th2 = SPEC ‘‘1 = 2‘‘ Th1;
> val Th2 = |- ((1 = 2) = T) \/ ((1 = 2) = F) : thm

This session consists of a proof of two steps: using an axiom and applying the rule
SPEC; it interactively performs the following proof:

1. ` ∀t. t = > ∨ t = ⊥ [Axiom BOOL_CASES_AX]

2. ` (1=2) = > ∨ (1=2) = ⊥ [Specializing line 1 to ‘1=2’]

If the argument to an ML function representing a rule of inference is of the wrong kind,
or violates a condition of the rule, then the application fails. For example, SPEC t th will
fail if th is not of the form |- !x. · · · or if it is of this form but the type of t is not the
same as the type of x, or if the free variable restriction is not met. When one of the
standard HOL_ERR exceptions is raised, more information about the failure can often be
gained by using the Raise function. 3

3- SPEC ‘‘1=2‘‘ Th2;
! Uncaught exception:
! HOL_ERR

- SPEC ‘‘1 = 2‘‘ Th2 handle e => Raise e;

Exception raised at Thm.SPEC:

! Uncaught exception:
! HOL_ERR

However, as this session illustrates, the failure message does not always indicate the
exact reason for failure. Detailed failure conditions for rules of inference are given in
REFERENCE.

A proof in the HOL system is constructed by repeatedly applying inference rules to
axioms or to previously proved theorems. Since proofs may consist of millions of steps,
it is necessary to provide tools to make proof construction easier for the user. The proof
generating tools in the HOL system are just those of LCF, and are described later.

The general form of a theorem is t1, . . . , tn |- t, where t1, . . . , tn are boolean terms
called the assumptions and t is a boolean term called the conclusion. Such a theorem
asserts that if its assumptions are true then so is its conclusion. Its truth conditions

3The Raise function passes on all of the exceptions it sees; it does not affect the semantics of the
computation at all. However, when passed a HOL_ERR exception, it prints out some useful information
before passing the exception on to the next level.

3.2. FORWARD PROOF 29

are thus the same as those for the single term (t1/\. . ./\tn)==>t. Theorems with no
assumptions are printed out in the form |- t.

The five axioms and eight primitive inference rules of the HOL logic are described
in detail in the document DESCRIPTION. Every value of type thm in the HOL system can
be obtained by repeatedly applying primitive inference rules to axioms. When the HOL
system is built, the eight primitive rules of inference are defined and the five axioms
are bound to their ML names, all other predefined theorems are proved using rules of
inference as the system is made.4 This is one of the reasons why building hol takes so
long.

In the rest of this section, the process of forward proof , which has just been sketched,
is described in more detail. In Section 3.3 goal directed proof is described, including the
important notions of tactics and tacticals, due to Robin Milner.

3.2 Forward proof

Three of the primitive inference rules of the HOL logic are ASSUME (assumption introduc-
tion), DISCH (discharging or assumption elimination) and MP (Modus Ponens). These
rules will be used to illustrate forward proof and the writing of derived rules.

The inference rule ASSUME generates theorems of the form t |- t. Note, however,
that the ML printer prints each assumption as a dot (but this default can be changed;
see below). The function dest_thm decomposes a theorem into a pair consisting of list
of assumptions and the conclusion.

4- val Th3 = ASSUME ‘‘t1==>t2‘‘;;
> val Th3 = [.] |- t1 ==> t2 : thm

- dest_thm Th3;
> val it = ([‘‘t1 ==> t2‘‘], ‘‘t1 ==> t2‘‘) : term list * term

A sort of dual to ASSUME is the primitive inference rule DISCH (discharging, assumption
elimination) which infers from a theorem of the form · · · t1 · · · |- t2 the new theorem
· · · · · · |- t1==>t2. DISCH takes as arguments the term to be discharged (i.e. t1) and the
theorem from whose assumptions it is to be discharged and returns the result of the
discharging. The following session illustrates this:

5- val Th4 = DISCH ‘‘t1==>t2‘‘ Th3;
> val Th4 = |- (t1 ==> t2) ==> t1 ==> t2 : thm

Note that the term being discharged need not be in the assumptions; in this case they
will be unchanged.

4This is a slight over-simplification.

30 CHAPTER 3. THE HOL LOGIC

6- DISCH ‘‘1=2‘‘ Th3;
> val it = [.] |- (1 = 2) ==> t1 ==> t2 : thm

- dest_thm it;
> val it = ([‘‘t1 ==> t2‘‘], ‘‘(1 = 2) ==> t1 ==> t2‘‘) : term list * term

In HOL the rule MP of Modus Ponens is specified in conventional notation by:

Γ1 ` t1 ⇒ t2 Γ2 ` t1
Γ1 ∪ Γ2 ` t2

The ML function MP takes argument theorems of the form · · · |- t1 ==> t2 and · · · |- t1
and returns · · · |- t2. The next session illustrates the use of MP and also a common error,
namely not supplying the HOL logic type checker with enough information.

7- val Th5 = ASSUME ‘‘t1‘‘;
<<HOL message: inventing new type variable names: ’a.>>
! Uncaught exception:
! HOL_ERR
- val Th5 = ASSUME ‘‘t1‘‘ handle e => Raise e;
<<HOL message: inventing new type variable names: ’a.>>

Exception raised at Thm.ASSUME:
not a proposition
! Uncaught exception:
! HOL_ERR

- val Th5 = ASSUME ‘‘t1:bool‘‘;
> val Th5 = [.] |- t1 : thm

- val Th6 = MP Th3 Th5;
> val Th6 = [..] |- t2 : thm

The hypotheses of Th6 can be inspected with the ML function hyp, which returns the
list of assumptions of a theorem (the conclusion is returned by concl).

8- hyp Th6;
> val it = [‘‘t1 ==> t2‘‘, ‘‘t1‘‘] : term list

HOL can be made to print out hypotheses of theorems explicitly by setting the global
flag show_assums to true.

9- show_assums := true;
> val it = () : unit

- Th5;
> val it = [t1] |- t1 : thm

- Th6;
> val it = [t1 ==> t2, t1] |- t2 : thm

3.2. FORWARD PROOF 31

Discharging Th6 twice establishes the theorem |- t1 ==> (t1==>t2) ==> t2.

10- val Th7 = DISCH ‘‘t1==>t2‘‘ Th6;
> val Th7 = [t1] |- (t1 ==> t2) ==> t2 : thm

- val Th8 = DISCH ‘‘t1:bool‘‘ Th7;
> val Th8 = |- t1 ==> (t1 ==> t2) ==> t2 : thm

The sequence of theorems: Th3, Th5, Th6, Th7, Th8 constitutes a proof in HOL of the
theorem |- t1 ==> (t1 ==> t2) ==> t2. In standard logical notation this proof could
be written:

1. t1 ⇒ t2 ` t1 ⇒ t2 [Assumption introduction]

2. t1 ` t1 [Assumption introduction]

3. t1 ⇒ t2, t1 ` t2 [Modus Ponens applied to lines 1 and 2]

4. t1 ` (t1 ⇒ t2) ⇒ t2 [Discharging the first assumption of line 3]

5. ` t1 ⇒ (t1 ⇒ t2) ⇒ t2 [Discharging the only assumption of line 4]

3.2.1 Derived rules

A proof from hypothesis th1, . . . , thn is a sequence each of whose elements is either an
axiom, or one of the hypotheses thi, or follows from earlier elements by a rule of infer-
ence.

For example, a proof of Γ, t′ ` t from the hypothesis Γ ` t is:

1. t′ ` t′ [Assumption introduction]

2. Γ ` t [Hypothesis]

3. Γ ` t′ ⇒ t [Discharge t′ from line 2]

4. Γ, t′ ` t [Modus Ponens applied to lines 3 and 1]

This proof works for any hypothesis of the form Γ ` t and any boolean term t′ and
shows that the result of adding an arbitrary hypothesis to a theorem is another theorem
(because the four lines above can be added to any proof of Γ ` t to get a proof of
Γ, t′ ` t).5 For example, the next session uses this proof to add the hypothesis ‘‘t3‘‘
to Th6.

5This property of the logic is called monotonicity.

32 CHAPTER 3. THE HOL LOGIC

11- val Th9 = ASSUME ‘‘t3:bool‘‘;
> val Th9 = [t3] |- t3 : thm

- val Th10 = DISCH ‘‘t3:bool‘‘ Th6;
> val Th10 = [t1 ==> t2, t1] |- t3 ==> t2 : thm

- val Th11 = MP Th10 Th9;
> val Th11 = [t1 ==> t2, t1, t3] |- t2 : thm

A derived rule is an ML procedure that generates a proof from given hypotheses each
time it is invoked. The hypotheses are the arguments of the rule. To illustrate this,
a rule, called ADD_ASSUM, will now be defined as an ML procedure that carries out the
proof above. In standard notation this would be described by:

Γ ` t

Γ, t′ ` t

The ML definition is:

12- fun ADD_ASSUM t th = let
val th9 = ASSUME t
val th10 = DISCH t th

in
MP th10 th9

end;
> val ADD_ASSUM = fn : term -> thm -> thm

- ADD_ASSUM ‘‘t3:bool‘‘ Th6;
> val it = [t1, t1 ==> t2, t3] |- t2 : thm

The body of ADD_ASSUM has been coded to mirror the proof done in session 10 above, so
as to show how an interactive proof can be generalized into a procedure. But ADD_ASSUM
can be written much more concisely as:

13- fun ADD_ASSUM t th = MP (DISCH t th) (ASSUME t);
> val ADD_ASSUM = fn : term -> thm -> thm

- ADD_ASSUM ‘‘t3:bool‘‘ Th6;
val it = [t1 ==> t2, t1, t3] |- t2 : thm

Another example of a derived inference rule is UNDISCH; this moves the antecedent of
an implication to the assumptions.

Γ ` t1 ⇒ t2
Γ, t1 ` t2

An ML derived rule that implements this is:

3.2. FORWARD PROOF 33

14- fun UNDISCH th = MP th (ASSUME(#1(dest_imp(concl th))));
> val UNDISCH = fn : thm -> thm

- Th10;
> val it = [t1 ==> t2, t1] |- t3 ==> t2 : thm

- UNDISCH Th10;
> val it = [t1, t1 ==> t2, t3] |- t2 : thm

Each time UNDISCH Γ ` t1 ⇒ t2 is executed, the following proof is performed:

1. t1 ` t1 [Assumption introduction]

2. Γ ` t1 ⇒ t2 [Hypothesis]

3. Γ, t1 ` t2 [Modus Ponens applied to lines 2 and 1]

The rules ADD_ASSUM and UNDISCH are the first derived rules defined when the HOL
system is built. For a description of the main rules see the section on derived rules in
DESCRIPTION.

3.2.1.1 Rewriting

An interesting derived rule is REWRITE_RULE. This takes a list of equational theorems of
the form:

Γ ` (u1 = v1) ∧ (u2 = v2) ∧ . . . ∧ (un = vn)

and a theorem ∆ ` t and repeatedly replaces instances of ui in t by the corresponding
instance of vi until no further change occurs. The result is a theorem Γ ∪ ∆ ` t′

where t′ is the result of rewriting t in this way. The session below illustrates the use of
REWRITE_RULE. In it the list of equations is the value rewrite_list containing the pre-
proved theorems ADD_CLAUSES and MULT_CLAUSES. These theorems are from the theory
arithmetic, so we must use a fully qualified name with the name of the theory as the
first component to refer to them. (Alternatively, we could, as in the Euclid example of
section 6, use open to bring declare all of the values in the theory at the top level.)

15- open arithmeticTheory;

...

- val rewrite_list = [ADD_CLAUSES,MULT_CLAUSES];
> val rewrite_list =

[|- (0 + m = m) /\ (m + 0 = m) /\ (SUC m + n = SUC (m + n)) /\
(m + SUC n = SUC (m + n)),

|- !m n.
(0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\
(SUC m * n = m * n + n) /\ (m * SUC n = m + m * n)]

: thm list

34 CHAPTER 3. THE HOL LOGIC

16- REWRITE_RULE rewrite_list (ASSUME ‘‘(m+0)<(1*n)+(SUC 0)‘‘);
> val it = [m + 0 < 1 * n + SUC 0] |- m < SUC n : thm

This can then be rewritten using another pre-proved theorem LESS_THM, this one from
the theory prim_rec:

17- REWRITE_RULE [prim_recTheory.LESS_THM] it;
> val it = [m + 0 < 1 * n + SUC 0] |- (m = n) \/ m < n : thm

REWRITE_RULE is not a primitive in HOL, but is a derived rule. It is inherited from
Cambridge LCF and was implemented by Larry Paulson (see his paper [10] for details).
In addition to the supplied equations, REWRITE_RULE has some built in standard simpli-
fications:

18- REWRITE_RULE [] (ASSUME ‘‘(T /\ x) \/ F ==> F‘‘);
> val it = [T /\ x \/ F ==> F] |- ~x : thm

There are elaborate facilities in HOL for producing customized rewriting tools which
scan through terms in user programmed orders; REWRITE_RULE is the tip of an iceberg,
see DESCRIPTION for more details.

3.3 Goal Oriented Proof: Tactics and Tacticals

The style of forward proof described in the previous section is unnatural and too ‘low
level’ for many applications. An important advance in proof generating methodology
was made by Robin Milner in the early 1970s when he invented the notion of tactics. A
tactic is a function that does two things.

(i) Splits a ‘goal’ into ‘subgoals’.

(ii) Keeps track of the reason why solving the subgoals will solve the goal.

Consider, for example, the rule of ∧-introduction6 shown below:

Γ1 ` t1 Γ2 ` t2
Γ1 ∪ Γ2 ` t1 ∧ t2

In HOL, ∧-introduction is represented by the ML function CONJ:

CONJ (Γ1 ` t1) (Γ2 ` t2) → (Γ1 ∪ Γ2 ` t1 ∧ t2)

This is illustrated in the following new session (note that the session number has been
reset to 1:

6In higher order logic this is a derived rule; in first order logic it is usually primitive. In HOL the rule
is called CONJ and its derivation is given in DESCRIPTION.

3.3. GOAL ORIENTED PROOF: TACTICS AND TACTICALS 35

1- show_assums := true;
val it = () : unit

- val Th1 = ASSUME ‘‘A:bool‘‘ and Th2 = ASSUME ‘‘B:bool‘‘;
> val Th1 = [A] |- A : thm
val Th2 = [B] |- B : thm

- val Th3 = CONJ Th1 Th2;
> val Th3 = [A, B] |- A /\ B : thm

Suppose the goal is to prove A ∧ B, then this rule says that it is sufficient to prove
the two subgoals A and B, because from ` A and ` B the theorem ` A ∧ B can be
deduced. Thus:

(i) To prove ` A ∧ B it is sufficient to prove ` A and ` B.

(ii) The justification for the reduction of the goal ` A ∧ B to the two subgoals
` A and ` B is the rule of ∧-introduction.

A goal in HOL is a pair ([t1;...;tn],t) of ML type term list * term. An achievement
of such a goal is a theorem t1,. . .,tn |- t. A tactic is an ML function that when applied
to a goal generates subgoals together with a justification function or validation, which
will be an ML derived inference rule, that can be used to infer an achievement of the
original goal from achievements of the subgoals.

If T is a tactic (i.e. an ML function of type goal -> (goal list * (thm list -> thm)))
and g is a goal, then applying T to g (i.e. evaluating the ML expression T g) will result
in an object which is a pair whose first component is a list of goals and whose second
component is a justification function, i.e. a value with ML type thm list -> thm.

An example tactic is CONJ_TAC which implements (i) and (ii) above. For example,
consider the utterly trivial goal of showing T /\ T, where T is a constant that stands for
true:

2- val goal1 =([]:term list, ‘‘T /\ T‘‘);
> val goal1 = ([], ‘‘T /\ T‘‘) : term list * term

- CONJ_TAC goal1;
> val it =

([([], ‘‘T‘‘), ([], ‘‘T‘‘)], fn)
: (term list * term) list * (thm list -> thm)

- val (goal_list,just_fn) = it;
> val goal_list =

[([], ‘‘T‘‘), ([], ‘‘T‘‘)]
: (term list * term) list

val just_fn = fn : thm list -> thm

36 CHAPTER 3. THE HOL LOGIC

CONJ_TAC has produced a goal list consisting of two identical subgoals of just showing
([],"T"). Now, there is a preproved theorem in HOL, called TRUTH, that achieves this
goal:

3- TRUTH;
> val it = [] |- T : thm

Applying the justification function just_fn to a list of theorems achieving the goals in
goal_list results in a theorem achieving the original goal:

4- just_fn [TRUTH,TRUTH];
> val it = [] |- T /\ T : thm

Although this example is trivial, it does illustrate the essential idea of tactics. Note
that tactics are not special theorem-proving primitives; they are just ML functions. For
example, the definition of CONJ_TAC is simply:

fun CONJ_TAC (asl,w) = let
val (l,r) = dest_conj w

in
([(asl,l), (asl,r)], fn [th1,th2] => CONJ th1 th2)

end

The function dest_conj splits a conjunction into its two conjuncts: If (asl,‘‘t1/\t2‘‘)
is a goal, then CONJ_TAC splits it into the list of two subgoals (asl,t1) and (asl,t2). The
justification function, fn [th1,th2] => CONJ th1 th2 takes a list [th1,th2] of theorems
and applies the rule CONJ to th1 and th2.

To summarize: if T is a tactic and g is a goal, then applying T to g will result in a pair
whose first component is a list of goals and whose second component is a justification
function, with ML type thm list -> thm.

Suppose T g = ([g1,. . .,gn],p). The idea is that g1 , . . . , gn are subgoals and p is
a ‘justification’ of the reduction of goal g to subgoals g1 , . . . , gn. Suppose further
that the subgoals g1 , . . . , gn have been solved. This would mean that theorems th1 ,
. . . , thn had been proved such that each thi (1 ≤ i ≤ n) ‘achieves’ the goal gi. The
justification p (produced by applying T to g) is an ML function which when applied to
the list [th1,. . .,thn] returns a theorem, th, which ‘achieves’ the original goal g. Thus p
is a function for converting a solution of the subgoals to a solution of the original goal.
If p does this successfully, then the tactic T is called valid. Invalid tactics cannot result
in the proof of invalid theorems; the worst they can do is result in insolvable goals or
unintended theorems being proved. If T were invalid and were used to reduce goal g
to subgoals g1 , . . . , gn, then effort might be spent proving theorems th1 , . . . , thn to
achieve the subgoals g1 , . . . , gn, only to find out after the work is done that this is a
blind alley because p[th1,. . .,thn] doesn’t achieve g (i.e. it fails, or else it achieves some
other goal).

3.3. GOAL ORIENTED PROOF: TACTICS AND TACTICALS 37

A theorem achieves a goal if the assumptions of the theorem are included in the as-
sumptions of the goal and if the conclusion of the theorems is equal (up to the renaming
of bound variables) to the conclusion of the goal. More precisely, a theorem

t1, . . ., tm |- t

achieves a goal

([u1,. . .,un],u)

if and only if {t1, . . . , tm} is a subset of {u1, . . . , un} and t is equal to u (up to renaming
of bound variables). For example, the goal ([‘‘x=y‘‘, ‘‘y=z‘‘, ‘‘z=w‘‘], ‘‘x=z‘‘) is
achieved by the theorem [x=y, y=z] |- x=z (the assumption ‘‘z=w‘‘ is not needed).

A tactic solves a goal if it reduces the goal to the empty list of subgoals. Thus T
solves g if T g = ([],p). If this is the case and if T is valid, then p[] will evaluate to a
theorem achieving g. Thus if T solves g then the ML expression snd(T g)[] evaluates to
a theorem achieving g.

Tactics are specified using the following notation:

goal

goal1 goal2 · · · goaln

For example, a tactic called CONJ_TAC is described by

t1 /\ t2

t1 t2

Thus CONJ_TAC reduces a goal of the form (Γ,‘‘t1/\t2‘‘) to subgoals (Γ,‘‘t1‘‘) and
(Γ,‘‘t2‘‘). The fact that the assumptions of the top-level goal are propagated un-
changed to the two subgoals is indicated by the absence of assumptions in the notation.

Another example is numLib.INDUCT_TAC, the tactic for doing mathematical induction
on the natural numbers:

!n.t[n]

t[0] {t[n]} t[SUC n]

INDUCT_TAC reduces a goal (Γ,‘‘!n.t[n]‘‘) to a basis subgoal (Γ,‘‘t[0]‘‘) and an
induction step subgoal (Γ ∪ {‘‘t[n]‘‘},‘‘t[SUC n]‘‘). The extra induction assumption
‘‘t[n]‘‘ is indicated in the tactic notation with set brackets.

38 CHAPTER 3. THE HOL LOGIC

5- numLib.INDUCT_TAC([], ‘‘!m n. m+n = n+m‘‘);
> val it =

([([], ‘‘!n. 0 + n = n + 0‘‘),
([‘‘!n. m + n = n + m‘‘], ‘‘!n. SUC m + n = n + SUC m‘‘)], fn)

: (term list * term) list * (thm list -> thm)

The first subgoal is the basis case and the second subgoal is the step case.
Tactics generally fail (in the ML sense, i.e. raise an exception) if they are applied to

inappropriate goals. For example, CONJ_TAC will fail if it is applied to a goal whose
conclusion is not a conjunction. Some tactics never fail, for example ALL_TAC

t

t

is the ‘identity tactic’; it reduces a goal (Γ,t) to the single subgoal (Γ,t)—i.e. it has no
effect. ALL_TAC is useful for writing complex tactics using tacticals.

3.3.1 Using tactics to prove theorems

Suppose goal g is to be solved. If g is simple it might be possible to immediately think
up a tactic, T say, which reduces it to the empty list of subgoals. If this is the case then
executing:

val (gl,p) = T g

will bind p to a function which when applied to the empty list of theorems yields a
theorem th achieving g. (The declaration above will also bind gl to the empty list of
goals.) Thus a theorem achieving g can be computed by executing:

val th = p[]

This will be illustrated using REWRITE_TAC which takes a list of equations (empty in
the example that follows) and tries to prove a goal by rewriting with these equations
together with basic_rewrites:

6- val goal2 = ([]:term list, ‘‘T /\ x ==> x \/ (y /\ F)‘‘);
> val goal2 = ([], ‘‘T /\ x ==> x \/ y /\ F‘‘) : (term list * term)

- REWRITE_TAC [] goal2;
> val it = ([], fn) : (term list * term) list * (thm list -> thm)

- #2 it [];
> val it = [] |- T /\ x ==> x \/ y /\ F : thm

Proved theorems are usually stored in the current theory so that they can be used in
subsequent sessions.

The built-in function store_thm of ML type (string * term * tactic) -> thm facili-
tates the use of tactics: store_thm("foo",t,T) proves the goal ([],t) (i.e. the goal with

3.3. GOAL ORIENTED PROOF: TACTICS AND TACTICALS 39

no assumptions and conclusion t) using tactic T and saves the resulting theorem with
name foo on the current theory.

If the theorem is not to be saved, the function prove of type (term * tactic) -> thm

can be used. Evaluating prove(t,T) proves the goal ([],t) using T and returns the
result without saving it. In both cases the evaluation fails if T does not solve the goal
([],t).

When conducting a proof that involves many subgoals and tactics, it is necessary to
keep track of all the justification functions and compose them in the correct order. While
this is feasible even in large proofs, it is tedious. HOL provides a package for building
and traversing the tree of subgoals, stacking the justification functions and applying
them properly; this package was originally implemented for LCF by Larry Paulson. Its
use is demonstrated in Chapter 6, and thoroughly documented in DESCRIPTION.

3.3.2 Tacticals

A tactical is an ML function that takes one or more tactics as arguments, possibly with
other arguments as well, and returns a tactic as its result. The various parameters
passed to tacticals are reflected in the various ML types that the built-in tacticals have.
Some important tacticals in the HOL system are listed below.

3.3.2.1 THENL : tactic -> tactic list -> tactic

If tactic T produces n subgoals and T1, . . . , Tn are tactics then T THENL [T1;. . .;Tn] is a
tactic which first applies T and then applies Ti to the ith subgoal produced by T . The
tactical THENL is useful if one wants to do different things to different subgoals.
THENL can be illustrated by doing the proof of ` ∀m. m+ 0 = m in one step.

1- g ‘!m. m + 0 = m‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!m. m + 0 = m

- e (INDUCT_TAC THENL [REWRITE_TAC[ADD], ASM_REWRITE_TAC[ADD]]);
OK..
> val it =

Initial goal proved.
|- !m. m + 0 = m

The compound tactic INDUCT_TAC THENL [REWRITE_TAC [ADD]; ASM_REWRITE_TAC [ADD]]

first applies INDUCT_TAC and then applies REWRITE_TAC[ADD] to the first subgoal (the
basis) and ASM_REWRITE_TAC[ADD] to the second subgoal (the step).

40 CHAPTER 3. THE HOL LOGIC

The tactical THENL is useful for doing different things to different subgoals. The tactical
THEN can be used to apply the same tactic to all subgoals.

3.3.2.2 THEN : tactic -> tactic -> tactic

The tactical THEN is an ML infix. If T1 and T2 are tactics, then the ML expression
T1 THEN T2 evaluates to a tactic which first applies T1 and then applies T2 to all the
subgoals produced by T1.

In fact, ASM_REWRITE_TAC[ADD] will solve the basis as well as the step case of the
induction for ∀m. m + 0 = m, so there is an even simpler one-step proof than the one
above:

1- g ‘!m. m+0 = m‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!m. m + 0 = m

- e(INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);
OK..
> val it =

Initial goal proved.
|- !m. m + 0 = m

This is typical: it is common to use a single tactic for several goals. Here, for example,
are the first four consequences of the definition ADD of addition that are pre-proved
when the built-in theory arithmetic HOL is made.

val ADD_0 = prove (
‘‘!m. m + 0 = m‘‘,
INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);

val ADD_SUC = prove (
‘‘!m n. SUC(m + n) = m + SUC n‘‘,
INDUCT_TAC THEN ASM_REWRITE_TAC[ADD]);

val ADD_CLAUSES = prove (
‘‘(0 + m = m) /\
(m + 0 = m) /\
(SUC m + n = SUC(m + n)) /\
(m + SUC n = SUC(m + n))‘‘,

REWRITE_TAC[ADD, ADD_0, ADD_SUC]);

val ADD_COMM = prove (
‘‘!m n. m + n = n + m‘‘,
INDUCT_TAC THEN ASM_REWRITE_TAC[ADD_0, ADD, ADD_SUC]);

3.3. GOAL ORIENTED PROOF: TACTICS AND TACTICALS 41

These proofs are performed when the HOL system is made and the theorems are saved
in the theory arithmetic. The complete list of proofs for this built-in theory can be
found in the file src/num/arithmeticScript.sml.

3.3.2.3 ORELSE : tactic -> tactic -> tactic

The tactical ORELSE is an ML infix. If T1 and T2 are tactics, then T1 ORELSE T2 evaluates
to a tactic which applies T1 unless that fails; if it fails, it applies T2. ORELSE is defined in
ML as a curried infix by7

(T1 ORELSE T2) g = T1 g handle _ => T2 g

3.3.2.4 REPEAT : tactic -> tactic

If T is a tactic then REPEAT T is a tactic which repeatedly applies T until it fails. This
can be illustrated in conjunction with GEN_TAC, which is specified by:

!x.t[x]

t[x′]

• Where x′ is a variant of x not free in the goal or the assumptions.

GEN_TAC strips off one quantifier; REPEAT GEN_TAC strips off all quantifiers:

2- g ‘!x y z. x+(y+z) = (x+y)+z‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!x y z. x + (y + z) = x + y + z

- e GEN_TAC;
OK..
1 subgoal:
> val it =

!y z. x + (y + z) = x + y + z

- e (REPEAT GEN_TAC);
OK..
1 subgoal:
> val it =

x + (y + z) = x + y + z

7This is a minor simplification.

42 CHAPTER 3. THE HOL LOGIC

3.3.3 Some tactics built into HOL

This section contains a summary of some of the tactics built into the HOL system (in-
cluding those already discussed). The tactics given here are those that are used in the
parity checking example.

Before beginning, note that the ML type thm_tactic abbreviates thm->tactic, and the
type conv8 abbreviates term->thm.

3.3.3.1 REWRITE TAC : thm list -> tactic

• Summary: REWRITE_TAC[th1,. . .,thn] simplifies the goal by rewriting it with the
explicitly given theorems th1, . . . , thn, and various built-in rewriting rules.

{t1, . . . , tm}t
{t1, . . . , tm}t′

where t′ is obtained from t by rewriting with

1. th1, . . . , thn and

2. the standard rewrites held in the ML variable basic_rewrites.

• Uses: Simplifying goals using previously proved theorems.

• Other rewriting tactics:

1. ASM_REWRITE_TAC adds the assumptions of the goal to the list of theorems used
for rewriting.

2. PURE_REWRITE_TAC uses neither the assumptions nor the built-in rewrites.

3. RW_TAC of type simpLib.simpset -> thm list -> tactic. A simpset is a
special collection of rewriting theorems and other theorem-proving function-
ality. Values defined by HOL include bossLib.std_ss, which has basic knowl-
edge of the boolean connectives, bossLib.arith_ss which “knows” all about
arithmetic, and HOLSimps.list_ss, which includes theorems appropriate for
lists, pairs, and arithmetic. Additional theorems for rewriting can be added
using the second argument of RW_TAC.

8The type conv comes from Larry Paulson’s theory of conversions [10].

3.3. GOAL ORIENTED PROOF: TACTICS AND TACTICALS 43

3.3.3.2 CONJ TAC : tactic

• Summary: Splits a goal ‘‘t1/\t2‘‘ into two subgoals ‘‘t1‘‘ and ‘‘t2‘‘.

t1 /\ t2

t1 t2

• Uses: Solving conjunctive goals. CONJ_TAC is invoked by STRIP_TAC (see below).

3.3.3.3 EQ TAC : tactic

• Summary: EQ_TAC splits an equational goal into two implications (the ‘if-case’ and
the ‘only-if’ case):

u = v

u ==> v v ==> u

• Use: Proving logical equivalences, i.e. goals of the form “u=v” where u and v are
boolean terms.

3.3.3.4 DISCH TAC : tactic

• Summary: Moves the antecedent of an implicative goal into the assumptions.

u ==> v

{u}v

• Uses: Solving goals of the form ‘‘u ==> v‘‘ by assuming ‘‘u‘‘ and then solving
‘‘v‘‘. STRIP_TAC (see below) will invoke DISCH_TAC on implicative goals.

3.3.3.5 GEN TAC : tactic

• Summary: Strips off one universal quantifier.

!x.t[x]

t[x′]

Where x′ is a variant of x not free in the goal or the assumptions.

• Uses: Solving universally quantified goals. REPEAT GEN_TAC strips off all universal
quantifiers and is often the first thing one does in a proof. STRIP_TAC (see below)
applies GEN_TAC to universally quantified goals.

44 CHAPTER 3. THE HOL LOGIC

3.3.3.6 PROVE TAC : thm list -> tactic

• Summary: Used to do first order reasoning, solving the goal completely if suc-
cessful, failing otherwise. Using the provided theorems and the assumptions of
the goal, PROVE_TAC does a search for possible proofs of the goal. Eventually fails
if the search fails to find a proof shorter than a reasonable depth.

• Uses: To finish a goal off when it is clear that it is a consequence of the assump-
tions and the provided theorems.

3.3.3.7 STRIP TAC : tactic

• Summary: Breaks a goal apart. STRIP_TAC removes one outer connective from the
goal, using CONJ_TAC, DISCH_TAC, GEN_TAC, etc. If the goal is t1/\· · ·/\tn ==> t then
STRIP_TAC makes each ti into a separate assumption.

• Uses: Useful for splitting a goal up into manageable pieces. Often the best thing
to do first is REPEAT STRIP_TAC.

3.3.3.8 ACCEPT TAC : thm -> tactic

• Summary: ACCEPT_TAC th is a tactic that solves any goal that is achieved by th.

• Use: Incorporating forward proofs, or theorems already proved, into goal directed
proofs. For example, one might reduce a goal g to subgoals g1, . . ., gn using a
tactic T and then prove theorems th1 , . . ., thn respectively achieving these goals
by forward proof. The tactic

T THENL[ACCEPT_TAC th1, . . . ,ACCEPT_TAC thn]

would then solve g, where THENL is the tactical that applies the respective elements
of the tactic list to the subgoals produced by T.

3.3.3.9 ALL TAC : tactic

• Summary: Identity tactic for the tactical THEN (see DESCRIPTION).

• Uses:

1. Writing tacticals (see description of REPEAT in DESCRIPTION).

2. With THENL; for example, if tactic T produces two subgoals and we want to
apply T1 to the first one but to do nothing to the second, then the tactic to
use is T THENL[T1;ALL_TAC].

3.3. GOAL ORIENTED PROOF: TACTICS AND TACTICALS 45

3.3.3.10 NO TAC : tactic

• Summary: Tactic that always fails.

• Uses: Writing tacticals.

46 CHAPTER 3. THE HOL LOGIC

Chapter 4

HOL-Omega Appetizers

This chapter will introduce the HOL-Omega logic, with the idea of motivating it by a
series of examples. These examples are only discussed superficially, to showcase the
new ideas, and not all details are pursued. A more complete description of the HOL-
Omega extensions is provided in the next chapter in the tutorial. But these are presented
as appetizers, to lightly show how the new features might be used to good effect.

4.1 Collections

To begin, HOL is blessed with a number of different types in the logic that represent
different varieties of collections, like lists, sets, and bags. These are polymorphic types,
written e.g. α list, where α is the type of the elements of the list. All these collections
are similar, in that they all have an empty collection, they all have a way to insert a new
element into a collection, they all have a way to measure the size of a collection, etc.

Suppose one wanted to represent the notion of a collection as an abstraction of the
normal notions of a set or a list. In HOL there is no natural way to do this, but in HOL-
Omega one could use a type operator variable to stand for the various collection types,
and then create a record of some of the normal functions used on collections, as follows.

3- new_theory "appetizers";
<<HOL message: Created theory "appetizers">>
> val it = () : unit
> set_trace "Unicode" 0;
val it = () : unit

- Hol_datatype ‘collection_ops =
<| empty : ’x ’col;

insert : ’x -> ’x ’col -> ’x ’col;
length : ’x ’col -> num |>‘;

<<HOL message: Defined type: "collection_ops">>
> val it = () : unit

Here we have used the type variable ’col as a variable to stand for the type operator
we are talking about, whether list, option, or some other type. In HOL, type variables
can only stand for entire types, like num list, but not type operators like just list. But
here, ’col is being used as a function on types, that takes a type ’x, the type of the

47

48 CHAPTER 4. HOL-OMEGA APPETIZERS

elements of the collection, and returns a type ’x ’col, the type of collections of such
elements. Such type operator variables are one of the new features of HOL-Omega.

Both ’col and ’x are free type variables in this definition, so the type being defined
takes two arguments, e.g., (’col, ’x)collection ops. The order of the two arguments
is by alphabetical order.

Now we can describe lists as collections:

4- val list_ops = Define
‘list_ops = <|empty := []:’a list; insert := CONS; length := LENGTH|>‘;

Definition has been stored under "list_ops_def"
> val list_ops =

|- list_ops = <|empty := []; insert := CONS; length := LENGTH|> : thm

- type_of ‘‘list_ops‘‘;
<<HOL message: inventing new type variable names: ’a>>
> val it =

‘‘:(list, ’a) collection_ops‘‘
: hol_type

The type of this collection is (list, ’a) collection ops. The first argument is the
type list, here being used without any type argument of its own. This is meaningful
in HOL-Omega, although it may look weird to HOL users who are used to always seeing
list with an argument, like num list or ’a list. But here list is itself an argument,
albeit a type operator alone, replacing ’col in the definition of collection ops above.

Here are sets described as collections:

5- val set_ops = Define
‘set_ops = <|empty := {}:’a set; insert := $INSERT; length := CARD|>‘;

Definition has been stored under "set_ops_def"
> val set_ops = |- set_ops = <|empty := {}; insert := $INSERT; length := CARD|>

: thm

- type_of ‘‘set_ops‘‘;
<<HOL message: inventing new type variable names: ’b>>
> val it =

‘‘:(\’a. ’a -> bool, ’b) collection_ops‘‘
: hol_type

Note that the first argument to this set collection type is \’a. ’a -> bool. This is an
abstraction type, similar to the normal lambda abstraction in terms, but this abstraction
is within the type language of HOL-Omega. The scope of the lambda binding of ’a in the
type above is up to but not including the comma, which ends the first type argument.

But, you may ask, why does this type abstraction \’a. ’a -> bool appear in this
collection type? The reason is that the type of sets in HOL, ’a set, is actually a type
abbreviation, not a real type. It is a feature of the parser and prettyprinter, not the
actual logic as such. The abbreviation ’a set stands for the real type ’a -> bool. The

4.1. COLLECTIONS 49

HOL-Omega system figures out the appropriate type to substitute for the type argument
’col to create the type ’a -> bool, and the substitution is [’col 7→ \’a. ’a -> bool].
The type resulting from the substitution is ’a (\’a. ’a -> bool) (in postfix notation),
which is equivalent to ’a -> bool through type beta-reduction.

HOL contains not only lists and sets, but also bags, which are sometimes called mul-
tisets. Bags are like sets which can include multiple copies of its elements, whereas sets
can only contain a single copy of each. Here are bags described as collections:

6- load "bagLib";
...
- val bag_ops = Define

‘bag_ops = <| empty := {||}:’a bag; insert := BAG_INSERT;
length := BAG_CARD|>‘;

Definition has been stored under "bag_ops_def"
> val bag_ops =

|- bag_ops = <|empty := {||}; insert := BAG_INSERT; length := BAG_CARD|> :
thm

- type_of ‘‘bag_ops‘‘;
<<HOL message: inventing new type variable names: ’b>>
> val it =

‘‘:(\’a. ’a -> num, ’b) collection_ops‘‘
: hol_type

Similar to sets, ’a bag is a type abbreviation for ’a -> num. In this case, HOL-Omega
figures out that the correct type to substitute for ’col is \’a. ’a -> num.

So we can represent lists, sets, and bags as collections using this record type with
fields for these three common operations.

4.1.1 Object-oriented collections

In fact we can go further, and try to model collections in an object-oriented way, com-
bining together the data values stored in the collection with the operations used to
manipulate them.

7- Hol_datatype ‘collection =
<| this : ’x ’col;

ops : (’col,’x) collection_ops |>‘;

Now we can define an operation to insert an element into a collection, without having
to know what particular kind of collection it is.

50 CHAPTER 4. HOL-OMEGA APPETIZERS

8- val insert_def =
Define ‘insert x (c:(’col,’x)collection) =

<| this := c.ops.insert x c.this;
ops := c.ops |>‘;

Definition has been stored under "insert_def"
> val insert_def =

|- !x c. insert x c = <|this := c.ops.insert x c.this; ops := c.ops|>
: thm

Similarly, we can define an operation to measure the size of a collection.

9- val length_def =
Define ‘length (c:(’col,’x)collection) = c.ops.length c.this‘;

Definition has been stored under "length_def"
> val length_def =

|- !c. length c = c.ops.length c.this
: thm

So we can use the same functions, insert and length, to manipulate any lists, sets, or
bags, with the appropriate results for each type of collection.

4.1.2 Fold operation

But what if we want to add a “fold” operator, like the FOLDR function on lists:

10- type_of ‘‘FOLDR‘‘;
<<HOL message: inventing new type variable names: ’a, ’b>>
> val it =

‘‘:(’a -> ’b -> ’b) -> ’b -> ’a list -> ’b‘‘
: hol_type

- listTheory.FOLDR;
> val it =

|- (!f e. FOLDR f e [] = e) /\
!f e x l. FOLDR f e (x::l) = f x (FOLDR f e l)

: thm

We might add a new field fold to our new record of collection operations as follows.

11- Hol_datatype ‘collection_ops =
<| empty : ’x ’col;

insert : ’x -> ’x ’col -> ’x ’col;
length : ’x ’col -> num;
fold : (’x -> ’y -> ’y) -> ’y -> ’x ’col -> ’y |>‘;

<<HOL message: Defined type: "collection_ops">>
> val it = () : unit

Then we can construct a record of this type using FOLDR.

4.1. COLLECTIONS 51

12- val list_ops = Define
‘list_ops = <| empty := []:’a list; insert := CONS; length := LENGTH;

fold := FOLDR|>‘;
<<HOL message: inventing new type variable names: ’b>>
Definition has been stored under "list_ops_def"
> val list_ops =

|- list_ops =
<|empty := []; insert := CONS; length := LENGTH; fold := FOLDR|> : thm

- type_of ‘‘list_ops‘‘;
<<HOL message: inventing new type variable names: ’a, ’b>>
> val it =

‘‘:(list, ’a, ’b) collection_ops‘‘
: hol_type

Wait, this is not what we wanted. There is a third type argument in collection ops

now, ’b. This new type argument appears there because there are now three free type
variables in the definition of collection ops, ’col, ’x, and ’y. The third argument ’y
is the type of the value computed and returned by fold.

But having the ’y type variable free in this way fails to be fully general, as any partic-
ular instance of fold can produce only one type of result. No matter its arguments, no
different type of result can be produced.

To see this problem more clearly, suppose we follow this development further, using
this definition of collection ops, and upon it defining the collection type and the fold
operation on collections.

13- Hol_datatype ‘collection =
<| this : ’x ’col;

ops : (’col,’x,’y) collection_ops |>‘;
<<HOL message: Defined type: "collection">>
> val it = () : unit

- val fold_def = Define ‘fold f e c = c.ops.fold f e c.this‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c>>
Definition has been stored under "fold_def"
> val fold_def =

|- !f e c. fold f e c = c.ops.fold f e c.this
: thm

Now let’s make an example collection.

14- val ex1 = ‘‘<| this := [1;8;27]; ops := list_ops |>‘‘;
<<HOL message: inventing new type variable names: ’a>>
> val ex1 = ‘‘<|this := [1; 8; 27]; ops := list_ops|>‘‘ : term

52 CHAPTER 4. HOL-OMEGA APPETIZERS

But when we try to do a fold on this example, we see a type error.

15- ‘‘fold (\x y. x+y) 0 ^ex1‘‘;

Type inference failure: unable to infer a type for the application of

(fold (\(x :num) (y :num). x + y) (0 :num) :
(list, num, num) collection -> num)

on line 16, characters 2-19

which has type

:(list, num, num) collection -> num

to

<|this := [(1 :num); (8 :num); (27 :num)];
ops := (list_ops :(list, num, ’a) collection_ops)|>

between beginning of frag 1 and end of frag 1

which has type

:(list, num, ’a) collection

unification failure message: unify failed
! Uncaught exception:
! HOL_ERR

This example failed type-checking because the type of the result that the collection
was able to provide (’a) was not the same as the type of the value that the actual fold
function, \x y.x+y, was trying to return (num).

We could try to patch this up by manually instantiating this example.

16- val ex1a = inst [‘‘:’a‘‘ |-> ‘‘:num‘‘] ex1;
> val ex1a = ‘‘<|this := [1; 8; 27]; ops := list_ops|>‘‘ : term
- ‘‘fold (\x y. x+y) 0 ^ex1a‘‘;
> val it =

‘‘fold (\x y. x + y) 0 <|this := [1; 8; 27]; ops := list_ops|>‘‘
: term

This does work and the term passes type-checking. But what if we try another exam-
ple that returns a result of a different type?

4.1. COLLECTIONS 53

17- ‘‘fold (\x y. EVEN x /\ y) T ^ex1a‘‘;

Type inference failure: unable to infer a type for the application of

(fold (\(x :num) (y :bool). EVEN x /\ y) T :
(list, num, bool) collection -> bool)

on line 21, characters 2-27

which has type

:(list, num, bool) collection -> bool

to

<|this := [(1 :num); (8 :num); (27 :num)];
ops := (list_ops :(list, num, num) collection_ops)|>

between beginning of frag 1 and end of frag 1

which has type

:(list, num, num) collection

unification failure message: unify failed
! Uncaught exception:
! HOL_ERR

The type of the result that the collection was able to provide (num) was not the same
as the type of the value that the fold function was trying to return (bool).

The point here is that the above version of fold is simply not general enough for
normal use. What we really want is the following version.

18- Hol_datatype ‘collection_ops =
<| empty : ’x ’col;

insert : ’x -> ’x ’col -> ’x ’col;
length : ’x ’col -> num;
fold : !’y. (’x -> ’y -> ’y) -> ’y -> ’x ’col -> ’y |>‘;

<<HOL message: Defined type: "collection_ops">>
> val it = () : unit

In this new defintion of collection ops, the type of the fold field begins with
“!’y.”. This indicates a universal type; the idea comes from a logic called System F.
The !’y. universally quantifies ’y over the body (’x -> ’y -> ’y) -> ’y -> ’x ’col

-> ’y. The quantification binds the occurrences of ’y within the universal type, so that
’y does not become a free type variable outside the binding, and thus not a free type
variable of the collection ops type. Then this version of the collection ops type is
created with just its normal two arguments ’col and ’x, not ’y.

54 CHAPTER 4. HOL-OMEGA APPETIZERS

To create an example of this new type of fold operation, we need to provide a term
whose type is the above universal type. Such a term is \:’b. FOLDR.

19- val list_ops = Define
‘list_ops = <|empty := []:’a list; insert := CONS; length := LENGTH;

fold := \:’b. FOLDR|>‘;
Definition has been stored under "list_ops_def"
> val list_ops =

|- list_ops =
<|empty := []; insert := CONS; length := LENGTH;
fold := (\:’b. FOLDR)|> : thm

- type_of ‘‘list_ops‘‘;
<<HOL message: inventing new type variable names: ’a>>
> val it =

‘‘:(list, ’a) collection_ops‘‘
: hol_type

The term \:’b. FOLDR is a type abstraction term. It abstracts a term, here FOLDR, not
by a term variable, but by a type variable ’b. This is a new variety of term not present
in HOL, but added in HOL-Omega. The type of such a term is a universal type. Where the
type of FOLDR is (’a -> ’b -> ’b) -> ’b -> ’a ’col -> ’b, the type of \:’b. FOLDR

is instead !’b. (’a -> ’b -> ’b) -> ’b -> ’a ’col -> ’b.
The use of a universal type and a type abstraction term here provides the generality

we were looking for, so that fold can be used to return results of any desired type.

20- Hol_datatype ‘collection =
<| this : ’x ’col;

ops : (’col,’x) collection_ops |>‘;
<<HOL message: Defined type: "collection">>
> val it = () : unit

- val fold_def =
Define ‘fold f (e:’b) (c:(’col,’a)collection) = c.ops.fold f e c.this‘;

Definition has been stored under "fold_def"
> val fold_def =

|- !f e c. fold f e c = c.ops.fold f e c.this
: thm

If we turn on the printing of the types of terms, we can see in more detail the types
involved in the fold operation.

21- show_types := true;
> val it = () : unit
- fold_def;
> val it =

|- !(f :’a -> ’b -> ’b) (e :’b) (c :(’col :ty => ty, ’a) collection).
fold f e c = c.ops.fold [:’b:] f e c.this

: thm

4.1. COLLECTIONS 55

Now in the definition of fold, we see [:’b:]. This indicates an application of the
term c.ops.fold to the type ’b as a type argument. It is like an application of a term to
a term argument, except the argument is a type, not a term. In such a type application
term, the operator has to have a universal type; in this case, the type of c.ops.fold is
!’b. (’a -> ’b -> ’b) -> ’b -> ’a ’col -> ’b. The result of the type application
is to substitute the type argument for the bound type variable throughout the term. In
this case, the result has type (’a -> ’b -> ’b) -> ’b -> ’a ’col -> ’b. It is there-
fore ready to take as its next arguments the terms f, e, and c.this.

The type arguments to terms are important for the logic, but in practice they tend to
make terms harder to read, so by default their printing is turned off. Also, in many cases
the user need not mention them when writing terms; the parser’s type inference will try
to deduce where they are needed, and then exactly which type argument should be
inserted there. That is how the [:’b:] type argument was inserted into the definition
of fold above.

This version of the fold operation can be used easily to construct folds returning
different types, without any manual instantiations.

22- show_types := false;
> val it = () : unit
- val ex1 = ‘‘<| this := [2;3;5;7]; ops := list_ops |>‘‘;
> val ex1 = ‘‘<|this := [2; 3; 5; 7]; ops := list_ops|>‘‘ : term

- ‘‘fold (\x y. x+y) 0 ^ex1‘‘;
> val it =

‘‘fold (\x y. x + y) 0 <|this := [2; 3; 5; 7]; ops := list_ops|>‘‘
: term

- ‘‘fold (\x y. EVEN x /\ y) T ^ex1‘‘;
> val it =

‘‘fold (\x y. EVEN x /\ y) T <|this := [2; 3; 5; 7]; ops := list_ops|>‘‘
: term

4.1.3 Map operation

This seems to be working well. Let’s try another extension, adding a “map” operation
to the group of operations on collections. The basic idea of a map operation is to apply
a function to every element of a collection, and from all of the results form a new
collection. For lists, HOL contains the MAP function predefined, and there are similar
functions for sets and bags.

23- type_of ‘‘MAP‘‘;
<<HOL message: inventing new type variable names: ’a, ’b>>
> val it =

‘‘:(’a -> ’b) -> ’a list -> ’b list‘‘
: hol_type

56 CHAPTER 4. HOL-OMEGA APPETIZERS

24- listTheory.MAP;
> val it =

|- (!f. MAP f [] = []) /\ !f h t. MAP f (h::t) = f h::MAP f t
: thm

Suppose we try to extend the set of operations with an entry for map, using a univer-
sally quantified type in the same style as we did for fold.

25- Hol_datatype ‘collection_ops =
<| length : ’x ’col -> num;

empty : ’x ’col;
insert : ’x -> ’x ’col -> ’x ’col;
fold : !’y. (’x -> ’y -> ’y) -> ’y -> ’x ’col -> ’y;
map : !’y. (’x -> ’y) -> ’x ’col -> ’y ’col |>‘;

<<HOL message: Defined type: "collection_ops">>
> val it = () : unit

To fashion an example of this map operation, we need to provide a term whose type is
the universal type !’y. (’x -> ’y) -> ’x ’col -> ’y ’col, such as \:’b. MAP.

26- val list_ops = Define
‘list_ops = <|empty := []:’a list; insert := CONS; length := LENGTH;

fold := \:’b. FOLDR; map := \:’b. MAP |>‘;
Definition has been stored under "list_ops_def"
> val list_ops =

|- list_ops =
<|empty := []; insert := CONS; length := LENGTH;
fold := (\:’b. FOLDR); map := (\:’b. MAP)|>

: thm

- type_of ‘‘list_ops‘‘;
<<HOL message: inventing new type variable names: ’a>>
> val it =

‘‘:(list, ’a) collection_ops‘‘
: hol_type

Next we can recreate the type of collections, using this expanded record of operations.

27- Hol_datatype ‘collection =
<| this : ’x ’col;

ops : (’col,’x) collection_ops |>‘;
<<HOL message: Defined type: "collection">>
> val it = () : unit

Now we define the “map” operation that takes a function and a collection and creates
a new collection from the results.

28- val map_def =
Define ‘map (f:’a -> ’b) c =

<| this := c.ops.map f c.this;
ops := c.ops |> ‘;

4.1. COLLECTIONS 57

Unfortunately, this definition runs into difficulties with the typing.

29Exception raised at Preterm.typecheck:
on line 113, characters 15-30:

Type inference failure: unable to infer a type for the application of

_ record fupdatethis
(K

((c :(’col :ty => ty, ’a) collection).ops.map [:’b:] (f :’a -> ’b)
c.this) :’b ’col -> ’b ’col)

between line 112, character 12 and line 113, character 30

which has type

:(’col :ty => ty, ’b) collection -> (’col, ’b) collection

to

<|ops := (c :(’col :ty => ty, ’a) collection).ops|>

on line 113, characters 15-30

which has type

:(’col :ty => ty, ’a) collection

unification failure message: unify failed

! Uncaught exception:
! HOL_ERR

The details of the above error message are not important. The real problem here is that
the type of the new collection created is (’col,’b)collection, while the type of the
original collection is (’col,’a)collection. The new collection being formed has its
this field given a value of the new collection type, but the ops field is given a record of
operations on the old collection type, not the new one.

This problem can be resolved by using one more universal type for the ops field itself.

30- Hol_datatype ‘collection =
<| this : ’x ’col;

ops : !’x. (’col,’x) collection_ops |>‘;
<<HOL message: Defined type: "collection">>
> val it = () : unit

Now the map function can be defined as we desire, with no type problems.

58 CHAPTER 4. HOL-OMEGA APPETIZERS

31- val map_def =
Define ‘map (f:’a -> ’b) c =

<| this := c.ops.map f c.this;
ops := c.ops |> ‘;

Definition has been stored under "map_def"
> val map_def =

|- !f c. map f c = <|this := c.ops.map f c.this; ops := c.ops|>
: thm

To check on the types involved, let’s turn on the display of types.

32- show_types := true;
> val it = () : unit

- map_def;
> val it =

|- !(f :’a -> ’b) (c :(’col :ty => ty, ’a) collection).
map f c =
<|this := (c.ops [:’a:]).map [:’b:] f c.this; ops := c.ops|>

: thm

Here we can see not only the type argument [:’b:] inserted for map, as was done before
for fold, but also the operations record itself c.ops is given the type argument [:’a:].
The parser’s type inference was able to deduce the necessary type arguments from the
actual user input and insert them in the appropriate places.

As a final example in this section, let’s consider an operation that takes two col-
lections, which may use different underlying data structures, and combines their el-
ements into a single collection. We can do this without expanding the definition of
collection ops, but just using the operations that are already present.

33- val union_def =
Define ‘union (c1: (’col1,’a)collection) (c2: (’col2,’a)collection) =

<| this := fold c2.ops.insert c2.this c1 : ’a ’col2;
ops := c2.ops |>‘;

Definition has been stored under "union_def"
> val union_def =

|- !(c1 :(’col1 :ty => ty, ’a) collection)
(c2 :(’col2 :ty => ty, ’a) collection).
union c1 c2 =
<|this := fold (c2.ops [:’a:]).insert c2.this c1; ops := c2.ops|>

: thm

- type_of ‘‘union‘‘;
<<HOL message: inventing new type variable names: ’a, ’b, ’c>>
> val it =

‘‘:(’a :ty => ty, ’b) collection ->
(’c :ty => ty, ’b) collection -> (’c, ’b) collection‘‘

: hol_type

4.1. COLLECTIONS 59

So the use of universal types provides the needed type polymorphism, which could
not have been accomplished using simply the traditional higher order logic type system.

Much of the advantage of HOL-Omega comes because of the new universal types. The
free type variables in classic HOL types could be thought of as being implicitly univerally
quantified, as they can be substituted by any other type to form a type instance. But in
HOL-Omega, the ∀ quantification can be found within a type, as in (∀α.α → α) → bool.
This use of the ∀ in the left hand side of a function type (→) is key to much of the new
functionality of HOL-Omega.

4.1.4 Abstract collections

We have seen how one could create a very nice version of collections, modeled in an
object-oriented way, so that the operations that obtain the size of a collection, fold over
a collection, etc., are invoked the same whether the actual internal data structure is a
list, set, or bag. But what that internal data structure is, is still apparent from the type
of the collection.

34- val ex1 = ‘‘<| this := [2;3;5;7]; ops := list_ops |>‘‘;
> val ex1 = ‘‘<|this := [2; 3; 5; 7]; ops := list_ops|>‘‘ : term
- type_of ex1;
> val it =

‘‘:(list, num) collection‘‘
: hol_type

- val ex2 = ‘‘<| this := {2;3;5;7}; ops := set_ops |>‘‘;
> val ex2 = ‘‘<|this := {2; 3; 5; 7}; ops := set_ops|>‘‘ : term
- type_of ex2;
> val it =

‘‘:(\’b. ’b -> bool, num) collection‘‘
: hol_type

The internal data structure is visible as list in example ex1 and as \’b. ’b -> bool

in example ex2.
That internal data structure can be represented by a HOL-Omega type operator vari-

able, and that is how a general routine could be written to handle arguments built using
any collection structure, as was done above.

But suppose one wanted to completely hide the actual data structure used, abstracting
that information away from the external use of the collection, considering it a detail of
the implementation. This could be very useful in modularizing a proof, where certain
parts of the proof know about the particular implementation data structure, but above a
certain layer that information is hidden, and the rest of the proof cannot know or rely on
that choice, but instead must work the same irrespective of what data structure is used.
This makes it possible, at a later time, to change the implementation data structure to
another structure, perhaps better suited to the task at hand, and to have that change

60 CHAPTER 4. HOL-OMEGA APPETIZERS

not affect any of the proof work done above the layer where that choice was abstracted,
like the edge of a module where internal implementation details cannot leak across
the module boundary. This kind of information hiding is very helpful in creating large
software systems that are still maintainable and modifiable, and the same ideas apply
for large proofs as well.

To accomplish this information hiding, HOL-Omega provides a new variety of type
called an existential type.

35- ‘‘:?’col. (’col, ’a) collection‘‘;
> val it =

‘‘:?’col :ty => ty. (’col, ’a) collection‘‘
: hol_type

- type_vars it;
> val it = [‘‘:’a‘‘] : hol_type list

Existential types are written in the type language, similar to universal types, but using
an existential type operator. In the example above, the existential notation binds the
type variable ’col across the body of the type, (’col,’a)collection, so that the free
type variables of the type contain just the type variable ’a, not ’col.

Terms of existential type are called packages. They can be constructed as a special
form using the pack keyword, as follows.

36- val list_pack = ‘‘pack (:list, <|this := [2;3;2]; ops := list_ops|>)‘‘;
> val list_pack =

‘‘pack (:list,<|this := [2; 3; 2]; ops := list_ops|>)‘‘
: term

- type_of list_pack;
> val it =

‘‘:?’x :ty => ty. (’x, num) collection‘‘
: hol_type

The keyword pack is followed by a pair where the first element is a type, preceeded
by a colon, and the second element is a term. The term, which normally involves the
type mentioned, is packaged up so that the type mentioned is hidden, being replaced
by a type variable, which becomes the bound type variable of the existential type of the
resulting package.

In the case above, the fact that list pack actually contains a list has been removed
from the package’s type, where list has been replaced by the type variable ’x.

There is the possibility of ambiguity in the types when creating such a package. Given
a pair of a type and a term as above, there many be multiple ways that a resulting
existential type may be formed. In such cases, the ambiguity can be resolved by using
a type annotation on the package. For example, in the session below two different
packages are created from exactly the same ingredients, except that one of them has a
type annotation. Note that the resulting packages have different existential types; they
are therefore different packages.

4.1. COLLECTIONS 61

37- val list_pack2 =
‘‘pack (:list, <| this := [[2];[3;5];[7]]; ops := list_ops |>)‘‘;

> val list_pack2 =
‘‘pack (:list,<|this := [[2]; [3; 5]; [7]]; ops := list_ops|>)‘‘
: term

- type_of list_pack2;
> val it =

‘‘:?’x :ty => ty. (’x, num ’x) collection‘‘
: hol_type

- val list_pack3 =
‘‘pack (:list, <| this := [[2];[3;5];[7]]; ops := list_ops |>)

: ?’x. (’x,num list) collection‘‘;
> val list_pack3 =

‘‘pack (:list,<|this := [[2]; [3; 5]; [7]]; ops := list_ops|>)‘‘
: term

- type_of list_pack3;
> val it =

‘‘:?’x :ty => ty. (’x, num list) collection‘‘
: hol_type

We can construct packages of any kind of collection, and if the collections contain
elements of the same type, then the packages themselves have the same type.

38- val set_pack =
‘‘pack (:\’a.’a set, <| this := {2;3;2}; ops := set_ops |>)‘‘;

> val set_pack =
‘‘pack (:\’a. ’a -> bool,<|this := {2; 3; 2}; ops := set_ops|>)‘‘
: term

- type_of set_pack;
> val it =

‘‘:?’x :ty => ty. (’x, num) collection‘‘
: hol_type

- val bag_pack =
‘‘pack (:\’a.’a bag, <| this := {|2;3;2|}; ops := bag_ops |>)‘‘;

> val bag_pack =
‘‘pack (:\’a. ’a -> num,<|this := {|2; 3; 2|}; ops := bag_ops|>)‘‘
: term

- type_of bag_pack;
> val it =

‘‘:?’x :ty => ty. (’x, num) collection‘‘
: hol_type

Since all these packages have the same type, it is easy to write routines to take them
as arguments. The new feature needed is an extension of the let ... in form to
deconstruct a package into a pair of a type variable and a term, where the type variable
represents the actual type that was hidden, and where the term represents the body of
the package, but where the hidden type is again represented by the type variable.

62 CHAPTER 4. HOL-OMEGA APPETIZERS

39- val lengthp_def =
Define ‘lengthp (p: ?’col. (’col,’a)collection) =

let (:’col, c) = p in
c.ops.length c.this ‘;

Definition has been stored under "lengthp_def"
> val lengthp_def =

|- !p. lengthp p = (let (:’col :ty => ty,c) = p in c.ops.length c.this)
: thm

In the let form above, the package p (of type ?’col.(’col,’a)collection) is un-
packed into the pair of the type variable ’col and the term variable c, where c has
the type (’col,’a)collection. The scopes of both ’col and c include the body of the
let...in form. But the scope of ’col also includes the term variable c, so that the ’col

that appears in the type of c, (’col,’a)collection, is that ’col that was just bound.
Both ’col and c have no meaning outside the let, so in particular it is meaningless to
have the body of the let return a value of a type involving ’col. Such an escape of
’col from its scope is prevented by the strong typing of the HOL-Omega logic.

Suppose we try to violate this rule, by defining an operation that returns the internal
data structure of a collection. Such a definition produces the following error message:

40- val this_def =
Define ‘this (p: ?’col. (’col,’a)collection) =

let (:’col, c) = p in
c.this ‘;

Exception raised at Preterm.typecheck:
roughly on line 85, characters 14-19:

Type inference failure: unable to infer a type for the application of

(UNPACK :(!(’x :ty => ty). (’x, ’a) collection -> ’a (’col :ty => ty))
-> (?(’x :ty => ty). (’x, ’a) collection) -> ’a ’col)

roughly on line 84, characters 16-29

to

\:’col :ty => ty. (\(c :(’col, ’a) collection). c.this)

roughly on line 85, characters 14-19

which has type

:!’col :ty => ty. (’col, ’a) collection -> ’a ’col

unification failure message: unify failed

! Uncaught exception:
! HOL_ERR

4.1. COLLECTIONS 63

But as long as we don’t violate the rules, we are fine, and can define operations to
return packages newly constructed out of parts of other packages. Here is an example of
an operation that takes a package as an argument, inserts an element, and then returns
the result as a new package.

41- val insertp_def =
Define ‘insertp (e:’a) (p: ?’col. (’col,’a)collection) =

let (:’col, c) = p in
pack (:’col,

<| this := c.ops.insert e c.this : ’a ’col;
ops := c.ops |>) ‘;

Definition has been stored under "insertp_def"
> val insertp_def =

|- !e p.
insertp e p =
(let (:’col :ty => ty,c) = p
in
pack
(:’col :ty => ty,
<|this := c.ops.insert e c.this; ops := c.ops|>))

: thm

We can define operations to do folds and maps on collections using the operators fold
and map defined before, but where the new operations now work on packages, where
the data structure is hidden internally.

42- val foldp_def =
Define ‘foldp (f:’a -> ’b -> ’b) (e:’b) (p: ?’col. (’col,’a)collection) =

let (:’col, c) = p in
fold f e c ‘;

Definition has been stored under "foldp_def"
> val foldp_def =

|- !f e p. foldp f e p = (let (:’col :ty => ty,c) = p in fold f e c)
: thm

- val mapp_def =
Define ‘mapp (f:’a -> ’b) (p: ?’col. (’col,’a)collection) =

let (:’col, c) = p in
pack (:’col, map f c) ‘;

Definition has been stored under "mapp_def"
> val mapp_def =

|- !f p.
mapp f p =
(let (:’col :ty => ty,c) = p in pack (:’col :ty => ty,map f c))

: thm

In fact, we can actually build a single operation that takes any two collection pacakges
and combines their elements, even if they happen to have different underlying data

64 CHAPTER 4. HOL-OMEGA APPETIZERS

structures, like lists and bags. The result here is calculated to have the same underlying
data structure as the second argument.

43- val unionp_def =
Define ‘unionp (p1: ?’col. (’col,’a)collection)

(p2: ?’col. (’col,’a)collection) =
let (:’col1, c1) = p1 in
let (:’col2, c2) = p2 in

pack (:’col2, union c1 c2) ‘;
Definition has been stored under "unionp_def"
> val unionp_def =

|- !p1 p2.
unionp p1 p2 =
(let (:’col1 :ty => ty,c1) = p1 in
let (:’col2 :ty => ty,c2) = p2
in
pack (:’col2 :ty => ty,union c1 c2))

: thm

Using packages in this way makes it easier to modularize a large proof, by provid-
ing a way to hide the information about which particular types are being used at a
lower level in the overall proof. This information hiding has major advantages for proof
maintenance and modification over time.

Chapter 5

The HOL-Omega Logic

An earlier chapter covered the classic HOL logic. This chapter will discuss the HOL-
Omega logic, and focus on its extensions and new features not present in classic HOL. In
essence, these center on two main ideas, and what flows as a consequence from each:

• Types can be abstracted by type variables (similar to how terms are abstracted by
term variables in the lambda calculus).

– Type operators are curried, so that they may take one argument at a time.

– Every type has a kind; kinds determine which type applications are sensible.

– Type variables can represent type operators.

• Terms can be abstracted by type variables (similar to System F).

– The type of such an abstraction is a universal type.

– Such an abstraction may be applied as a function to a type argument.

– Such applications are managed by classifying all types into ranks.

In this chapter, we will give the new notation used to write expressions of the HOL-
Omega logic, how to construct these expressions by ML functions, and also discuss new
HOL-Omega proof techniques. Only the most essential new elements are given here,
being a tutorial. The full logic is described in detail in DESCRIPTION.

5.1 New notation

The table below summarizes a useful subset of the new notation used in HOL-Omega.

New terms of the HOL-Omega Logic

Variety of term HOL-Omega notation Standard notation Description

∀-type quantification !:α.t ∀α. t for all α : t
∃-type quantification ?:α.t ∃α. t for some α : t
λ-type abstraction \:α.t λα. t given α, yield t
Type application t [:σ:] t[σ] apply t to type σ

65

66 CHAPTER 5. THE HOL-OMEGA LOGIC

The forms !:α.t and ?:α.t are straightforward analogs of the universal and existen-
tial quantifiers for terms !x.t and ?x.t, except that instead of a term variable x being
quantified over all values of the type of x, a type variable α is being quantified over all
types of the kind of α. Kinds will be described later in this chapter. For both quanti-
fiers, the body t must have boolean type, and the meaning of the quantification is that
the body is always or sometimes true as α ranges over its domain. Similarly, \:α.t is an
analog of term abstractions \x.t. Here the meaning of the abstraction is a function from
the domain of α to the meaning of t, with free occurrences of α in t substituted by the
function’s argument. In each of these three forms, the type variable α may occur free
in the body t, and such occurrences are considered bound by the type quantification
or type abstraction. The form t [:σ:] is an analog of the normal application of a term
function to a term argument, except that here the argument is a type, not a term.

The sequences !:, ?:, \:, [:, and :] are each considered one symbol. The presence of
the colon (:) in these is meant as a reminder that a type is involved, rather than a term.

Each of these forms can also handle multiple types, not just one:

New terms of the HOL-Omega Logic

Variety of term HOLω notation Stand. notation Description

∀-type quantification !:α1 . . . αn.t ∀α1 . . . αn. t for all α1, . . . , αn : t
∃-type quantification ?:α1 . . . αn.t ∃α1 . . . αn. t for some α1, . . . , αn : t
λ-type abstraction \:α1 . . . αn.t λα1 . . . αn. t given α1, . . . , αn, yield t
Type application t [:σ1, . . . , σn:] t[σ1, . . . , σn] apply t to types σ1, . . . , σn

As for HOL, terms of the HOL-Omega logic are represented in ML by the abstract
type term. They are normally input between double back-quote marks. For exam-
ple, the expression ‘‘!:’a. P [:’a:] ==> Q [:’a:]‘‘ evaluates in ML to a term rep-
resenting ∀’a. P[’a] ⇒ Q[’a]. The new terms can be manipulated by various built-
in ML functions, similar to the ones seen previously. For example, the ML function
dest_tyforall with ML type term -> hol_type * term splits a universal type quantifi-
cation into a pair of a type and a term, where the type is the bound type variable and
the term is the body of the quantification. Similarly, the ML function dest_tycomb of
type term -> term * hol_type splits a type application into its term operator and its
type operand. 1

When ML values of type term are submitted to the ML interpreter, they are displayed
back to the user, along with their ML type. The text that is displayed for a term is affected
by several global settings. Among these are whether types within the term should be dis-
played, such as the types of variables, and whether the Unicode character set should be

1All of the examples below assume that the user is running hol, the executable for which is in the
bin/ directory.

5.1. NEW NOTATION 67

used to display some term operators and type variables using special symbols and Greek
letters. For clarity, in these examples of interactions with HOL-Omega, we will assume
that the use of Unicode characters has been turned off by set trace "Unicode" 0, as
in the first session below. But in normal use, most users will probably wish to keep the
default setting, in order to enjoy the more attractive display.

By default, most types are not displayed when terms are printed. In addition to the
types of variables, this also includes the type arguments in type applications, such as
[:’a:] in the term P [:’a:], which appears as just P.

1> set_trace "Unicode" 0;
val it = () : unit
> ‘‘!:’a. P [:’a:]‘‘;
val it = ‘‘!:’a. P‘‘ : term
> dest_tyforall it;
val it = (‘‘:’a‘‘, ‘‘P‘‘) : hol_type * term
> dest_tycomb(#2 it);
val it = (‘‘P‘‘, ‘‘:’a‘‘) : term * hol_type

Alternatively, we can set show types to true in order to see all type applications.

2> show_types := true;
val it = () : unit
> ‘‘!:’a. P [:’a:]‘‘;
val it =

‘‘!:’a. (P :!’a. bool) [:’a:]‘‘
: term

> dest_tyforall it;
val it =

(‘‘:’a‘‘,
‘‘(P :!’a. bool) [:’a:]‘‘)
: hol_type * term

> dest_tycomb(#2 it);
val it =

(‘‘(P :!’a. bool)‘‘,
‘‘:’a‘‘) : term * hol_type

We collectively call such type quantifications and type abstractions, whether single or
multiple, type binders.

Note: There is an important restriction on forming such type binders. Given a form
which binds a type variable α, such as !:α.t, the body t cannot contain any free term
variables x whose type contains (freely) the type variable α. If it did, then the variable
x would also be a free variable of !:α.t (since a term variable x is never bound by a
type binder like !:α). But then since x is visible outside the type binder, so is x’s type, α,
which is the very type variable bound by the type binder. But α has no meaning outside
its type binder, so this makes no sense. Here is an example of violating this restriction.

68 CHAPTER 5. THE HOL-OMEGA LOGIC

3> ‘‘!:’a. (x:’a) = x‘‘;

Type variable scoping failure: the abstraction by the type variable

:’a

on line 2, characters 4-5

of the term

(x :’a) = x

roughly on line 2, characters 8-17

contains the free term variable

(x :’a)

at line 2, character 9

whose type contains freely the type variable being abstracted,

:’a

on line 2, characters 4-5

This restriction is only sensible, since if one could look at a free variable such as x:’a
from outside the type binder, then one could also see the type variable ’a (since it is a
part of x), but ’a is supposed to be hidden within the type binder !:’a. (x:’a) = x.

Syntax of HOL-Omega types The types of the HOL-Omega logic form an ML type called
hol_type. Every term in the logic has a well-defined type, but unlike HOL, not every
type has some term of which it is the type. In other words, there are some types which
are not the type of any term. Expressions having the form ‘‘: · · · ‘‘ evaluate to logical
types. The built-in function type_of has ML type term->hol_type and returns the logical
type of a term.

To try to minimise confusion between the logical types of HOL-Omega terms and the
ML types of ML expressions, the former is referred to as object language types and the
latter as meta-language types. For example, ‘‘!:’a.T‘‘ is an ML expression that has
meta-language type term and evaluates to a term with object language type ‘‘:bool‘‘.

4> ‘‘!:’a.T‘‘;
val it = ‘‘!:’a. T‘‘ : term

> type_of it;
val it = ‘‘:bool‘‘ : hol_type

5.1. NEW NOTATION 69

Term constructors HOL-Omega terms can be input, as above, by using explicit quota-
tion, or they can be constructed by calling ML constructor functions.

Each of the new forms can be constructed, broken apart, or tested by ML functions:

ML constructors, destructors, and tests

HOLω notation Constructor Destructor Test

!:α.t mk tyforall dest tyforall is tyforall

?:α.t mk tyexists dest tyexists is tyexists

\:α.t mk tyabs dest tyabs is tyabs

t [:σ:] mk tycomb dest tycomb is tycomb

There are similar ML functions for the forms with multiple types:

ML constructors and destructors for multiple types

HOLω notation Constructor Destructor

!:α1 . . . αn.t list mk tyforall strip tyforall

?:α1 . . . αn.t list mk tyexists strip tyexists

\:α1 . . . αn.t list mk tyabs strip tyabs

t [:σ1, . . . , σn:] list mk tycomb strip tycomb

Here are some examples of their use:

5> val x = mk_tyforall(‘‘:’a‘‘, ‘‘T‘‘);
val x = ‘‘!:’a. T‘‘ : term

> val x2 = mk_tyforall(‘‘:’b‘‘, x);
val x2 = ‘‘!:’b ’a. T‘‘ : term

> is_tyforall x2;
val it = true : bool

> dest_tyforall x2;
val it = (‘‘:’b‘‘, ‘‘!:’a. T‘‘) : hol_type * term
> strip_tyforall x2;
val it = ([‘‘:’b‘‘, ‘‘:’a‘‘], ‘‘T‘‘)

: hol_type list * term

> list_mk_tyforall([‘‘:’c‘‘,‘‘:’b‘‘,‘‘:’a‘‘], ‘‘T‘‘);
val it = ‘‘!:’c ’b ’a. T‘‘ : term
> strip_tyforall it;
val it = ([‘‘:’c‘‘, ‘‘:’b‘‘, ‘‘:’a‘‘], ‘‘T‘‘)

: hol_type list * term

70 CHAPTER 5. THE HOL-OMEGA LOGIC

Varieties of terms The four different varieties of terms of HOL are still present in HOL-
Omega: variables, constants, function applications (‘‘t1 t2‘‘), and lambda abstractions
(‘‘\x.t‘‘). In addition, HOL-Omega adds two new fundamental varieties: type applica-
tions (‘‘t [:σ:]‘‘) and type abstractions (‘‘\:α.t‘‘). More complex terms, including
the type quantifications ‘‘!:α.t‘‘ and ‘‘?:α.t‘‘, are just compositions of terms from
this simple set.

It is foundational that every term has a type. The question then follows, what are
the types of these two new varieties of terms? In particular, what is the type of a type
abstraction term ‘‘\:α.t‘‘? This turns out to be a potent and valuable new variety of
types, not present in HOL but introduced in HOL-Omega, called universal types.

Universal types A universal type is written as !α.σ, where α is a type variable and σ
is a type expression. With Unicode it appears as ∀α.σ. The meaning of such a universal
type is an infinite collection of all the possible types that σ can represent, for all the
possible values of α, where the collection is indexed by the values of α.

Do not confuse this universal type with the universal term expression !:α.t.
The type variable α usually will appear free in σ, but it does not have to. α is consid-

ered bound by the ! quantifier over the body σ, so α will never be a free type variable
of !α.σ. The ML function type vars returns a list of the free type variables in a type.
Universal types may be constructed using the parser, or they may be constructed and
taken apart by ML functions mk univ type and dest univ type.

6> val ty1 = mk_univ_type(‘‘:’a‘‘, ‘‘:’a -> ’a‘‘);
val ty1 = ‘‘:!’a. ’a -> ’a‘‘

: hol_type

> type_vars ty1;
val it = [] : hol_type list

> dest_univ_type ty1;
val it = (‘‘:’a‘‘, ‘‘:’a -> ’a‘‘)

: hol_type * hol_type

> val ty2 = ‘‘:!’a. ’a -> ’b‘‘;
val ty2 = ‘‘:!’a. ’a -> ’b‘‘

: hol_type

> type_vars ty2;
val it = [‘‘:’b‘‘] : hol_type list

Types of terms We can now state the types of the two new varieties of terms, type
applications and type abstractions.

Type abstraction terms have types which are universal types. In particular, if the term
t has type σ, then the term \:α.t has type !α.σ.

5.1. NEW NOTATION 71

Type application terms have types determined in the following way. For a type appli-
cation term t[:τ:] to be well-typed, it is required that the term t have a universal type,
say !α.σ. Then the type of t[:τ:] is σ[τ/α], where the type expression τ is substituted
for all free occurences of α in σ.

7> type_of ‘‘\:’a. 3:num‘‘;
val it = ‘‘:!’a. num‘‘ : hol_type

> type_of ‘‘(f : !’a. ’a -> ’a) [: num :]‘‘;
val it = ‘‘:num -> num‘‘ : hol_type

> ‘‘(f : ’a -> ’a) [: num :]‘‘;

Type inference failure: unable to form the application of the term

(f :’a -> ’a)

at line 17, character 3

to the type

:num :ty

on line 17, characters 20-22

since the term does not have a universal type.

unification failure message: unify failed

Ranks of types To ensure the soundness of the HOL-Omega logic, in addition to being
well-typed, a term must also be well-ranked. In HOL-Omega, every type has a rank. The
rank of a type is a natural number 0, 1, 2, ...; it can never be negative. This is essentially
a measure of how deeply universal (or existential) types are nested within the type. All
the types in the classic HOL logic have no universal types and are of rank 0. Forming
a universal type out of a bound type variable of rank 0 and a body of rank 0 or 1 will
yield a type of rank 1. Higher rank types can be constructed as well. All the types that
can be constructed in HOL-Omega can be classified into one of these ranks. The rank of
a type may be obtained by the ML function rank of type of type hol type -> int.

The purpose of ranks is to restrict what types can properly be the argument in a
type application term. If one could apply a type abstraction term to its own type as an
argument, this would introduce a circularity that could imperil the soundness of the
logic. To prevent this, for every type application term t[:τ:], where t has type !α.σ, it
is required that the rank of τ be less than or equal to the rank of α. If it is greater than
the rank of α, this will be caught and reported as an error.

72 CHAPTER 5. THE HOL-OMEGA LOGIC

By default, all type variables are given rank 0. The user can specify a particular rank
for a type variable by annotating it with a rank constraint on types, as in (’a :<= 1).

The rank restriction on type applications is checked when terms are constructed by
the ML function mk tycomb.

8> mk_tycomb(‘‘f : !’a:<=0. ’a -> ’a‘‘, ‘‘:!’a:<=0. ’a -> ’a‘‘)
handle e => Raise e;

Exception raised at Term.mk_tycomb:
type application argument has rank exceeding that expected
Exception-

HOL_ERR
{message = "type application argument has rank exceeding that expected",
origin_function = "mk_tycomb", origin_structure = "Term"} raised

The rank restriction on type applications is also checked when terms are parsed.
9> ‘‘(\:’a:<=0. \x:’a. x) [: !’a:<=0. ’a -> ’a :]‘‘;

Rank inference failure: unable to infer a rank for the application of the term

\:’a. (\(x :’a). x)

roughly on line 4, characters 20-21

which expects a type of rank 0

to the type

:!’a. ’a -> ’a

roughly on line 4, characters 38-42

which has rank 1

rank unification failure message: unify failed
Exception-

HOL_ERR
{message = "roughly on line 4, characters 38-42:\nfailed", origin_function =
"typecheck", origin_structure = "Preterm"} raised

Kinds of types Just as every term has a type, in HOL-Omega every type has a kind.
Kinds can be thought of as collections of type values, just as types can be thought of as
collections of term values. Also, just as types are used to determine when an argument
to a term function is properly well-typed, kinds are used to determine when a type
argument to a type function is properly well-kinded. As in HOL-Omega terms and types
are represented in ML as members of the ML types term and hol type, so kinds are
represented as members of the ML type kind.

5.1. NEW NOTATION 73

The most common and basic kind is ty. This is the kind of every type in the logic of
classic HOL. The ML function kind of : hol type -> kind shows the kind of a type:

10> kind_of ‘‘:bool‘‘;
val it = ‘‘::ty‘‘ : kind

> kind_of ‘‘:num‘‘;
val it = ‘‘::ty‘‘ : kind

> kind_of ‘‘:num -> num‘‘;
val it = ‘‘::ty‘‘ : kind

> kind_of ‘‘:num list -> (num list # bool)‘‘;
val it = ‘‘::ty‘‘ : kind

> load "realLib";
val it = () : unit
> kind_of ‘‘:real‘‘;
val it = ‘‘::ty‘‘ : kind

The kinds above are printed like types, except that the contents of the quotation start
with a double colon (::), instead of a single colon. In this fashion, the parser can be
used to create kinds, just as it can create types and terms in the HOL-Omega logic.

There are multiple instances of the ty kind, one for each rank. Just as each instance
of the term NIL has its type as an attribute, so each instance of ty has its rank as an
attribute. The default rank is 0, or a kind’s rank can be specified using a rank constraint,
like ty:3. The rank of a kind is obtained by the ML function rank of : kind -> int.

11> ‘‘::ty‘‘;
val it = ‘‘::ty‘‘ : kind
> rank_of it;
val it = 0 : rank

> ‘‘::ty : 3‘‘;
val it = ‘‘::ty:3‘‘ : kind
> rank_of it;
val it = 3 : rank

In the previous example of type application terms, that generated a rank error during
parsing, if we omit the rank constraints, then the rank inference will attempt to satisfy
the rank restriction on type applicatons by inferring that the type abstraction’s bound
type variable must have rank 1 to accomodate the rank 1 type argument, and succeed.

12> show_types := true;
val it = () : unit
> ‘‘(\:’a. \x:’a. x) [: !’a. ’a -> ’a :]‘‘;
val it =

‘‘(\:’a :(ty:1). (\(x :’a). x)) [:!’a. ’a -> ’a:]‘‘
: term

74 CHAPTER 5. THE HOL-OMEGA LOGIC

Here the printer shows the type abstraction term’s bound type variable ’a with an
annotation, ’a :(ty:1). This is a kind constraint, saying that the kind of ’a is ty:1,
where the kind itself is annotated to have rank 1 by a rank constraint on kinds, ty:1.
This means that the type variable ’a also has rank 1.

So types may have constraints which are kinds, and kinds may have constraints which
are ranks. In addition, we have seen how types may have contraints which are ranks.

Arrow kinds So far all the types we have seen have had the kind ty. The question is,
are their any types with different kinds? There are, as we shall see with the list type.

13> kind_of ‘‘:num list‘‘;
val it = ‘‘::ty‘‘ : kind

> kind_of ‘‘:’a list‘‘;
val it = ‘‘::ty‘‘ : kind

> kind_of ‘‘:list‘‘;
val it = ‘‘::ty => ty‘‘ : kind

This may look unexpected and strange to an experienced HOL user, since in HOL one
can never have the list type name sitting alone like this. The list type is a type
operator, and it expects exactly one argument. In HOL this argument must always be
supplied immediately to create a type, but in HOL-Omega we consider list to be a type
in its own right. It is distinguished from the classic HOL types that are not type operators
by its kind, which is here reported to be ty => ty.

The kind ty => ty is an example of an arrow kind, written as a binary infix between
two kinds which are the arguments to the arrow. These arguments may be any kinds,
so they may themselves be arrow kinds. The arrow operator => is right associative, so
the default parenthesization is to the right.

14> ‘‘::(ty => ty) => ty‘‘;
val it = ‘‘::(ty => ty) => ty‘‘ : kind
> ‘‘::(ty => ty) => (ty => ty)‘‘;
val it = ‘‘::(ty => ty) => ty => ty‘‘ : kind

Now we can explore what are the kinds of some other type operators of HOL:

15> kind_of ‘‘:option‘‘;
val it = ‘‘::ty => ty‘‘ : kind
> kind_of ‘‘:fun‘‘;
val it = ‘‘::ty => ty => ty‘‘ : kind
> kind_of ‘‘:prod‘‘;
val it = ‘‘::ty => ty => ty‘‘ : kind
> kind_of ‘‘:sum‘‘;
val it = ‘‘::ty => ty => ty‘‘ : kind

5.1. NEW NOTATION 75

Given an arrow kind k1 => k2, k1 is called the domain and k2 is called the range.
Kinds are used to manage which type operators can be properly applied to which

type arguments, just as types are used to manage which term functions can be properly
applied to which term arguments. To be well-kinded, a type operator can only be applied
to a type argument whose kind matches the type operator’s domain. If this is violated,
an exception is raised.

16> kind_of ‘‘:list‘‘;
val it = ‘‘::ty => ty‘‘ : kind
> kind_of ‘‘:num‘‘;
val it = ‘‘::ty‘‘ : kind
> kind_of ‘‘:num list‘‘;
val it = ‘‘::ty‘‘ : kind
> kind_of ‘‘:option list‘‘ handle e => Raise e;

Kind inference failure: unable to infer a kind for the application of

:list : ty => ty

on line 38, characters 18-21

to

:option : ty => ty

on line 38, characters 11-16

kind unification failure message: unify failed

Exception raised at Pretype.kindcheck:
on line 38, characters 18-21:
failed
Exception-

HOL_ERR
{message = "on line 38, characters 18-21:\nfailed", origin_function =
"kindcheck", origin_structure = "Pretype"} raised

Type operators with multiple arguments Type operators may have any number of
arguments, zero or more, but for a particular type operator, the number of arguments it
may take is fixed. In HOL this number is called the arity of the type operator, but in the
HOL-Omega logic this information is represented within the type operator’s kind.

17> kind_of ‘‘:fun‘‘;
val it = ‘‘::ty => ty => ty‘‘ : kind
> kind_of ‘‘:prod‘‘;
val it = ‘‘::ty => ty => ty‘‘ : kind
> kind_of ‘‘:sum‘‘;
val it = ‘‘::ty => ty => ty‘‘ : kind

76 CHAPTER 5. THE HOL-OMEGA LOGIC

If desired, the HOL arity of a type can be obtained by applying arity of to the type’s
kind. However, not all kinds fit this pattern, and cannot be considered as a simple arity.

18> kind_of ‘‘:fun‘‘;
val it = ‘‘::ty => ty => ty‘‘ : kind
> arity_of it;
val it = 2 : int

> ‘‘::(ty => ty) => ty‘‘;
val it = ‘‘::(ty => ty) => ty‘‘ : kind
> arity_of it handle e => Raise e;

Exception raised at Kind.arity_of:
not an arity kind
Exception-

HOL_ERR
{message = "not an arity kind", origin_function = "arity_of",
origin_structure = "Kind"} raised

So the type operators fun, prod, and sum, which each take two type arguments, all
have kind ty => ty => ty. The notation for this kind is meant to imply that the type
operators fun, prod, and sum are curried, that is, that they may take their arguments one
at a time. This is an extension beyond what is possible in HOL, where all type arguments
must be included immediately. But in HOL-Omega, it is perfectly reasonable to defer
such applications. The result of a partial application of arguments to a type operator
is generally another type operator that can be further applied to more arguments, until
the full number of arguments expected have been supplied.

19> ‘‘:num fun‘‘;
val it = ‘‘:num fun‘‘ : hol_type
> kind_of ‘‘:num fun‘‘;
val it = ‘‘::ty => ty‘‘ : kind
> ‘‘:bool (num fun)‘‘;
val it = ‘‘:num -> bool‘‘ : hol_type
> kind_of ‘‘:bool (num fun)‘‘;
val it = ‘‘::ty‘‘ : kind

Notice in ‘‘:bool (num fun)‘‘ that it was necessary to use parentheses. For back-
wards compatibility with HOL, by default the application of type operators to arguments
associates to the left. If the parentheses had been omitted as in ‘‘:bool num fun‘‘, the
type parser would have tried to first apply num as an operator to bool, and then to apply
fun to the result. Since num is not an operator, this would have generated an error.

Maintaining the backwards compatibility with HOL guarantees that classic type ex-
pressions such as the following will parse correctly.

20> ‘‘:(num # num) list option‘‘;
val it =

‘‘:(num # num) list option‘‘
: hol_type

5.1. NEW NOTATION 77

One can also use the traditional “tuple” notation for types to apply several arguments
to a type operator. The arguments are listed left to right in the tuple before the type
operator, so that the first argument to the type operator will be the left-most type in the
tuple, with the rest of the arguments succeeding it to the right, as is normal in HOL.

21> ‘‘:(num,bool)fun‘‘;
val it = ‘‘:num -> bool‘‘ : hol_type

Type applications The application of a type operator to a type argument is actually
a new variety of type in HOL, called a type application. These type applications may
be constructed using the parser as above, or constructed and destructed by the ML
functions mk app type and dest app type. Remember that when parsed or printed,
type operator application is postfix, not prefix as in the term language.

22> mk_app_type(‘‘:list‘‘, ‘‘:num‘‘);
val it = ‘‘:num list‘‘ : hol_type
> mk_app_type(‘‘:option‘‘, it);
val it = ‘‘:num list option‘‘ : hol_type
> dest_app_type it;
val it = (‘‘:option‘‘, ‘‘:num list‘‘)

: hol_type * hol_type

All types in the classic HOL logic that have more than one argument are represented
in HOL-Omega as a series of type applications. Such multiple type applications may be
constructed or taken apart in one step by list mk app type and strip app type.

23> list_mk_app_type(‘‘:fun‘‘, [‘‘:’a‘‘,‘‘:bool‘‘]);
val it = ‘‘:’a -> bool‘‘ : hol_type
> strip_app_type it;
val it = (‘‘:fun‘‘, [‘‘:’a‘‘, ‘‘:bool‘‘])

: hol_type * hol_type list

Type constants Simple type names like ‘‘:bool‘‘, ‘‘:list‘‘, and ‘‘:fun‘‘ are
called type constants. Each type constant contains its name and its kind. HOL-Omega
includes all of the type names of HOL as type constants. But the kind of a type constant
in HOL-Omega may be any kind of HOL-Omega; it need not be an arity kind as for those in
HOL. Instances of these type constants may be constructed or deconstructed by the ML
functions mk con type, mk thy con type, dest con type, and dest thy con type. For
example, the function mk con type has ML type string * kind -> hol type.

Note: The classic HOL functions mk type, mk thy type, dest type, and dest thy type

are supported in HOL-Omega for backwards compatibility. They will work just as before
if given inputs in the classical HOL subset of HOL-Omega. However, these functions are
deprecated, and should not be relied on to work as expected on the new types intro-
duced in HOL-Omega. Their role is now replaced by the ML functions to construct type
constants and type applications.

78 CHAPTER 5. THE HOL-OMEGA LOGIC

24> val ty1 = mk_type("fun",[‘‘:’a‘‘,‘‘:bool‘‘]);
val ty1 = ‘‘:’a -> bool‘‘ : hol_type
> dest_type ty1;
val it = ("fun", [‘‘:’a‘‘, ‘‘:bool‘‘])

: string * hol_type list

> strip_app_type ty1;
val it = (‘‘:fun‘‘, [‘‘:’a‘‘, ‘‘:bool‘‘])

: hol_type * hol_type list
> dest_con_type (fst it);
val it = ("fun", ‘‘::ty => ty => ty‘‘) : string * kind

Type variables Type variables in HOL-Omega include all the type variables in HOL. In
addition, HOL-Omega supports type variables with any kind of HOL-Omega, whereas the
HOL type variables can only have kind ty. A type variable with kind ty => ty holds
values which are type operators like list or option. Thus, such a type variable with an
arrow kind is called a type operator variable. As before, the names of type variables must
begin with an apostrophe (’). Type variables may be constructed and deconstructed by
the ML functions mk var type of type string * kind -> hol type and dest var type

of type hol type -> string * kind.
For backwards compatibility the HOL functions mk vartype : string -> hol type

and dest vartype : hol type -> string are supported, but they are deprecated.
Please take care to not confuse the similar names, mk var type and mk vartype.

25> val ty1 = mk_var_type("’a", ‘‘::ty‘‘);
val ty1 = ‘‘:’a‘‘ : hol_type
> dest_var_type ty1;
val it = ("’a", ‘‘::ty‘‘) : Type.tyvar
> dest_vartype ty1;
val it = "’a" : string

> val ty2 = mk_var_type("’b", ‘‘::(ty => ty) => ty‘‘);
val ty2 = ‘‘:’b :(ty => ty) => ty‘‘ : hol_type
> mk_app_type(ty2, ‘‘:list‘‘);
val it = ‘‘:list (’b :(ty => ty) => ty)‘‘ : hol_type
> dest_var_type ty2;
val it = ("’b", ‘‘::(ty => ty) => ty‘‘) : Type.tyvar
> dest_vartype ty2 handle e => Raise e;

Exception raised at Type.dest_vartype:
type operator kind - use dest_var_type
Exception-

HOL_ERR
{message = "type operator kind - use dest_var_type", origin_function =
"dest_vartype", origin_structure = "Type"} raised

5.1. NEW NOTATION 79

Type abstractions Just as in HOL’s term language we can form abstractions, \x.x+1,
so in HOL-Omega’s type language we can form type abstractions, such as \’a.’a->bool.
This can also be written as λ’a.’a->bool. These represent functions from types to
types, like type operators. Similarly to universal types, type abstractions \α.σ bind the
type variable α over the body of the type abstraction σ, so the free type variables of
\α.σ are the free type variables of σ except for α. The kind of a type abstraction \α.σ

is an arrow kind of the form k1 => k2, where k1 is the kind of α and k2 is the kind of σ.
26> ‘‘:\’a.’a -> bool‘‘;

val it = ‘‘:\’a. ’a -> bool‘‘
: hol_type

> type_vars ‘‘:\’a.’a -> bool‘‘;
val it = [] : hol_type list
> type_vars ‘‘:\’a.’a -> ’b‘‘;
val it = [‘‘:’b‘‘] : hol_type list
> kind_of ‘‘:\’a.’a -> bool‘‘;
val it = ‘‘::ty => ty‘‘ : kind
> kind_of ‘‘:\’a. num ’a‘‘;
val it = ‘‘::(ty => ty) => ty‘‘ : kind

Beta- and eta-reduction of types Type abstractions can be applied to type arguments
the same way that type operator constants are applied to type arguments. The new fea-
ture is that we now see beta-redexes, e.g. (num (\’a.’a -> bool)), completely within
the type language. (Remember that in HOL-Omega’s type language, function application
is postfix, not prefix as in the term language.) The ML function beta conv ty will re-
duce a type that is such a beta-redex. This is done by substituting the type argument
for the bound type variable within the type abstraction’s body, and replacing the beta
redex by the substituted body. Going further, the function deep beta ty will reduce all
beta-redexes that are within a type, repeatedly until none are left.

The semantics of HOL-Omega is that a type which is a beta redex has the same meaning
as the result of reducing the beta redex. Thus (num (\’a.’a -> bool)) is identified
with num -> bool, and so the result can always be used in place of the beta redex.

In a parallel fashion, types are also identified up to eta-reduction, so that \’a.’a list

is identified with list. The ML function eta conv ty will reduce a type that is such
an eta-redex, and the function deep eta ty will reduce all eta-redexes that are within
a type, repeatedly until none are left. Usually, one will want to use the function
deep beta eta ty to reduce all beta- or eta-redexes within a type, completely.

In fact, the deep beta- and eta-reduction of types is performed automatically by the
parser, so if one types in a type expression which has a beta redex in it, it will disappear
before the time the type expression is printed. If there is a need for an un-beta-reduced
type, one can create types with beta redexes in them by hand using mk app type.

The main thing to remember about type beta- and eta-reduction is, it should never
be necessary for the user to worry about this. HOL-Omega will always treat the types

80 CHAPTER 5. THE HOL-OMEGA LOGIC

correctly, whether or not they have been reduced, for all normal tasks like rewriting.
While the result of such reduction is of course visually different from the starting type,
both the original and the result types are equivalent according to the HOL-Omega logic.

27> ‘‘:num (\’a.’a -> bool)‘‘;
val it = ‘‘:num -> bool‘‘ : hol_type

> val ty1 = mk_app_type(‘‘:\’a.’a -> bool‘‘, ‘‘:num‘‘);
val ty1 =

‘‘:num (\’a. ’a -> bool)‘‘
: hol_type

> beta_conv_ty ty1;
val it = ‘‘:num -> bool‘‘ : hol_type

> val ty2 = mk_app_type(‘‘:list‘‘,mk_app_type(‘‘:option‘‘,ty1));
val ty2 =

‘‘:num (\’a. ’a -> bool) option list‘‘
: hol_type

> beta_conv_ty ty2 handle e => Raise e;

Exception raised at Type.beta_conv_ty:
not a type beta redex
Exception-

HOL_ERR
{message = "not a type beta redex", origin_function = "beta_conv_ty",
origin_structure = "Type"} raised

> deep_beta_ty ty2;
val it =

‘‘:(num -> bool) option list‘‘
: hol_type

Existential types There is one final variety of types, called existential types. Analogous
to universal types, they are written as ?α.σ or as ∃α.σ, where α is a type variable and
σ is a type expression. Like both universal types and type abstractions, the type variable
α is bound over the body σ. The free type variables of the existential type are the free
type variables of the body except for the bound type variable.

We mention existential types here for completeness, but the full meaning and useful-
ness of existential types is deferred until chapter 12 on packages. This advanced topic
is best understood in a concentrated and focused manner.

Varieties of types Whereas in HOL there are two varieties of types, namely type vari-
ables and type combinations with zero or more arguments, in HOL-Omega these are
replaced by six varieties: type constants, type variables, type applications, type abstrac-
tions, universal types, and existential types. What variety a type may be can be detected
by the ML functions listed in the following table.

5.1. NEW NOTATION 81

ML test functions to identify type varieties

Variety of type HOLω notation Test function
Type constant τ is con type

Type variable α is var type

Type application σarg σopr is app type

Type abstraction \α.σ is abs type

Universal type !α.σ is univ type

Existential type ?α.σ is exist type

Type comparison Because of the introduction of bound type variables in type abstrac-
tions, universal types, and existential types, the comparison of two types for equality
cannot be handled by ML equality as is done in the HOL system. For example, the types
\’a.’a -> ’a and \’b.’b -> ’b are not the same by ML equality, but they are the same
type in the HOL-Omega logic.

This comparison is properly tested by the ML function eq ty : hol type -> hol type

-> bool, and the use of ML equality for this test is deprecated in most cases. The excep-
tion is in those situations when one knows that at least one of the two types is a type
variable; then ML equality will suffice to test for equality of types, because the kinds that
are now part of the type variables may themselves be properly tested for equivalence by
simple ML equality.

28> ‘‘:\’a.’a -> ’a‘‘ = ‘‘:\’b.’b -> ’b‘‘;
val it = false : bool
> eq_ty ‘‘:\’a.’a -> ’a‘‘ ‘‘:\’b.’b -> ’b‘‘;
val it = true : bool
> ‘‘:’a : ’k => ty:1‘‘ = ‘‘:’b : ’k => ty:1‘‘;
val it = false : bool
> ‘‘:’a : ’k => ty:1‘‘ = ‘‘:’a : ’k => ty‘‘;
val it = false : bool

Kind comparison When comparing two kinds to see if they are equivalent, the struc-
ture of kinds is simple enough that ML equality suffices.

However, when checking the application of a type operator to a type argument, or
when checking if a type application term’s bound type variable to its actual type argu-
ment, strict ML equality between kinds is not appropriate, because we wish to allow
some flexibility with regards to ranks. If the type argument is of the same or a lower
rank than expected, that is acceptable; the ranks do not have to be precisely equal.

This check is performed by the infix ML operator :>=:. This relation between kinds is

82 CHAPTER 5. THE HOL-OMEGA LOGIC

defined recursively according to the following rules:

r1 ≥ r2

ty : r1 :>=: ty : r2

κ1 = κ2, r1 = r2

κ1 : r1 :>=: κ2 : r2

k1 = k2, k′1 :>=: k
′
2

k1 => k
′
1 :>=: k2 => k

′
2

So a type operator σ of kind k1 => k2 can be applied as a function to a type argument τ
of kind kτ only if k1 :>=: kτ . For example, list cannot be applied to option because
list expects a type of kind ty, and option has kind ty => ty.

29> kind_of ‘‘:option‘‘;
val it = ‘‘::ty => ty‘‘ : kind
> kind_of ‘‘:list‘‘;
val it = ‘‘::ty => ty‘‘ : kind
> fst(kind_dom_rng(kind_of ‘‘:list‘‘));
val it = ‘‘::ty‘‘ : kind
> fst(kind_dom_rng(kind_of ‘‘:list‘‘)) :>=: kind_of ‘‘:option‘‘;
val it = false : bool

A type operator can be applied to a type argument of a lower rank, but not to one of
a higher rank.

30> ‘‘::ty:1‘‘ :>=: ‘‘::ty:0‘‘;
val it = true : bool
> ‘‘::ty:0‘‘ :>=: ‘‘::ty:1‘‘;
val it = false : bool

If the domain of the kind of the type operator is itself an arrow kind, then it’s domain
has to be exactly equal to the domain of the kind of the type argument. The ranges can
differ in rank, but not the domains.

31> ‘‘::ty:1 => ty:0‘‘ :>=: ‘‘::ty:0 => ty:0‘‘;
val it = false : bool
> ‘‘::ty:0 => ty:1‘‘ :>=: ‘‘::ty:0 => ty:0‘‘;
val it = true : bool

Rank comparison Rank comparisons are performed simply as ML comparisons be-
tween integers, whether equality, greater than, etc. Ranks are simply integers, except
that they may never be negative.

Kind variables In type abstraction terms like \:α. !x:α. x=x, the kind of the bound
type variable α is often ty, but in fact can have any kind in the HOL-Omega logic, since
type abstractions are a fundamental form of the logic. As another example, in the term
\:α. !x:list α. x=x, the bound type variable α has the kind (ty => ty) => ty.

Similarly, we would like to form type quantification terms like !:α. !x:list α. x=x.
But type quantification terms are not fundamental forms of the HOL-Omega logic. In-
stead, they are applications of a term constant, either !: or ?:, to a type abstraction
term. !: and ?: are new term constants defined in theory bool.

5.1. NEW NOTATION 83

But just what is the type of !:? In the expression !:α. !x:α. x=x, the type of !: must
be (!’a:ty. bool) -> bool. But in the expression !:α. !x:list α. x=x, the type of
!: must be (!’a:(ty => ty) => ty. bool) -> bool. These two types are clearly not
the same. How can one term constant have both these types?

32> dest_comb ‘‘!:’a. !x:’a. x=x‘‘;
val it =

(‘‘$!:‘‘, ‘‘\:’a. !x. x = x‘‘)
: term * term

> type_of (fst it);
val it = ‘‘:(!’a. bool) -> bool‘‘

: hol_type
> dest_comb ‘‘!:’a. !x:list ’a. x=x‘‘;
val it =

(‘‘$!:‘‘,
‘‘\:’a :(ty => ty) => ty. !x. x = x‘‘)
: term * term

> type_of (fst it);
val it =

‘‘:(!(’a :(ty => ty) => ty). bool) -> bool‘‘
: hol_type

The answer is that the primitive type of $!: is (!’a:’k. bool) -> bool, which contains
a kind variable ’k. This kind variable has a rank, and may be instantiated with any kind
of that rank or less, to form a kind instance of a type or term. Thus both of the type
quantifications above are legal, with the kind variable providing the necessary flexibility.

33> prim_mk_const{Thy = "bool", Name = "!:"};
val it =

‘‘($!: :(!(’a :’k). bool) -> bool)‘‘
: term

> inst_kind [‘‘::’k‘‘ |-> ‘‘::(ty => ty) => ty‘‘] it;
val it =

‘‘($!: :(!(’a :(ty => ty) => ty). bool) -> bool)‘‘
: term

Kind variables are the third variety of kinds, along with the base kind ty and arrow
kinds. The names of kind variables are like the names of type variables, in that they
must start with an apostrophe (’). Kind variables also have a rank as an attribute,
which limits what kinds may be substituted for the kind variable.

The rank of a base kind or of a kind variable is taken directly from the kind. The rank
of an arrow kind is the maximum of the ranks of the arrow kind’s domain and range.

Despite the names of kind variables and type variables looking the same, there is no
confusion between them in the HOL-Omega logic. One could use the same name for both
a type variable and a kind variable within the same expression without problems.

84 CHAPTER 5. THE HOL-OMEGA LOGIC

Varieties of kinds In HOL-Omega there are three varieties of kinds: the “type” kind ty,
kind variables, and arrow kinds. What variety a kind may be can be detected by the ML
functions listed in the following table.

ML test functions to identify kind varieties

Variety of kind HOLω notation Test function
Type kind ty is type kind

Kind variable ’k, ’l, ... is var kind

Arrow kind k1 => k2 is arrow kind

Universe polymorphism So we have seen how a type operator can be applied to type
arguments of lower rank, but not of higher rank. This restriction is necessary for the
simplicity of the semantics, but in practice it could have turned out to be quite restrictive
indeed. For example, the list type operator has kind ty => ty, taking an argument
which is a type of rank 0 to a result type of rank 0. This is fine for types of rank 0,
like bool or num, but what if we wish to form lists where the type of the argument is
!’a.bool of rank 1? Without any further flexibility, one would need to define a second
version of list, say list1 : ty:1 => ty:1, and then for lists of elements of rank 2
one would need list2, and so on, an infinity of versions of the list type operator, each
with their own distinct versions of NIL and CONS for each rank 0, 1, 2, · · ·. We would also
have to prove again each of the list theorems, duplicating the entire list library afresh for
each new rank. This would be extremely cumbersome, but after finishing all this work,
we would have gained no real new understanding or insight about our applications.

To overcome this practical problem, HOL-Omega contains a very powerful feature,
that a type constant which is originally defined as one rank can have instances of higher
rank. Thus the type constant list of kind ty => ty can be “promoted” to kind ty:1 =>

ty:1, or to ty:2 => ty:2, or to ty:3 => ty:3, etc., raising all of the ranks in the kind
uniformly. This feature is called universe polymorphism or rank polymorphism.

This rank promotion is done automatically in the parser when there is a need to
satisfy a rank restriction. The rank of the type constant is increased to whatever rank is
necessary to be able to accept its argument, if possible. Such promotions are inferred
automatically by the parser’s rank inference algorithm.

34> ‘‘:(!’a. bool) list‘‘;
val it = ‘‘:(!’a. bool) list‘‘ : hol_type
> fst(dest_app_type it);
val it = ‘‘:list‘‘ : hol_type
> kind_of it;
val it = ‘‘::ty:1 => ty:1‘‘ : kind
> rank_of it;
val it = 1 : rank

5.1. NEW NOTATION 85

These are considered different instances of the original type constant, differing only
in rank, and are thus called rank instances.

If we constrain the list type operator to be of rank 0, we prevent any promotion,
and the result is that the list operator has insufficient rank for this argument:

35> ‘‘:(!’a. bool) (list:<=0)‘‘;

Rank inference failure: unable to infer a rank for the application of

:list : ty => ty

on line 51, characters 20-23

which expects a type of rank 0

to

:!’a. bool

roughly on line 51, characters 9-12

which has rank 1

rank unification failure message: unify failed
Exception-

HOL_ERR
{message = "on line 51, characters 20-23:\nfailed", origin_function =
"kindcheck", origin_structure = "Pretype"} raised

Just as type constants can be promoted to higher ranks than their original definitions,
so can term constants. The parser will perform this promotion automatically when rank
inference determines there is a need. Just as for types, these are considered different
rank instances of the original term constants.

Substitutions One of the most important operations on the syntax of the HOL-Omega
logic is the substitution of expressions for variables. Only free variables are affected by a
substitution; all bound variables are unchanged. Just as for term substitutions, if a type
substitution might cause the capture of a type variable, the corresponding bound type
variable is automatically renamed. Because of the addition of kinds and ranks to the
existing sorts of terms and types, there are four varieties of substitutions in HOL-Omega:

• term expressions for (free) term variables,

• type expressions for (free) type variables,

• kind expressions for kind variables, and

86 CHAPTER 5. THE HOL-OMEGA LOGIC

• a rank expression for the unique rank variable.

A rank substitution is represented by a simple nonnegative integer, say n. It stands
for the substitution of the unique rank variable r0 by the rank expression r0 + n, thus
raising by n all of the ranks in the object of the substitution.

The other varieties of substitutions are represented by ML lists of {redex,residue}
pairs. Such pairs are easily created by the infix |-> operator, which constructs a record
with the two fields redex and residue. As a list, the substitution may contain 0, 1, or
more such pairs, all of the same sort.

36- [‘‘x:num‘‘ |-> ‘‘y + 7‘‘];
> val it = [{redex = ‘‘x‘‘, residue = ‘‘y + 7‘‘}] :
{redex : term, residue : term} list

- [‘‘:’a‘‘ |-> ‘‘:num -> bool‘‘, ‘‘:’b:ty => ty‘‘ |-> ‘‘:list‘‘];
> val it =

[{redex = ‘‘:’a‘‘, residue = ‘‘:num -> bool‘‘},
{redex = ‘‘:’b :ty => ty‘‘, residue = ‘‘:list‘‘}] :

{redex : hol_type, residue : hol_type} list
- [‘‘::’k‘‘ |-> ‘‘::’l => ty‘‘];
> val it = [{redex = ‘‘::’k‘‘, residue = ‘‘::’l => ty‘‘}] :
{redex : kind, residue : kind} list

Proper substitutions In HOL, a substitution of term expressions for term variables re-
quires that for each {redex,residue} pair, the redex and the residue have exactly the
same type. In HOL-Omega, there are similar restrictions for term, type, and kind substitu-
tions for them to be called proper. Proper substitutions have the welcome property that
when they are applied to valid terms, types, or kinds, that the result is still a valid term,
type, or kind, respectively. By “valid” here we mean that it is well-typed, well-kinded,
and well-ranked. Proper substitutions maintain these well-formedness conditions, and
that makes the semantics of substitution simple and its implementation efficient.

Substitutions of kind expressions for kind variables are proper only if for each redex
and residue, the rank of the redex ≥ the rank of the residue.

Substitutions of type expressions for type variables are proper only if for each redex
and residue, the kind of the redex :>=: the kind of the residue, where the ML operator
:>=: was described earlier in the section on kind comparisons. So a lower-rank type
expression may be substituted for a higher-rank type variable, as long as the kinds
otherwise are the same.

This flexibility with regards to ranks is also extended to proper term substitutions,
where the types of each redex and residue are compared using the ML operator ge ty,
which also includes the alpha, beta, and eta conversions of the types involved.

37- ge_ty ‘‘:!’a:ty:1. ’a -> ’b:ty:2‘‘ ‘‘:!’c:ty:1. ’c -> ’b:ty:1‘‘;
> val it = true : bool
- ge_ty ‘‘:!’a:ty:1. ’a -> ’b:ty:1‘‘ ‘‘:!’c:ty:1. ’c -> ’b:ty:2‘‘;
> val it = false : bool

5.1. NEW NOTATION 87

The relation ge ty is defined by the following rules, where for clarity we use ≥ between
types as an infix version of ge ty. Here [α, α′/α′, α] swaps free occurrences of α and α′.

α = α′, k = k′

α : k ≥ α′ : k′
σopr ≥ σ′opr, σarg ≥ σ′arg

σarg σopr ≥ σ′arg σ
′
opr

k = k′, σ ≥ σ′[α, α′/α′, α]

∀α:k. σ ≥ ∀α′:k′. σ′

τ = τ ′, k :>=: k′

τ : k ≥ τ ′ : k′
k = k′, σ ≥ σ′[α, α′/α′, α]

λα:k. σ ≥ λα′:k′. σ′
k = k′, σ ≥ σ′[α, α′/α′, α]

∃α:k. σ ≥ ∃α′:k′. σ′

(σ1, . . . , σn)τ is a head-humble type, n ≥ 0,
name of τ = name of τ ′, ∀i ∈ {1, . . . , n}. σi ≥ σ′i

(σ1, . . . , σn)τ ≥ (σ′1, . . . , σ
′
n)τ ′

The last rule above refers to head-humble types, which are described next.

Humble types Consider the type bool. It contains exactly two values, T and F. It is a
type of rank 0. If it is promoted to rank 1, it still contains the same two values. If it is
promoted further, it still contains the same two values. Thus, when it is promoted its
meaning and behavior do not change. Essentially all these types are the same type. We
would like the HOL-Omega logic to recognize this, and consider all these the same type,
for simplicity and easy of use.

By contrast, consider the type !’a:ty:0.’a -> ’a. It contains all functions that take
first a type of kind ty:0 and then a value of that type and return that same value. This
is a type of rank 1. If it is promoted one rank, it becomes !’a:ty:1.’a -> ’a, which is
a type of rank 2. It contains all functions that take first a type of kind ty:1 and then a
value of that type and return that same value. The important fact is that this is not the
same set of functions as those contained by !’a:ty:0.’a -> ’a. It is much larger. We
cannot consider these two types the same.

How do we distinguish those types that are unchanging under promotion from those
that are not? By introducing the notion of humble types.

To support humble types, every type constant has a flag associated with it in the
environment, indicating if the constant is humble or not.

Then a head-humble type is one whose kind is a type kind of some rank (ty:r), and
which is of the form (σ1, . . . , σn)τ for n ≥ 0, where τ is a type constant whose humble
flag in the environment is true. That is, the type must simply be a series of zero or more
type applications headed by a type constant, which is very like the traditional types of
HOL. Note that a type constant alone is only a head-humble type if it has a kind ty:r.

Given this, we define a humble type as a head-humble type where all of the type
arguments σi are humble types, for 1 ≤ i ≤ n.

For this subset of all HOL-Omega types, we can know that their meaning and behavior
will not change when they are promoted. Therefore the HOL-Omega logic identifies
these promoted types as the same type, and this is reflected in the definition of ge ty.

88 CHAPTER 5. THE HOL-OMEGA LOGIC

Applying substitutions The ML operators that apply substitutions are defined in the
core structures of the HOL-Omega system, Term, Type, Kind, and Rank. Most of these
operations can be used directly, but those on types or kinds may need to be qualified
with the structure name, e.g. Type.inst rank or Kind.pure inst kind.

ML operators to apply substitutions

on Terms on Types on Kinds on Ranks

Structure of opr.’s Term. Type. Kind. Rank.

Term substitution subst — — —
Type substitution pure inst

inst

pure type subst

type subst

— —

Kind substitution pure inst kind

inst kind

pure inst kind

inst kind

pure inst kind

inst kind

—

Rank substitution inst rank inst rank inst rank promote

In the above table, the dash (—) indicates no such substitution is possible. In table
entries where there are two operator names, the one with “pure ” in the name indicates
the normal substitution, and the other indicates an “aligning” substitution operation.

The aligning substitution operations perform the same as the pure ones if given a
proper substitution as their argument. But they will often accept an improper substitu-
tion, which the pure version could not, and interpret it as a combination of substitutions,
where the given substitution is analyzed to determine what “lower” sorts of auxiliary
substitutions are needed to repair the given substitution, and make it proper.

For example, the type substitution θ = [‘‘:’a‘‘ |-> ‘‘:!’b.bool‘‘] is not proper;
the rank of the residue !’b.bool is 1, which is greater than the rank of the redex ’a, 0.
Given θ, the operator pure inst will fail, raising an exception.

38> val theta = [‘‘:’a‘‘ |-> ‘‘:!’b.bool‘‘];
val theta = [{redex = ‘‘:’a‘‘, residue = ‘‘:!’b. bool‘‘}]

: {redex: hol_type, residue: hol_type} list
> pure_inst theta ‘‘[]:(’a -> ’c) list‘‘ handle e => Raise e;

Exception raised at Term.pure_inst:
kind of redex does not contain kind of residue

However, if this substitution is given to inst, it will create the auxiliary rank substitu-
tion 1, and repair the given θ to θ′ = [‘‘:’a:ty:1‘‘ |-> ‘‘:!’b.bool‘‘]. Then inst

will first apply the rank substitution 1, followed by θ′. Any free occurrence of ’a in the
object term will first be lifted to ’a:ty:1, and then successfully replaced by !’b.bool.
Of course any other types in the object term will also be lifted by one rank.

39> inst theta ‘‘[]:(’a -> ’c) list‘‘;
val it = ‘‘([] :((!’b. bool) -> (’c :(ty:1))) list)‘‘ : term

5.1. NEW NOTATION 89

Type checking The type checking performed by the HOL-Omega system is considerably
expanded from that of HOL. In addition to type checking to ensure that the expression
is well-typed, the parser now performs kind checking and rank checking to ensure that
the expression is well-kinded and well-ranked. Nevertheless, backwards compatibility
has been maintained, so that virtually all expressions that parse correctly in HOL will
also parse correctly and to the same results in HOL-Omega.

However, if the new types and terms of HOL-Omega are used, there are a few issues
for the user to be aware of. First, because of the increased strength and complexity of
the type language, type checking is now potentially incomplete. This means that type
checking may fail to discover all the types of an expression’s subterms and report an
error, even if a suitable set of types might exist that would be consistent and correct.
This is an inherent feature of the logic, and cannot be eliminated in general.

Consider the term ‘‘M (M 3) = T‘‘. This term is typeable in the logic. But the parser
may not realize that the variable M should have a universal type, but instead conclude
this is a typing error, and throw an exception. Even if a type argument is provided to M,
indicating it has a universal type, the parser may still fail to correctly type the term.

40> ‘‘M [:bool:] (M 3) = T‘‘;

Type inference failure: unable to infer a type for the application of

(M :!’a. ’a -> ’a) [:bool:]

in compiler-generated text

which has type

:bool -> bool

to

(3 :num)

at line 33, character 16

unification failure message: unify failed
! Uncaught exception:
! HOL_ERR
> ‘‘(M:!’a. ’a -> bool) [:bool:] (M 3) = T‘‘;
val it =

‘‘(M :!’a. ’a -> bool) [:bool:] (M [:num:] (3 :num)) = T‘‘
: term

The inherent incompleteness of type inference means that no type inference algorithm
can correctly solve all cases. While the existing type inference algorithm implemented

90 CHAPTER 5. THE HOL-OMEGA LOGIC

in HOL-Omega will work in many normal cases, neither it nor any possible improvement
will solve all type inference situations properly.

However, there is a simple discipline that if the user will follow it, then the type
checking should become complete. The discipline is as follows. For every term variable
that appears in the expression to be parsed, if the term variable’s intended type includes
universal or existential types, then the user should annotate that term variable at one
of its occurrences in the expression with a type constraint giving its type explicitly. If
this discipline is followed, then if a solution exists, the type checking should complete
correctly.

41> ‘‘(M:!’a.’a->bool) (M 3) = T‘‘;
val it =

‘‘(M :!’a. ’a -> bool) [:bool:] (M [:num:] (3 :num)) <=> T‘‘
: term

If the type annotations are of a size that is burdensome, then the type abbreviation
facility of HOL-Omega can ease the task. Type abbreviations are not actual new types in
the logic, but they are abbreviations that are parsed and printed as if they were types.

42> type_abbrev ("iset", ‘‘:!’a. ’a -> bool‘‘);
val it = () : unit

> ‘‘(M:iset) (M 3) = T‘‘;
val it =

‘‘(M :iset) [:bool:] (M [:num:] (3 :num)) <=> T‘‘
: term

Here is another example where a variable needs to be used with different types in the
same expression. M seems to need to have the three different types ’a -> ’c, ’b -> ’c,
and ’a -> ’b, but a variable can only have one type within the same expression.

43> ‘‘!:’a ’b ’c. !(f:’a -> ’b) (g:’b -> ’c). M (g o f) = M g o M f‘‘;
<<HOL message: inventing new type variable names: ’b>>

Type inference failure: unable to infer a type for the application of

(M :(’a -> ’c) -> ’b)

at line 58, character 54

to

(g :’b -> ’c)

at line 58, character 56

unification failure message: unify failed

5.1. NEW NOTATION 91

Providing the universal type of M explicitly by a type coercion helps the type inference
infer all types correctly.

44> ‘‘!:’a ’b ’c. !(f:’a -> ’b) (g:’b -> ’c).
(M:!’a ’b. (’a->’b) -> ’a ’F -> ’b ’F) (g o f) = M g o M f‘‘;
val it =

‘‘!:’a ’b ’c.
!(f :’a -> ’b) (g :’b -> ’c).
(M :!’d ’e. (’d -> ’e) -> ’d (’F :ty => ty) -> ’e ’F) [:’a, ’c:]
(g o f) =

M [:’b, ’c:] g o M [:’a, ’b:] f‘‘
: term

Again, the use of type abbreviations can clarify the development.
45> type_abbrev ("functor", ‘‘:\’F. !’a ’b. (’a -> ’b) -> ’a ’F -> ’b ’F‘‘);

val it = () : unit
> ‘‘!:’a ’b ’c. !(f:’a -> ’b) (g:’b -> ’c).
(M:’F functor) (g o f) = M g o M f‘‘;
val it =

‘‘!:’a ’b ’c.
!(f :’a -> ’b) (g :’b -> ’c).
(M :(’F :ty => ty) functor) [:’a, ’c:] (g o f) =
M [:’b, ’c:] g o M [:’a, ’b:] f‘‘

: term

The kind system is simple enough that kind inference is complete and should always
find the right kinds if possible. However, the rank system is more complex, as it involves
natural numbers. The algorithm for rank inference in HOL-Omega is incomplete, so while
it usually works successfully for most expressions, it is possible that rank inference for
some expressions may fail even when a proper assignment of ranks does exist.

46> ‘‘:(!’b. ’b ’a) ’a‘‘;

Rank inference failure: unable to infer a rank for the application of

:’a :ty => ty

on line 67, characters 16-17

which expects a type of rank 0

to

:!’b. ’b (’a :ty => ty)

roughly on line 67, characters 12-10

which has rank 1

rank unification failure message: unify failed

92 CHAPTER 5. THE HOL-OMEGA LOGIC

In such cases, the user will need to annotate some of his type variables or kinds with
kind or rank constraints, respectively, to supply the information needed by the parser.

47> ‘‘:(!’b:ty:0. ’b ’a) (’a : ty:1 => ty:0)‘‘;
val it =

‘‘:(!’b. ’b (’a :(ty:1 => ty))) ’a‘‘
: hol_type

5.2 Proof in HOL-Omega

The next sections discuss the new proof facilities in HOL-Omega. Since HOL-Omega is
backwards compatible with HOL, every valid proof in HOL will also be a valid proof in
HOL-Omega, and every tool that HOL provides for constructing proofs also works the
same, given the same inputs, in HOL-Omega. However, because of the increased ex-
pressiveness of the HOL-Omega logic, many existing proof tools are extended in their
function, and many new proof tools are added. This section will focus on these addi-
tions and extensions, expecting that the reader is already familiar with HOL. Many of the
new facilities are analogs of HOL tools; for example, where a HOL tool dealt with quan-
tification of term variables, there is a corresponding HOL-Omega tool that deals with
quantification of type variables. We present the tools of HOL-Omega in stages: first the
fundamental axioms and rules of inference, then some basic derived rules of inference,
followed by more complex forward reasoning rules, then new tactics for backwards
reasoning, and finally we describe broadly the extensions of the major library packages.

To begin with, where HOL has five axioms and eight primitive rules of inference, the
HOL-Omega logic adds three new axioms, giving eight in all, and four new primitive
inference rules, giving twelve in all. We’ll get to the axioms in a moment, but let us first
examine the new primitive rules of inference.

5.2.1 Primitive rules of inference

There are four new primitive rules of inference:

• TY ABS

• TY BETA CONV

• INST RANK

• INST KIND

TY ABS: The TY ABS rule of inference is type abstraction congruence. In natural deduc-
tion notation this is:

Γ ` t1 = t2
Γ ` (λα. t1) = (λα. t2)

5.2. PROOF IN HOL-OMEGA 93

• where the type variable α is not free in Γ, and

• α is not free in any free term variable of t1 or t2.

This rule is represented in ML by a function TY_ABS, which is an analog of the HOL rule
ABS. TY_ABS takes as arguments a type variable ‘‘:α‘‘ and a theorem |- t1 = t2 and
returns the theorem |- (\:α. t1) = (\:α. t2). As expected, the type variable ‘‘:α‘‘

will not be free in the resulting theorem.

1> val th1 = combinTheory.K_DEF;
val th1 =

|- (K :’a -> ’b -> ’a) = (\(x :’a) (y :’b). x)
: thm

> val th2 = TY_ABS ‘‘:’b‘‘ th1;
val th2 =

|- (\:’b. (K :’a -> ’b -> ’a)) = (\:’b. (\(x :’a) (y :’b). x))
: thm

> val th3 = TY_ABS ‘‘:’a‘‘ th2;
val th3 =

|- (\:’a ’b. (K :’a -> ’b -> ’a)) = (\:’a ’b. (\(x :’a) (y :’b). x))
: thm

> type_vars_in_term (concl th3);
val it = [] : hol_type list

TY BETA CONV: The TY BETA CONV rule of inference is type beta conversion. In natural
deduction notation this is:

Γ ` (λα. t)[σ] = t[σ/α]

• t[σ/α] denotes the result of substituting the type σ for free occurrences of the type
variable α in t, where kind of α :>=: kind of σ, with the restriction that no free
type variables in σ become bound after substitution.

This rule is represented in ML by a function TY_BETA_CONV, which is an analog of the HOL
rule BETA_CONV. TY_BETA_CONV takes as an argument a term of the form (\:α. t)[:σ:]

and returns the theorem |- (\:α. t)[:σ:] = t[σ/α].

2> TY_BETA_CONV ‘‘(\:’a. K:’a -> ’b -> ’a) [:’c -> ’d:]‘‘;
val it =

|- (\:’a. (K :’a -> ’b -> ’a)) [:’c -> ’d:] =
(K :(’c -> ’d) -> ’b -> ’c -> ’d)
: thm

> TY_BETA_CONV ‘‘(\:’a ’b. (\(x :’a) (y :’b). x)) [:’b -> ’c:]‘‘;
val it =

|- (\:’a ’d. (\(x :’a) (y :’d). x)) [:’b -> ’c:] =
(\:’d. (\(x :’b -> ’c) (y :’d). x))
: thm

94 CHAPTER 5. THE HOL-OMEGA LOGIC

INST RANK: The INST RANK rule of inference is universe polymorphism (or rank poly-
morphism) at the level of theorems. In natural deduction notation this is:

Γ ` t

Γ[r0 + r/r0] ` t[r0 + r/r0]

• Here r0 is the one and only rank variable, and r is a nonnegative integer; and

• t[r0 + r/r0] denotes the result of substituting the rank r0 + r for all occurrences
of the rank variable r0 in t, and Γ[r0 + r/r0] denotes the result of substituting the
rank r0 + r for all occurrences of the rank variable r0 in Γ. This has the effect of
increasing the ranks of all types and kinds by r. Note that r may legitimately be
0, which does not change the ranks at all.

This rule is represented in ML by a function INST_RANK, which has no analog in HOL.
INST_RANK takes as arguments an integer r, which must be equal to or greater than
zero, and a theorem Γ ` t, and returns the theorem Γ[r0 + r/r0] |- t[r0 + r/r0]. This
is a reflection of the fact that any mathematical development that was performed at
some rank level, could have been performed just as well at the next rank one level
up. Here r0, the unique rank variable, is present but hidden and not printed in all
HOL-Omega ranks. Thus the kind printed as ty:1 is actually the kind ty at rank r0 + 1.
If this kind is instantiated with [r0 7→ r0 + 2], then the rank r0 + 1 is transformed to
(r0 +2)+1 = r0 +(2+1) = r0 +3, and the effect is to raise the kind ty:1 to ty:3. When
this rank instantiation occurs, it must be done consistently throughout all of a theorem,
including its hypotheses.

3> set_trace "assumptions" 1;
val it = () : unit
> ASSUME ‘‘xs = MAP (f:’a -> ’b) ys‘‘;
val it =

[(xs :’b list) = MAP (f :’a -> ’b) (ys :’a list)]
|- (xs :’b list) = MAP (f :’a -> ’b) (ys :’a list)

: thm
> INST_RANK 3 it;
val it =

[(xs :(’b :(ty:3)) list) = MAP (f :(’a :(ty:3)) -> ’b) (ys :’a list)]
|- (xs :(’b :(ty:3)) list) = MAP (f :(’a :(ty:3)) -> ’b) (ys :’a list)

: thm
> set_trace "assumptions" 0;
val it = () : unit

INST KIND: The INST KIND rule of inference is kind polymorphism at the level of theo-
rems. In natural deduction notation this is:

Γ ` t

Γ[θ] ` t[θ]

5.2. PROOF IN HOL-OMEGA 95

• where θ is a proper kind substitution, that is, a kind substitution of the form
[κ1 7→ k1, κ2 7→ k2, . . . , κn 7→ kn] (0 ≤ n), where the κi are kind variables and the
ki are kinds, and where for each i ∈ {1, . . . , n}, rank of κi ≥ rank of ki; and

• where t[θ] denotes the result of substituting the kind ki for all occurrences of the
kind variable κi in t, and Γ[θ] denotes the result of substituting the kind ki for all
occurrences of the kind variable κi in Γ, for all i ∈ {1, . . . , n}.

This rule is represented in ML by a function INST_KIND, which has no analog in HOL.
INST_KIND takes as arguments a kind substitution θ and a theorem Γ ` t, and returns the
theorem Γ[θ] |- t[θ]. When this kind instantiation occurs, it must be done consistently
throughout all of a theorem, including its hypotheses.

Similarly, the existing primitive inference rules INST_TYPE and INST from HOL are
modified to expect proper substitutions as arguments, using :>=: and ge ty to check.

5.2.2 New axioms

HOL-Omega contains all of the axioms of HOL, and adds three more. Two of these new
axioms, UNPACK PACK AX and PACK ONTO AX, have to do with packages, so we will delay
their discussion until chapter 12, to deal with that subject completely at one time.

The remaining new axiom is the Law of Type Eta Conversion, which is bound to the
ML name TY_ETA_AX. It is an analog of the HOL Law of Eta Conversion, ETA_AX.

4> show_types := true;
val it = () : unit
> ETA_AX;
val it =

|- !(t :’a -> ’b). (\(x :’a). t x) = t
: thm

- TY_ETA_AX;
val it =

|- !(t :!’a :’k. ’a (’b :(’k => ty:1))). (\:’a :’k. t [:’a:]) = t
: thm

Here the universally quantified variable t has type !’a :’k. ’a (’b :(’k => ty:1)),
a universal type binding the type variable ’a:’k over the body ’a (’b :(’k => ty:1)).
The symbol ‘\:’ is the abstraction notation ‘λ’ for types over terms. The notation ‘’a:’k’
means that the kind of the type variable ’a is the kind variable ’k, whose rank is the
default rank, 0. The type variable ’b is a type operator, of kind ’k => ty:1, meaning it
expects a type argument of kind ’k, and yields a type of kind ty:1 which has rank 1.
Note that TY_ETA_AX has one free type variable, ’b, and one free kind variable, ’k.

The presence of the free kind variable ’k and free type operator variable ’b give this
axiom the flexibility to apply to any possible instance of type eta redexes. To see how
this works, consider the following example:

96 CHAPTER 5. THE HOL-OMEGA LOGIC

5> val tm = ‘‘\:’c. (m : !’d. ’d -> ’d list) [:’c:]‘‘;
val tm =

‘‘\:’c. (m :!’d. ’d -> ’d list) [:’c:]‘‘
: term

> val th = REWRITE_CONV [TY_ETA_AX] tm;
val th =

|- (\:’c. (m :!’d. ’d -> ’d list) [:’c:]) = m
: thm

In this apparently simple example of rewriting and type eta reduction, there is a lot
of detailed machinery going on quietly behind the scenes to accomplish this result. We
will show an example of how this works here; the casual reader can skip this example
if desired.

To successfully rewrite the term tm1 by the theorem TY_ETA_AX involves first matching
the left-hand-side of TY_ETA_AX to the term tm1. The matching is done by the HOL-Omega
function om match term, which is an expanded version of the HOL function match term.
It takes two terms as inputs, a pattern term and a target term, compares them, and
returns a tuple of four substitutions to be applied together to the pattern term to make
it the same as the target term.

6> val ptm = lhs(snd(dest_forall(concl TY_ETA_AX)));
val ptm =

‘‘\:’a :’k. (t :!’a :’k. ’a (’b :(’k => ty:1))) [:’a:]‘‘
: term

> set_trace "print_tyabbrevs" 0;
val it = () : unit
> val (tmS,tyS,kdS,rkS) = om_match_term ptm tm;
val kdS = [{redex = ‘‘::’k‘‘, residue = ‘‘::ty‘‘}] : (kind, kind) Term.subst
val rkS = 0 : rank
val tmS =

[{redex = ‘‘(t :!’a. ’a (\’d. ’d -> ’d list))‘‘,
residue = ‘‘(m :!’d. ’d -> ’d list)‘‘}]

: (term, term) Term.subst
val tyS =

[{redex = ‘‘:’b :(ty => ty:1)‘‘,
residue = ‘‘:\’d. ’d -> ’d list‘‘}]

: (hol_type, hol_type) Term.subst

These four substitutions are of different sorts; the first one in the tuple is on terms,
the second on types, the third on kinds, and the last on ranks. Each substitution is
guarranteed to be proper. (The rank substitution is represented simply by a integer,
being how many ranks to promote the pattern term.) These substitutions are intended
to be applied in a strict order, where the rank substitution is applied first, followed by
the substitutions for kinds, types, and terms, in exactly that order.

In the example above, the rank substitution is 0, so the ranks do not change.

5.2. PROOF IN HOL-OMEGA 97

7> rkS;
val it = 0 : rank
> val tm1 = inst_rank rkS ptm;
val tm1 =

‘‘\:’a :’k. (t :!’a :’k. ’a (’b :(’k => ty:1))) [:’a:]‘‘
: term

Next, ’k is substituted by ty.

8> kdS;
val it = [{redex = ‘‘::’k‘‘, residue = ‘‘::ty‘‘}] : (kind, kind) Term.subst
> val tm2 = inst_kind kdS tm1;
val tm2 =

‘‘\:’a. (t :!’a. ’a (’b :(ty => ty:1))) [:’a:]‘‘
: term

Then ’b of kind ty => ty:1 is instantiated to \’d:ty. ’d -> ’d list of kind ty => ty.
This is proper because even though these two kinds are not equal, they satisfy the
relationship ‘‘::ty => ty:1‘‘ :>=: ‘‘::ty => ty‘‘.

9> tyS;
val it =

[{redex = ‘‘:’b :(ty => ty:1)‘‘,
residue = ‘‘:\’d. ’d -> ’d list‘‘}]

: (hol_type, hol_type) Term.subst
> val tm3 = inst tyS tm2;
val tm3 =

‘‘\:’a. (t :!’a. ’a (\’d. ’d -> ’d list)) [:’a:]‘‘
: term

Finally the term variable t, which now has type !’a. ’a (\’d. ’d -> ’d list), is
substituted by the term m : !’d. ’d -> ’d list, which has the same type as t because
types are identified up to alpha-beta-eta conversion in the type language.

10> tmS;
val it =

[{redex = ‘‘(t :!’a. ’a (\’d. ’d -> ’d list))‘‘,
residue = ‘‘(m :!’d. ’d -> ’d list)‘‘}]

: (term, term) Term.subst
> val tm4 = subst tmS tm3;
val tm4 =

‘‘\:’a. (m :!’d. ’d -> ’d list) [:’a:]‘‘
: term

5.2.3 Basic derived rules of inference

Derived rules of inference are ML functions that are not primitive rules of inference, but
are defined using the primitive rules of inference or other derived rules. Because of the

98 CHAPTER 5. THE HOL-OMEGA LOGIC

LCF architecture of HOL-Omega, all such derived rules are guaranteed to be sound if all
of the primitive rules of inference and axioms are sound.

There is a family of rules that express the natural deduction rules for the new con-
structs of HOL-Omega at a basic level. Some have already been given (TY ABS and
TY BETA CONV). This section discusses 6 new basic rules of inference and one new instan-
tiation rule. These are so foundational that even though they are theoretically derivable,
for efficiency’s sake they are implemented directly in the HOL-Omega kernel.

• TY COMB

• TY SPEC and TY GEN

• TY EXISTS and TY CHOOSE

• TY EXT

• INST ALL

TY COMB: The TY COMB rule of inference is congruence of term-type combinations. In
natural deduction notation this is:

Γ ` f = g

Γ ` f [σ] = g[σ]

• where t[σ] denotes the application of the term t (which must have a universal
type, say ∀α.τ) to the type argument σ, where σ and α must have the same kind.

TY COMB : thm -> hol type -> thm

This rule is represented in ML by a function TY_COMB, which takes as arguments a theo-
rem |- f = g and a type σ, and returns the theorem |- f [:σ:] = g [:σ:]. This is an
analog of HOL’s term combination rule AP THM, and similar to MK COMB, considering that
the equality of the type arguments to f and g is immediately decidable.2

11> val th1 = REWRITE_CONV[TY_ETA_AX] ‘‘\:’a. (\:’b. []:’b list) [:’a:]‘‘;
val th1 =

[] |- (\:’a. (\:’b. ([] :’b list)) [:’a:]) = (\:’b. ([] :’b list))
: thm

> TY_COMB th1 ‘‘:’c # ’d list‘‘;
val it =

[]
|- (\:’a. (\:’b. ([] :’b list)) [:’a:]) [:’c # ’d list:] =

(\:’b. ([] :’b list)) [:’c # ’d list:]
: thm

2In a more complex type system, such as with dependent types, an analog to MK COMB would need an
input theorem like |- σ = τ , and would produce the result |- f [:σ:] = g [:τ:].

5.2. PROOF IN HOL-OMEGA 99

TY SPEC: The TY SPEC rule of inference is type specialization (or ∀-type-elimination). In
natural deduction notation this is:

Γ ` ∀α. t
Γ ` t[σ/α]

• t[σ/α] denotes the result of substituting the type σ for free occurrences of the type
variable α in t, where σ and α must have the same kind, and with the restriction
that no free type variables in σ become bound after substitution.

This rule is represented in ML by a function TY_SPEC, which takes as arguments a type σ
and a theorem |- !:α.t, and returns the theorem |- t[σ/α], the result of substituting σ
for α in t. This is an analog of HOL’s universal term specialization rule SPEC.

TY GEN: Another rule of inference is type generalization (or ∀-type-introduction). In
standard natural deduction notation this is:

Γ ` t

Γ ` ∀α. t

• This rule has the necessary restriction that α must not be free in the hypotheses Γ.

This rule is represented in ML by a function TY_GEN, which takes as arguments a type
variable ‘‘:α‘‘ and a theorem |- t and returns the theorem |- !:α.t. There is no
compulsion that α should be free in t. This is an analog of HOL’s universal term gener-
alization rule GEN.

12> val th1 = CONJUNCT1 listTheory.MAP;
val th1 =

[] |- !(f :’a -> ’b). MAP f ([] :’a list) = ([] :’b list)
: thm

> val th2 = TY_GEN ‘‘:’b‘‘ th1;
val th2 =

[] |- !:’b. !(f :’a -> ’b). MAP f ([] :’a list) = ([] :’b list)
: thm

> val th3 = TY_GEN ‘‘:’a‘‘ th2;
val th3 =

[] |- !:’a ’b. !(f :’a -> ’b). MAP f ([] :’a list) = ([] :’b list)
: thm

> val th4 = TY_SPEC ‘‘:num‘‘ th3;
val th4 =

[] |- !:’b. !(f :num -> ’b). MAP f ([] :num list) = ([] :’b list)
: thm

> val th5 = TY_SPEC ‘‘:bool‘‘ th4;
val th5 =

[] |- !(f :num -> bool). MAP f ([] :num list) = ([] :bool list)
: thm

100 CHAPTER 5. THE HOL-OMEGA LOGIC

TY EXISTS: HOL-Omega also supports existential quantification of types over terms, in-
cluding a rule of inference for existential type generalization (or ∃-type-introduction). In
standard natural deduction notation this is:

Γ ` p[σ/α]

Γ ` ∃α. p

• where α must not be free in the hypotheses Γ, and

• p[σ/α] must be the same as the conclusion of the original theorem.

TY EXISTS : term * hol type -> thm -> thm

This rule is represented in ML by a function TY_EXISTS, which takes as arguments a
pair of a term and a type, and then a theorem, where the term is a type-existentially
quantified pattern indicating the desired form of the result ‘‘?:α. p‘‘, the type ‘‘:σ‘‘ is
the witness for the existential quantifier, and the input theorem has the form |- p[σ/α].
TY_EXISTS returns the result theorem |- ?:α.p. This is an analog of HOL’s existential
term generalization rule EXISTS.

13> CONJUNCT1 BOOL_EQ_DISTINCT;
val it = [] |- T <=/=> F : thm
> EXISTS (‘‘?y. T <=/=> y‘‘, ‘‘F‘‘) it;
val it = [] |- ?(y :bool). T <=/=> y : thm
> EXISTS (‘‘?x y. x <=/=> y‘‘, ‘‘T‘‘) it;
val it =

[] |- ?(x :bool) (y :bool). x <=/=> y
: thm

> TY_EXISTS (‘‘?:’a. ?(x:’a) (y:’a). x <> y‘‘, ‘‘:bool‘‘) it;
val it =

[] |- ?:’a. ?(x :’a) (y :’a). x <> y
: thm

TY CHOOSE:
As a converse to the last rule, another rule of inference is existential type specialization

(or ∃-type-elimination). In standard natural deduction notation this is:

Γ1 ` ∃α.s, Γ2 ∪ {s[β/α]} ` t

Γ1 ∪ Γ2 ` t

• where the existentially specialized type variable β must not be free in Γ1, Γ2, or t.

TY CHOOSE : hol type * thm -> thm -> thm

This rule is represented in ML by a function TY_CHOOSE, which takes as arguments a pair
of a type variable and a type-existential theorem, and then a second theorem, where the

5.2. PROOF IN HOL-OMEGA 101

first theorem has the form |- ∃α.s, and the type variable β is fresh, not appearing free in
the theorems except for the single hypothesis s[β/α] in the second theorem. TY_CHOOSE

returns a theorem with the conclusion of the second theorem, and whose hypotheses
are those of the two theorems except for s[β/α], which is eliminated. This is an analog
of HOL’s existential term specialization rule CHOOSE.

TY EXT: Another rule of inference is type extensionality. In standard natural deduction
notation this is:

Γ ` ∀α. t1[α] = t2[α]

Γ ` t1 = t2

• where t[α] denotes the application of the term t (which must have a universal
type, say ∀β.τ) to the type variable argument α, where α and β must have the
same kind.

TY EXT : thm -> thm

This rule is represented in ML by a function TY_EXT, which takes as argument a theo-
rem of the form |- ∀α. t1 [:α:] = t2 [:α:]. TY_EXT returns a theorem of the form
|- t1 = t2. This is an analog of HOL’s extensionality rule EXT.

14> ASSUME ‘‘!:’a. (\:’b.?x:’b.T) [:’a:] = (\:’b.T) [:’a:]‘‘;
val it =

[.] |- !:’a. (\:’b. ?(x :’b). T) [:’a:] <=> (\:’b. T) [:’a:]
: thm

> TY_EXT it;
val it =

[.] |- (\:’b. ?(x :’b). T) = (\:’b. T)
: thm

INST ALL: This rule combines rank, kind, type, and term substitution efficiently.

INST ALL :

(term,term)subst * (hol type,hol type)subst * (kind,kind)subst * int

-> thm -> thm

This rule is represented in ML by a function INST_ALL, which takes as arguments a tuple
of substitutions for terms, types, kinds, and ranks, and a theorem, and returns a theorem
where the substitutions have been uniformly performed on the theorem’s hypotheses
and conclusion, in the order of ranks first, then kinds, then types, and finally terms.
INST_ALL (θt, θσ, θk, θr) th is identical in effect to

INST θt (INST_TYPE θσ (INST_KIND θk (INST_RANK θr th))).

102 CHAPTER 5. THE HOL-OMEGA LOGIC

INST_ALL may be more efficient than the above, as it minimizes the number of passes
over the structure of the terms and types in th when performing the substitutions.

15> val tmS = [‘‘t:!’a. ’a -> ’a list‘‘ |-> ‘‘m:!’a. ’a -> ’a list‘‘];
val tmS =

[{redex = ‘‘(t :!’a. ’a -> ’a list)‘‘,
residue = ‘‘(m :!’a. ’a -> ’a list)‘‘}]

: {redex: term, residue: term} list
> val tyS = [‘‘:’b: ty => ty:1‘‘ |-> ‘‘:\’a. ’a -> ’a list‘‘];
val tyS =

[{redex = ‘‘:’b :(ty => ty:1)‘‘,
residue = ‘‘:\’a. ’a -> ’a list‘‘}]

: {redex: hol_type, residue: hol_type} list
> val kdS = [‘‘::’k‘‘ |-> ‘‘::ty‘‘];
val kdS = [{redex = ‘‘::’k‘‘, residue = ‘‘::ty‘‘}]

: {redex: kind, residue: kind} list
> val rkS = 0;
val rkS = 0 : int
> TY_ETA_AX;
val it =

|- !(t :!’a :’k. ’a (’b :(’k => ty:1))). (\:’a :’k. t [:’a:]) = t
: thm

> INST_ALL (tmS,tyS,kdS,rkS) (SPEC_ALL TY_ETA_AX);
val it =

|- (\:’a. (m :!’a. ’a -> ’a list) [:’a:]) = m
: thm

> INST tmS(INST_TYPE tyS(INST_KIND kdS(INST_RANK rkS(SPEC_ALL TY_ETA_AX))));
val it =

|- (\:’a. (m :!’a. ’a -> ’a list) [:’a:]) = m
: thm

5.3 Backwards Proof

As in HOL, proof may be accomplished by first positing a goal to be proved, and then
working backwards, applying tactics to reduce that goal to simpler subgoals. Then the
same is done to each subgoal in turn, each generating zero or more new subgoals of
its own. Hopefully, eventually each subgoal has been reduced to zero subgoals and is
then solved, whereupon the subgoal package wraps the whole process up and creates
an actual, accredited HOL-Omega theorem of the original goal.

We will discuss first some of the new, basic tactics that have been added in HOL-
Omega, and then a number of existing tactics that have been suitably extended. This is
only indicates some of the HOL-Omega additions; many more features have been added
than can be covered in this tutorial.

5.3. BACKWARDS PROOF 103

5.3.1 New Basic Tactics

Here are some of the new tactics in HOL-Omega:

• TY GEN TAC

• TY EXISTS TAC

5.3.1.1 TY GEN TAC : tactic

• Summary: Strips off one type-universal quantifier.

!:α.t[α]

t[α′/α]

Where α′ is a variant of α not free in the goal or the assumptions. Here t[α] simply
means that the type variable α may appear free in the term t, and t[α′/α] means t
with α′ substituted for all the free occurrences of α.

• Uses: Solving type-universally quantified goals. REPEAT TY GEN TAC strips off all
type-universal quantifiers. STRIP TAC (see below) applies TY GEN TAC to type-
universally quantified goals.

16> g ‘!:’a. !x:’a. x = x‘;
val it =

Proof manager status: 1 proof.
1. Incomplete goalstack:

Initial goal:

!:’a. !(x :’a). x = x

: proofs
> e(TY_GEN_TAC);
OK..
1 subgoal:
val it =
!(x :’a). x = x

: proof

5.3.1.2 TY EXISTS TAC : hol type -> tactic

• Summary: Supplies a witness for a type-existential quantifier.

?:α.t[α]

t[σ/α]

104 CHAPTER 5. THE HOL-OMEGA LOGIC

Where σ is the first argument of TY EXISTS TAC. The type σ is provided as the
explicit witness to satisfy the type-existential quantification.

• Uses: Solving type-existentially quantified goals.

17> g ‘(!:’a. t[:’a:]) ==> (?:’a. t[:’a:])‘;
val it =

Proof manager status: 1 proof.
1. Incomplete goalstack:

Initial goal:

(!:’a. (t :!’a. bool) [:’a:]) ==> ?:’a. t [:’a:]

: proofs
> e(DISCH_TAC);
OK..
1 subgoal:
val it =

?:’a. (t :!’a. bool) [:’a:]

!:’a. (t :!’a. bool) [:’a:]

: proof
> e(TY_EXISTS_TAC ‘‘:’a‘‘);
OK..
1 subgoal:
val it =

(t :!’a. bool) [:’a:]

!:’a. (t :!’a. bool) [:’a:]

: proof
> e(ASM_REWRITE_TAC[]);
OK..

Goal proved.
[.] |- (t :!’a. bool) [:’a:]

Goal proved.
[.] |- ?:’a. (t :!’a. bool) [:’a:]
val it =

Initial goal proved.
|- (!:’a. (t :!’a. bool) [:’a:]) ==> ?:’a. t [:’a:]

: proof

5.3. BACKWARDS PROOF 105

5.3.2 Extended Tactics

Many of the existing tactics of HOL have been extended to work with the new forms
of HOL-Omega. In large part, this is due to the matching of terms and types being
extended in the same way that has been seen previously, e.g., for rewriting. Thus the
tactics MATCH ACCEPT TAC and MATCH MP TAC have the same behaviors as before, but also
will successfully match their pattern terms against kind and rank instances.

In some cases a tactic’s functionality has been extended beyond matching in ways that
are natural for the new forms.

• STRIP TAC

• SIMP TAC and other simplifier tactics

5.3.2.1 STRIP TAC : tactic

In HOL, STRIP TAC combines the effects of GEN TAC, CONJ TAC, and DISCH TAC, choosing
which depending on what the current goal is. In addition, if a new assumption is added
that is a conjunction, it is broken into two new assumptions, and if a new assumption
is added that has an existential quantifier, that quantifier is stripped off and the bound
variable renamed if necessary to be fresh.

In HOL-Omega, STRIP TAC adds the effect of TY GEN TAC, and also, if a new assumption
is added that has a type-existential quantifier, the quantifier is stripped off and the
bound type variable renamed if necessary to be fresh.

5.3.2.2 SIMP TAC and other simplifier tactics

The simplifier is too complex to be treated in any complete way in this tutorial, but it is
appropriate to mention here that just as in HOL the core set of simplifications (bool ss)
performs beta reductions of terms, the core set of simplifications in HOL-Omega adds
type-beta reductions of terms, essentially building in the effects of TY BETA CONV. In
addition, just as in HOL the core set of simplifications contains simple reductions con-
cerning universal and existential quantification, like (!x:’a. t) = t, the core set in
in HOL-Omega adds the corresponding simple reductions concerning type-universal and
type-existential quantification, such as (!:’a:’k. t) = t. Also, just as the HOL simpli-
fication set ETA ss performs eta reductions of terms, so in HOL-Omega it also performs
type eta reductions, essentially building in the effect of TY ETA CONV. As covered in chap-
ter 12 on packages, the axiom UNPACK PACK AX is also added to the core simplification
set, so that package reduction is automatically included as well.

Since these extensions are built-in as part of the core simplification set or ETA ss, it
is not necessary to create or mention any new simplification sets in order to access this
additional simplifier functionality for proofs in HOL-Omega.

106 CHAPTER 5. THE HOL-OMEGA LOGIC

5.3.3 Other Rules, Tactics, and Automation

There are many more new inference rules, conversions, and tactics that have been
added to HOL-Omega beyond what has been presented here. For more on these, the
reader is directed to DESCRIPTION. As has been said, all the tools of HOL work just as be-
fore in HOL-Omega given the same inputs. In addition, in general the tools of HOL have
been revised for HOL-Omega to be sensitive to and properly handle the new forms of the
extended logic. In particular, this includes matching tactics like MATCH ACCEPT TAC and
MATCH MP TAC, all the rewriting tactics, the resolution tactics RES TAC and IMP RES TAC,
the simplifier, and the datatype definition tools. There are some exceptions, e.g. the
quotient library, as work continues on revising the extensive HOL library code. But for
the most part, the existing facilities of HOL can be used without worry and they will
generally just do the right thing. Examples of their use will be seen in the chapters that
follow.

5.4 Backwards Compatibility

Significantly, despite all of this expansion of the logic, all of the tools perform exactly as
before if given inputs in the original HOL logic. In particular, existing projects built using
HOL should just build correctly in HOL-Omega, with only very slight and rare exceptions.

Of those rare exceptions, the most frequently encountered is a problem with parsing
terms of the logic that have type annotations as part of a list of bound variable names.
While in HOL it is fine to say

18> ‘‘\x:bool (lst:’a list). T‘‘;
val it = ‘‘\x lst. T‘‘ : term

in HOL-Omega this causes a parsing error:

19> ‘‘\x:bool (lst:’a list). T‘‘;
Exception-

HOL_ERR
{message =
"on line 9, characters 11-13:\nType parsing failure with remaining input:

lst:’a list). T",
origin_function = "parse_type", origin_structure = "Parse"} raised

The reason for the parsing errors is that since the type language in HOL-Omega is
more expressive, the type parser tries to interpret the term variable (lst:’a list) as
if it were a type operator to apply to bool, which of course it is not.

Alternatively, whereas in HOL-Omega it is fine to say

20> ‘‘\x:bool (list). T‘‘;
val it = ‘‘\x. T‘‘ : term

5.4. BACKWARDS COMPATIBILITY 107

but in HOL the name list is differently interpreted as a term variable name:

21> ‘‘\x:bool (list). T‘‘;
<<HOL message: inventing new type variable names: ’a>>
val it = ‘‘\x list. T‘‘ : term

The real problem in both cases here is that the HOL-Omega type parser tries to reach
farther than the HOL type parser in order to gather in the entire type, before looking
for the next term variable in the list. The way to fix these sort of problems is simply to
enclose the term variable with its type annotation within parentheses, as

22> ‘‘\(x:bool) (lst:’a list). T‘‘;
val it = ‘‘\x lst. T‘‘ : term

This is by far the most common issue in re-running HOL scripts in HOL-Omega, and
even this issue has been extremely rare in practice, since most people already use paren-
theses around their variables with type annotations in such variable lists. The scarcity
of such issues demonstrates the degree of backwards compatibility achieved.

108 CHAPTER 5. THE HOL-OMEGA LOGIC

Chapter 6

Example: Euclid’s Theorem

In this chapter, we prove in HOL that for every number, there is a prime number that
is larger, i.e., that the prime numbers form an infinite sequence. This proof has been
excerpted and adapted from a much larger example due to John Harrison, in which he
proved the n = 4 case of Fermat’s Last Theorem. The proof development is intended to
serve as an introduction to performing high-level interactive proofs in HOL.1 Many of the
details may be difficult to grasp for the novice reader; nonetheless, it is recommended
that the example be followed through in order to gain a true taste of using HOL to prove
non-trivial theorems.

Some tutorial descriptions of proof systems show the system performing amazing
feats of automated theorem proving. In this example, we have not taken this approach;
instead, we try to show how one actually goes about the business of proving theorems
in HOL: when more than one way to prove something is possible, we will consider the
choices; when a difficulty arises, we will attempt to explain how to fight one’s way clear.

One ‘drives’ HOL by interacting with the ML top-level loop. In this interaction style,
ML function calls are made to bring in already-established logical context, e.g., via load;
to define new concepts, e.g., via Hol_datatype, Define, and Hol_reln; and to perform
proofs using the goalstack interface, and the proof tools from bossLib (or if they fail to
do the job, from lower-level libraries).

Let’s get started. First, we start the system, with the command <holdir>/bin/hol.
We then “open” the arithmetic theory; this means that all of the ML bindings from the
HOL theory of arithmetic are made available at the top level.

1- open arithmeticTheory;
...

We now begin the formalization. In order to define the concept of prime number, we
first need to define the divisibility relation:

2- val divides_def = Define ‘divides a b = ?x. b = a * x‘;

Definition has been stored under "divides_def".
> val divides_def = |- !a b. divides a b = ?x. b = a * x : thm

1The proofs discussed below may be found in examples/euclid.sml of the HOL distribution.

109

110 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

The definition is added to the current theory with the name divides_def, and also
returned from the invocation of Define. We take advantage of this and make an ML
binding of the name divides_def to the definition. In the usual way of interacting
with HOL, such an ML binding is made for each definition and (useful) proved theorem:
the ML environment is thus being used as a convenient place to hold definitions and
theorems for later reference in the session.

We want to treat divides as a (non-associating) infix:

3- set_fixity "divides" (Infix(NONASSOC, 450));

Next we define the property of a number being prime: a number p is prime if and only
if it is not equal to 1 and it has no divisors other than 1 and itself:

4- val prime_def =
Define ‘prime p = ~(p=1) /\ !x. x divides p ==> (x=1) \/ (x=p)‘;

Definition has been stored under "prime_def".
> val prime_def =

|- !p. prime p = ~(p = 1) /\ !x. x divides p ==> (x = 1) \/ (x = p)
: thm

That concludes the definitions to be made. Now we “just” have to prove that there are
infinitely many prime numbers. If we were coming to this problem fresh, then we would
have to go through a not-well-understood and often tremendously difficult process of
finding the right lemmas required to prove our target theorem.2 Fortunately, we are
working from an already completed proof and can devote ourselves to the far simpler
problem of explaining how to prove the required theorems.

Proof tools The development will illustrate that there is often more than one way
to tackle a HOL proof, even if one has only a single (informal) proof in mind. In this
example, we often find proofs by using the rewriter RW_TAC to unwind definitions and
perform basic simplifications, often reducing a goal to its essence.

5RW_TAC;
val it = fn :simpset -> thm list -> term list * term ->

(term list * term) list * (thm list -> thm)

The ML type of RW_TAC is :simpset -> thm list -> tactic.3 When RW_TAC is applied
to a simpset—for this example it will always be arith_ss—and a list of theorems, the
theorems will be added to the simpset as supplementary rewrite rules. We will see that
arith_ss is also somewhat knowledgeable about arithmetic.4 Sometimes simplification

2This is of course a general problem in doing any kind of proof.
3Unfortunately, the MoscowML system does not print out the type of tactics in its abbreviated form.
4Linear arithmetic especially: purely universal formulas involving the operators SUC, +, −, numeric

literals, <, ≤, >, ≥, =, and multiplication by numeric literals.

6.1. DIVISIBILITY 111

with RW_TAC proves the goal immediately. Often however, we are left with a goal that
requires some study before one realizes what lemmas are needed to conclude the proof.
Once these lemmas have been proven, or located in ancestor theories, METIS_TAC5 can
be invoked with them, with the expectation that it will find the right instantiations
needed to finish the proof. Note that these two operations, simplification and resolution-
style automatic proof search, will not suffice to perform all the proofs in this example;
in particular, our development will also need case analysis and induction.

Finding theorems This raises the following question: how does one find the right
lemmas and rewrite rules to use? This is quite a problem, especially since the number
of ancestor theories, and the theorems in them, is large. There are several possibilities

• The help system can be used to look up definitions and theorems, as well as proof
procedures; for example, an invocation of

help "arithmeticTheory"

will display all the definitions and theorems that have been stored in the theory of
arithmetic. However, the complete name of the item being searched for must be
known before the help system is useful, so the following two search facilities are
often more useful.

• DB.match allows the use of patterns to locate the sought-for theorem. Any stored
theorem having an instance of the pattern as a subterm will be returned.

• DB.find will use fragments of names as keys with which to lookup information.

Tactic composition Once a proof of a proposition has been found, it is customary, al-
though not necessary, to embark on a process of revision, in which the original sequence
of tactics is composed into a single tactic. Sometimes the resulting tactic is much shorter,
and more aesthetically pleasing in some sense. Some users spend a fair bit of time pol-
ishing these tactics, although there doesn’t seem much real benefit in doing so, since
they are ad hoc proof recipes, one for each theorem. In the following, we will show how
this is done in a few cases.

6.1 Divisibility

We start by proving a number of theorems about the divides relation. We will see that
each of these initial theorems can be proved with a single invocation of METIS_TAC. Both

5METIS_TAC performs resolution-style first-order proof search.

112 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

RW_TAC and METIS_TAC are quite powerful reasoners, and the choice of a reasoner in a
particular situation is a matter of experience. The major reason that METIS_TAC works
so well is that divides is defined by means of an existential quantifier, and METIS_TAC is
quite good at automatically instantiating existentials in the course of proof. For a simple
example, consider proving ∀x. x divides 0. A new proposition to be proved is entered
to the proof manager via “g”, which starts a fresh goalstack:

6- g ‘!x. x divides 0‘;

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!x. x divides 0

: proofs

The proof manager tells us that it has only one proof to manage, and echoes the given
goal. Now we expand the definition of divides. Notice that α-conversion takes place
in order to keep distinct the x of the goal and the x in the definition of divides:

7- e (RW_TAC arith_ss [divides_def]);

OK..
1 subgoal:
> val it =

?x’. (x = 0) \/ (x’ = 0)

It is of course quite easy to instantiate the existential quantifier by hand.

8- e (EXISTS_TAC ‘‘0‘‘);

OK..
1 subgoal:
> val it =

(x = 0) \/ (0 = 0)

Then a simplification step finishes the proof.

9- e (RW_TAC arith_ss []);
OK..

Goal proved.
|- (x = 0) \/ (0 = 0)

Goal proved.
|- ?x’. (x = 0) \/ (x’ = 0)
> val it =

Initial goal proved.
|- !x. x divides 0

6.1. DIVISIBILITY 113

What just happened here? The application of RW_TAC to the goal decomposed it to an
empty list of subgoals; in other words the goal was proved by RW_TAC. Once a goal has
been proved, it is popped off the goalstack, prettyprinted to the output, and the theorem
becomes available for use by the level of the stack. When all the sub-goals required by
that level are proven, the corresponding goal at that level can be proven too. This
‘unwinding’ process continues until the stack is empty, or until it hits a goal with more
than one remaining unproved subgoal. This process may be hard to visualize,6 but that
doesn’t matter, since the goalstack was expressly written to allow the user to ignore
such details.

If the three interactions are joined together with THEN to form a single tactic, we can
try the proof again from the beginning (using the restart function) and this time it will
take just one step:

10- restart();
> ...

- e (RW_TAC arith_ss [divides_def] THEN EXISTS_TAC ‘‘0‘‘
THEN RW_TAC arith_ss []);

OK..

> val it =
Initial goal proved.
|- !x. x divides 0

We have seen one way to prove the theorem. However, as mentioned earlier, there is
another: one can let METIS_TAC expand the definition of divides and find the required
instantiation for x’ from the theorem MULT_CLAUSES.7

11- restart();
> ...

- e (METIS_TAC [divides_def, MULT_CLAUSES]);
OK..
metis: r[+0+10]+0+0+0+1+2#
> val it =

Initial goal proved.
|- !x. x divides 0

As it runs, METIS_TAC prints out some possibly interesting diagnostics. In any case,
having done our proof inside the goalstack package, we now want to have access to the
theorem value that we have proved. We use the top_thm function to do this, and then
use drop to dispose of the stack:

6Perhaps since we have used a stack to implement what is notionally a tree!
7You might like to try typing MULT_CLAUSES into the interactive loop to see exactly what it states.

114 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

12- val DIVIDES_0 = top_thm();

> val DIVIDES_0 = |- !x. x divides 0 : thm

- drop();
OK..
> val it = There are currently no proofs. : proofs

We have used METIS_TAC in this way to prove the following collection of theorems
about divides. As mentioned previously, the theorems supplied to METIS_TAC in the
following proofs did not (usually) come from thin air: in most cases some exploratory
work with RW_TAC was done to open up definitions and see what lemmas would be
required by METIS_TAC.

(DIVIDES 0) !x. x divides 0

METIS_TAC [divides_def, MULT_CLAUSES]

(DIVIDES ZERO) !x. 0 divides x = (x = 0)

METIS_TAC [divides_def, MULT_CLAUSES]

(DIVIDES ONE) !x. x divides 1 = (x = 1)

METIS_TAC [divides_def, MULT_CLAUSES, MULT_EQ_1]

(DIVIDES REFL) !x. x divides x

METIS_TAC [divides_def, MULT_CLAUSES]

(DIVIDES TRANS) !a b c. a divides b /\ b divides c ==> a divides c

METIS_TAC [divides_def, MULT_ASSOC]

(DIVIDES ADD) !d a b. d divides a /\ d divides b ==> d divides (a+b)

METIS_TAC [divides_def,LEFT_ADD_DISTRIB]

(DIVIDES SUB) !d a b. d divides a /\ d divides b ==> d divides (a-b)

METIS_TAC [divides_def, LEFT_SUB_DISTRIB]

(DIVIDES ADDL) !d a b. d divides a /\ d divides (a+b) ==> d divides b

METIS_TAC [ADD_SUB, ADD_SYM, DIVIDES_SUB]

(DIVIDES LMUL) !d a x. d divides a ==> d divides (x * a)

METIS_TAC [divides_def, MULT_ASSOC, MULT_SYM]

(DIVIDES RMUL) !d a x. d divides a ==> d divides (a * x)

METIS_TAC [MULT_SYM, DIVIDES_LMUL]

We’ll assume that the above proofs have been performed, and that the appropriate ML
names have been given to all of the theorems. Now we encounter a lemma about
divisibility that doesn’t succumb to a single invocation of METIS_TAC:

6.1. DIVISIBILITY 115

(DIVIDES LE) !m n. m divides n ==> m <= n \/ (n = 0)

RW_TAC arith_ss [divides_def]

THEN Cases_on ‘x‘

THEN RW_TAC arith_ss [MULT_CLAUSES]

Let’s see how this is proved. The easiest way to start is to simplify with the definition of
divides:

13- g ‘!m n . m divides n ==> m <= n \/ (n = 0)‘;
> ...

- e (RW_TAC arith_ss [divides_def]);

1 subgoal:
> val it =

m <= m * x \/ (m * x = 0)

Considering the goal, we basically have three choices: (1) find a collection of lemmas
that together imply the goal and use METIS_TAC; (2) do a case split on m; or (3) do
a case split on x. The first doesn’t seem simple, because the goal doesn’t really fit in
the ‘shape’ of any pre-proved theorem(s) that the author knows about. Although option
(2) will be rejected in the end, let’s try it anyway. To perform the case split, we use
Cases_on, which stands for “find the given term in the goal and do a case split on the
possible means of building it out of datatype constructors”. Since the occurrence of m
in the goal has type num, the cases considered will be whether m is 0 or a successor.

14- e (Cases_on ‘m‘);
OK..
2 subgoals:
> val it =

SUC n <= SUC n * x \/ (SUC n * x = 0)

0 <= 0 * x \/ (0 * x = 0)

The first subgoal (the last one printed) is trivial:

15- e (RW_TAC arith_ss []);
OK..

Goal proved.
...

Remaining subgoals:
> val it =

SUC n <= SUC n * x \/ (SUC n * x = 0)

Let’s try RW_TAC again:

116 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

16- e (RW_TAC arith_ss []);
OK..
1 subgoal:
> val it =

SUC n <= x * SUC n \/ (x = 0)

The right disjunct has been simplified; however, the left disjunct has failed to expand
the definition of multiplication in the expression SUC n ∗ x, which would have been
convenient. In fact, it has changed it to x ∗ SUC n, which is inconvenient. Why, when
arith_ss and hence RW_TAC is supposed to be expert in arithmetic? The answer is
twofold: first, the recursive clauses for addition and multiplication are not in arith_ss

because uncontrolled application of them by the rewriter seems, in general, to make
some proofs more complicated, rather than simpler; second, the simplifier will rearrange
arithmetical terms to make some automated proofs simpler. So the absence of the
recursive clauses for multiplication means that SUC n ∗ x does not expand to (n ∗ x) +

x; instead, the rearrangement yields x ∗ SUC n. OK, so let’s add in the definition of
multiplication. This uncovers a new problem: how to locate this definition. The function

DB.match : string list -> term
-> ((string * string) * (thm * class)) list

is often helpful for such tasks. It takes a list of theory names, and a pattern, and looks
in the list of theories for any theorem, definition, or axiom that has an instance of the
pattern as a subterm. If the list of theory names is empty, then all loaded theories are
included in the search. Let’s look in the theory of arithmetic for the subterm to be
rewritten.

17- DB.match ["arithmetic"] ‘‘SUC n * x‘‘;

> val it =
[(("arithmetic", "FACT"),
(|- (FACT 0 = 1) /\ !n. FACT (SUC n) = SUC n * FACT n, Def)),
(("arithmetic", "LESS_MULT_MONO"),
(|- !m i n. SUC n * m < SUC n * i = m < i, Thm)),
(("arithmetic", "MULT"),
(|- (!n. 0 * n = 0) /\ !m n. SUC m * n = m * n + n, Def)),
(("arithmetic", "MULT_CLAUSES"),
(|- !m n.

(0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\
(SUC m * n = m * n + n) /\ (m * SUC n = m + m * n), Thm)),

(("arithmetic", "MULT_LESS_EQ_SUC"),
(|- !m n p. m <= n = SUC p * m <= SUC p * n, Thm)),
(("arithmetic", "MULT_MONO_EQ"),
(|- !m i n. (SUC n * m = SUC n * i) = m = i, Thm)),
(("arithmetic", "ODD_OR_EVEN"),
(|- !n. ?m. (n = SUC (SUC 0) * m) \/ (n = SUC (SUC 0) * m + 1), Thm))]

: ...

6.1. DIVISIBILITY 117

For some, this returns slightly too much information; however, we can focus the
search by stipulating that the pattern look like a rewrite rule:

18- DB.match [] ‘‘SUC n * x = M‘‘;

> val it =
[(("arithmetic", "MULT"),
(|- (!n. 0 * n = 0) /\ !m n. SUC m * n = m * n + n, Def)),

(("arithmetic", "MULT_CLAUSES"),
(|- !m n.

(0 * m = 0) /\ (m * 0 = 0) /\ (1 * m = m) /\ (m * 1 = m) /\
(SUC m * n = m * n + n) /\ (m * SUC n = m + m * n), Thm)),

(("arithmetic", "MULT_MONO_EQ"),
(|- !m i n. (SUC n * m = SUC n * i) = m = i, Thm))] : ...

Either arithmeticTheory.MULT or arithmeticTheory.MULT_CLAUSES would be accept-
able; we choose the latter.

19- b();
...

e (RW_TAC arith_ss [MULT_CLAUSES]);

OK..
1 subgoal:
> val it =

SUC n <= x + n * x \/ (x = 0)

Now we see that, in order to make progress in the proof, we will have to do a case split
on x anyway, and that we should have split on it originally. Hence we backup. We will
have to backup (undo) three times:

20- b();
> val it =

SUC n <= SUC n * x \/ (SUC n * x = 0)

- b();
> val it =

SUC n <= SUC n * x \/ (SUC n * x = 0)

0 <= 0 * x \/ (0 * x = 0)

- b();
> val it =

m <= m * x \/ (m * x = 0)

Now we can go forward and do case analysis on x. We will also make a compound tac-
tic invocation, since we already know that we’ll have to invoke RW_TAC in both branches

118 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

of the case split. This can be done using THEN. When t1 THEN t2 is applied to a goal g,
first t1 is applied to g, giving a list of new subgoals, then t2 is applied to each member
of the list. All goals resulting from these applications of t2 are gathered together and
returned.

21- e (Cases_on ‘x‘ THEN RW_TAC arith_ss [MULT_CLAUSES]);
OK..

Goal proved.
|- m <= m * x \/ (m * x = 0)
> val it =

Initial goal proved.
|- !m n. m divides n ==> m <= n \/ (n = 0)

That was easy! Obviously making a case split on x was the right choice. The process of
finding the proof has now finished, and all that remains is for the proof to be packaged
up into the single tactic we saw above. Rather than use top_thm and the goalstack, we
can bypass it and use the store_thm function. This function takes a string, a term and
a tactic and applies the tactic to the term to get a theorem, and then stores the theorem
in the current theory under the given name.

22- val DIVIDES_LE = store_thm (
"DIVIDES_LE",
‘‘!m n. m divides n ==> m <= n \/ (n = 0)‘‘,
RW_TAC arith_ss [divides_def]
THEN Cases_on ‘x‘
THEN RW_TAC arith_ss [MULT_CLAUSES]);

> val DIVIDES_LE = |- !m n. m divides n ==> m <= n \/ (n = 0) : thm

Storing theorems in our script record of the session in this style (rather than with the
goalstack) results in a more concise script, and also makes it easier to turn our script
into a theory file, as we do in section 6.5.

6.1.1 Divisibility and factorial

The next lemma, DIVIDES FACT, says that every number greater than 0 and ≤ n divides
the factorial of n. Factorial is found at arithmeticTheory.FACT and has been defined
by primitive recursion:

(FACT) (FACT 0 = 1) /\

(!n. FACT (SUC n) = SUC n * FACT n)

A polished proof of DIVIDES FACT is the following8:

8This and subsequent proofs use the theorems proved on page 114, which were added to the ML
environment after being proved.

6.1. DIVISIBILITY 119

(DIVIDES FACT) !m n. 0 < m /\ m <= n ==> m divides (FACT n)

RW_TAC arith_ss [LESS_EQ_EXISTS]

THEN Induct_on ‘p‘

THEN RW_TAC arith_ss [FACT,ADD_CLAUSES]

THENL [Cases_on ‘m‘, ALL_TAC]

THEN METIS_TAC [FACT, DECIDE ‘‘!x. ~(x < x)‘‘,

DIVIDES_RMUL, DIVIDES_LMUL, DIVIDES_REFL]

We will examine this proof in detail, so we should first attempt to understand why
the theorem is true. What’s the underlying intuition? Suppose 0 < m ≤ n, and so
FACT n = 1 ∗ · · · ∗m ∗ · · · ∗ n. To show m divides (FACT n) means exhibiting a q such
that q ∗ m = FACT n. Thus q = FACT n ÷ m. If we were to take this approach to
the proof, we would end up having to find and apply lemmas about ÷. This seems to
take us a little out of our way; isn’t there a proof that doesn’t use division? Well yes,
we can prove the theorem by induction on n − m: in the base case, we will have to
prove n divides (FACT n), which ought to be easy; in the inductive case, the inductive
hypothesis seems like it should give us what we need. This strategy for the inductive
case is a bit vague, because we are trying to mentally picture a slightly complicated
formula, but we can rely on the system to accurately calculate the cases of the induction
for us. If the inductive case turns out to be not what we expect, we will have to re-think
our approach.

23- g ‘!m n. 0 < m /\ m <= n ==> m divides (FACT n)‘;

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!m n. 0 < m /\ m <= n ==> m divides FACT n

Instead of directly inducting on n −m, we will induct on a witness variable, obtained
by use of the theorem LESS_EQ_EXISTS.

24- LESS_EQ_EXISTS;
> val it = |- !m n. m <= n = (?p. n = m + p) : thm

- e (RW_TAC arith_ss [LESS_EQ_EXISTS]);
OK..
1 subgoal:
> val it =

m divides FACT (m + p)

0 < m

Now we induct on p:

120 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

25- e (Induct_on ‘p‘);
OK..
2 subgoals:
> val it =

m divides FACT (m + SUC p)

0. 0 < m
1. m divides FACT (m + p)

m divides FACT (m + 0)

0 < m

The first goal can obviously be simplified:

26- e (RW_TAC arith_ss []);
OK..
1 subgoal:
> val it =

m divides FACT m

0 < m

Now we can do a case analysis on m: if it is 0, we have a trivial goal; if it is a suc-
cessor, then we can use the definition of FACT and the theorems DIVIDES_RMUL and
DIVIDES_REFL.

27- e (Cases_on ‘m‘);
OK..
2 subgoals:
> val it =

SUC n divides FACT (SUC n)

0 < SUC n

0 divides FACT 0

0 < 0

Here the first sub-goal goal has an assumption that is false. We can demonstrate
this to the system by using the DECIDE function to prove a simple fact about arithmetic
(namely, that no number x is less than itself), and then passing the resulting theorem
to METIS_TAC, which can combine this with the contradictory assumption.9

9Note how the interactive system prints out the proved theorem with [.] before the turnstile. This
notation indicates that a theorem has an assumption (the false 0 < 0 in this case).

6.1. DIVISIBILITY 121

28- e (METIS_TAC [DECIDE ‘‘!x. ~(x < x)‘‘]);
OK..
metis: r[+0+4]#

Goal proved.
[.] |- 0 divides FACT 0

Remaining subgoals:
> val it =

SUC n divides FACT (SUC n)

0 < SUC n

Using the theorems identified above the remaining sub-goal can be proved with RW_TAC.
29- e (RW_TAC arith_ss [FACT, DIVIDES_LMUL, DIVIDES_REFL]);

OK..

Goal proved. ...

Remaining subgoals:
> val it =

m divides FACT (m + SUC p)

0. 0 < m
1. m divides FACT (m + p)

This last step, namely the invocation of RW_TAC, could also have been accomplished with
METIS_TAC. Note that the only difference is the use of DIVIDES_LMUL in the simplifier
versus DIVIDES_RMUL in METIS_TAC. This is due to the already mentioned algebraic
rearrangement of arithmetical terms in the simplifier.

30- b();
> ...

- e (METIS_TAC [FACT, DIVIDES_RMUL, DIVIDES_REFL]);
OK..

Goal proved. ...

Now we have finished the base case of the induction and can move to the step case. An
obvious thing to try is simplification with the definitions of addition and factorial:

31- e (RW_TAC arith_ss [FACT, ADD_CLAUSES]);

OK..
1 subgoal:
> val it =

m divides FACT (m + p) * SUC (m + p)

0. 0 < m
1. m divides FACT (m + p)

122 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

And now, by DIVIDES_RMUL and the inductive hypothesis, we are done:

32- e (METIS_TAC [DIVIDES_RMUL]);
OK..
metis: r[+0+5]+0+0+0+0+1#

Goal proved.
...

> val it =
Initial goal proved.
|- !m n. 0 < m /\ m <= n ==> m divides FACT n

We have finished the search for the proof, and now turn to the task of making a single
tactic out of the sequence of tactic invocations we have just made. We assume that the
sequence of invocations has been kept track of in a file or a text editor buffer. We would
thus have something like the following:

e (RW_TAC arith_ss [LESS_EQ_EXISTS]);
e (Induct_on ‘p‘);
(*1*)
e (RW_TAC arith_ss []);
e (Cases_on ‘m‘);
(*1.1*)
e (METIS_TAC [DECIDE ‘‘!x. ~(x < x)‘‘]);
(*1.2*)
e (RW_TAC arith_ss [FACT, DIVIDES_LMUL, DIVIDES_REFL]);
(*2*)
e (RW_TAC arith_ss [FACT, ADD_CLAUSES]);
e (METIS_TAC [DIVIDES_RMUL]);

We have added a numbering scheme to keep track of the branches in the proof. We
can stitch the above together directly into the following compound tactic:

RW_TAC arith_ss [LESS_EQ_EXISTS]
THEN Induct_on ‘p‘
THENL [RW_TAC arith_ss [] THEN Cases_on ‘m‘

THENL [METIS_TAC [DECIDE ‘‘!x. ~(x < x)‘‘],
RW_TAC arith_ss [FACT, DIVIDES_LMUL, DIVIDES_REFL]],

RW_TAC arith_ss [FACT, ADD_CLAUSES] THEN METIS_TAC [DIVIDES_RMUL]]

This can be tested to see that we have made no errors:

6.1. DIVISIBILITY 123

33- restart();
> ...

- e (RW_TAC arith_ss [LESS_EQ_EXISTS]
THEN Induct_on ‘p‘ THENL
[RW_TAC arith_ss [] THEN Cases_on ‘m‘ THENL

[METIS_TAC [DECIDE ‘‘!x. ~(x < x)‘‘],
RW_TAC arith_ss [FACT, DIVIDES_LMUL, DIVIDES_REFL]],

RW_TAC arith_ss [FACT, ADD_CLAUSES] THEN METIS_TAC [DIVIDES_RMUL]]);
OK..
metis: r[+0+5]+0+0+0+0+1#
metis: r[+0+4]#
> val it =

Initial goal proved.
|- !m n. 0 < m /\ m <= n ==> m divides FACT n

For many users, this would be the end of dealing with this proof: the tactic can now
be packaged into an invocation of prove10 or store_thm and that would be the end of
it. However, another user might notice that this tactic could be shortened.

To start, both arms of the induction start with an invocation of RW_TAC, and the se-
mantics of THEN allow us to merge the occurrences of RW_TAC above the THENL. The
recast tactic is

RW_TAC arith_ss [LESS_EQ_EXISTS]
THEN Induct_on ‘p‘
THEN RW_TAC arith_ss [FACT, ADD_CLAUSES]
THENL [Cases_on ‘m‘ THENL

[METIS_TAC [DECIDE ‘‘!x. ~(x < x)‘‘],
RW_TAC arith_ss [FACT, DIVIDES_LMUL, DIVIDES_REFL]],

METIS_TAC [DIVIDES_RMUL]]

(Of course, when a tactic has been revised, it should be tested to see if it still proves the
goal!) Now recall that the use of RW_TAC in the base case could be replaced by a call to
METIS_TAC. Thus it seems possible to merge the two sub-cases of the base case into a
single invocation of METIS_TAC:

RW_TAC arith_ss [LESS_EQ_EXISTS]
THEN Induct_on ‘p‘
THEN RW_TAC arith_ss [FACT, ADD_CLAUSES]
THENL [Cases_on ‘m‘ THEN

METIS_TAC[DECIDE ‘‘!x. ~(x<x)‘‘,FACT,DIVIDES_RMUL,DIVIDES_REFL],
METIS_TAC [DIVIDES_RMUL]]

Finally, pushing this revisionism nearly to its limit, we’d like there to be only a single
invocation of METIS_TAC to finish the proof off. The semantics of THEN and ALL_TAC

10The prove function takes a term and a tactic and attempts to prove the term using the supplied tactic.
It returns the proved theorem if the tactic succeeds. It doesn’t save the theorem to the developing theory.

124 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

come to our rescue: we will split on the construction of m in the base case, as in
the current incarnation of the tactic, but we will let the inductive case pass unaltered
through the THENL. This is achieved by using ALL_TAC, which is a tactic that acts as an
identity function on the goal.

RW_TAC arith_ss [LESS_EQ_EXISTS]
THEN Induct_on ‘p‘
THEN RW_TAC arith_ss [FACT, ADD_CLAUSES]
THENL [Cases_on ‘m‘, ALL_TAC]
THEN METIS_TAC [DECIDE ‘‘!x. ~(x < x)‘‘,

FACT, DIVIDES_RMUL, DIVIDES_REFL]

The result is that there will be three subgoals emerging from the THENL: the two sub-
cases in the base case and the unaltered step case. Each is proved with a call to
METIS_TAC. Are we now done? Not necessarily. For example, the explicit case split,
namely Cases_on ‘m‘, can be replaced by providing the cases theorem for natural num-
bers (num_CASES) to METIS_TAC. With this, the case split on m will be automatically
generated by METIS_TAC as it searches for the proof. Hence we can shorten the tactic
again.

34- num_CASES;
> val it = |- !m. (m = 0) \/ ?n. m = SUC n : thm

- restart();
- e (RW_TAC arith_ss [LESS_EQ_EXISTS]

THEN Induct_on ‘p‘
THEN METIS_TAC [DECIDE ‘‘!x. ~(x < x)‘‘, FACT, num_CASES,

DIVIDES_RMUL, DIVIDES_LMUL, DIVIDES_REFL, ADD_CLAUSES]);

We have now finished our exercise in tactic revision. Certainly, it would be hard to
foresee that this final tactic would prove the goal; the required lemmas for the final
invocation of METIS_TAC have been found by an incremental process of revision.

6.1.2 Divisibility and factorial (again!)

In the previous proof, we made an initial simplification step in order to expose a variable
upon which to induct. However, the proof is really by induction on n − m. Can we
express this directly? The answer is a qualified yes: the induction can be naturally
stated, but it leads to somewhat less natural goals.

6.1. DIVISIBILITY 125

35- restart();

- e (Induct_on ‘n - m‘);

OK..
2 subgoals:
> val it =

!n m. (SUC v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n

!n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n

!n m. (0 = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n

This is slighly hard to read, so we use STRIP_TAC and REPEAT to move the antecedents
of the goals to the assumptions. Use of THEN ensures that the tactic gets applied in both
branches of the induction.

36- b();
...

- e (Induct_on ‘n - m‘ THEN REPEAT STRIP_TAC);

OK..
2 subgoals:
> val it =

m divides FACT n

0. !n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n
1. SUC v = n - m
2. 0 < m
3. m <= n

m divides FACT n

0. 0 = n - m
1. 0 < m
2. m <= n

Looking at the first goal, we reason that if 0 = n − m and m ≤ n, then m = n. We
can prove this fact, using DECIDE_TAC11 and add it to the hypotheses by use of the infix
operator “by”:

11DECIDE_TAC is a decision procedure for a useful class of arithmetical formulas.

126 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

37- e (‘m = n‘ by DECIDE_TAC);
OK..
1 subgoal:
> val it =

m divides FACT n

0. 0 = n - m
1. 0 < m
2. m <= n
3. m = n

We can now use RW_TAC to propagate the newly derived equality throughout the goal.

38- e (RW_TAC arith_ss []);

OK..
1 subgoal:
> val it =

m divides FACT m

0. 0 = m - m
1. 0 < m
2. m <= m

At this point in the previous proof we did a case analysis on m. However, we already
have the hypothesis that m is positive (along with two other now useless hypotheses).
Thus we know that m is the successor of some number k. We might wish to assert this
fact with an invocation of “by” as follows:

‘?k. m = SUC k‘ by <tactic>

But what is the tactic? If we try DECIDE_TAC, it will fail since it doesn’t handle existential
statements. An application of RW_TAC will also prove to be unsatisfactory. What to do?

When such situations occur, it is often best to start a new proof for the required
lemma. This can be done simply by invoking “g” again. A new goalstack will be created
and stacked upon the current one12 and an overview of the extant proof attempts will
be printed:

12This stacking of proof attempts (goalstacks) is different than the stacking of goals and justifications
inside a particular goalstack.

6.1. DIVISIBILITY 127

39- g ‘!m. 0 < m ==> ?k. m = SUC k‘;

> val it =
Proof manager status: 2 proofs.
2. Incomplete:

Initial goal:
!m n. 0 < m /\ m <= n ==> m divides FACT n

Current goal:
m divides FACT m

0. 0 = m - m
1. 0 < m
2. m <= m

1. Incomplete:
Initial goal:
!m. 0 < m ==> ?k. m = SUC k

Our new goal can be proved quite quickly. Once we have proved it, we can bind it to an
ML name and use it in the previous proof, by some sleight of hand with the “before”13

function.

40- e (Cases THEN RW_TAC arith_ss []);

OK..
> val it =

Initial goal proved.
|- !m. 0 < m ==> ?k. m = SUC k

- val lem = top_thm() before drop();

OK..
> val lem = |- !m. 0 < m ==> ?k. m = SUC k : thm

Now we can return to the main thread of the proof. The state of the current sub-goal
of the proof can be displayed using the function “p”.

41- p ();

> val it =
m divides FACT m

0. 0 = m - m
1. 0 < m
2. m <= m

13An infix version of the K combinator, defined by fun (x before y) = x.

128 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

Now we can use lem in the proof. Somewhat opportunistically, we will tack on the
invocation used in the earlier proof at (roughly) the same point, hoping that it will
solve the goal:

42- e (‘?k. m = SUC k‘ by
METIS_TAC[lem] THEN RW_TAC arith_ss [FACT, DIVIDES_LMUL, DIVIDES_REFL]);

OK..
metis: r[+0+6]+0+0+0+0+0+1#

Goal proved. ...

Remaining subgoals:
> val it =

m divides FACT n

0. !n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n
1. SUC v = n - m
2. 0 < m
3. m <= n

It does! That takes care of the base case. For the induction step, things look a bit more
difficult than in the earlier proof. However, we can make progress by realizing that the
hypotheses imply that 0 < n and so, again by lem, we can transform n into a successor,
thus enabling the unfolding of FACT, as in the previous proof:

43- e (‘0 < n‘ by DECIDE_TAC THEN ‘?k. n = SUC k‘ by METIS_TAC [lem]);
OK..
metis: r[+0+8]+0+0+0+0+0+0+2#
1 subgoal:
> val it =

m divides FACT n

0. !n m. (v = n - m) ==> 0 < m /\ m <= n ==> m divides FACT n
1. SUC v = n - m
2. 0 < m
3. m <= n
4. 0 < n
5. n = SUC k

The proof now finishes in much the same manner as the previous one:

44- e (RW_TAC arith_ss [FACT, DIVIDES_RMUL]);
OK..

Goal proved. ...
> val it =

Initial goal proved.
|- !m n. 0 < m /\ m <= n ==> m divides FACT n

We leave the details of stitching the proof together to the interested reader.

6.2. PRIMALITY 129

6.2 Primality

Now we move on to establish some facts about the primality of the first few numbers: 0

and 1 are not prime, but 2 is. Also, all primes are positive. These are all quite simple to
prove.

(NOT PRIME 0) ~prime 0

RW_TAC arith_ss [prime_def,DIVIDES_0]

(NOT PRIME 1) ~prime 1

RW_TAC arith_ss [prime_def]

(PRIME 2) prime 2

RW_TAC arith_ss [prime_def]

THEN METIS_TAC [DIVIDES_LE, DIVIDES_ZERO,

DECIDE ‘‘~(2=1)‘‘, DECIDE ‘‘~(2=0)‘‘,

DECIDE ‘‘x <= 2 = (x=0) \/ (x=1) \/ (x=2)‘‘]

(PRIME POS) !p. prime p ==> 0<p

Cases THEN RW_TAC arith_ss [NOT_PRIME_0]

6.3 Existence of prime factors

Now we are in position to prove a more substantial lemma: every number other than 1

has a prime factor. The proof proceeds by a complete induction on n. Complete induction
is necessary since a prime factor won’t be the predecessor. After induction, the proof
splits into cases on whether n is prime or not. The first case (n is prime) is trivial. In the
second case, there must be an x that divides n, and x is not 1 or n. By DIVIDES LE, n = 0

or x ≤ n. If n = 0, then 2 is a prime that divides 0. On the other hand, if x ≤ n, there
are two cases: if x < n then we can use the inductive hypothesis and by transitivity of
divides we are done; otherwise, x = n and then we have a contradiction with the fact
that x is not 1 or n. The polished tactic is the following:

(PRIME FACTOR) !n. ~(n = 1) ==> ?p. prime p /\ p divides n

completeInduct_on ‘n‘

THEN RW_TAC arith_ss []

THEN Cases ‘prime n‘ THENL

[METIS_TAC [DIVIDES_REFL],

‘?x. x divides n /\ ~(x=1) /\ ~(x=n)‘

by METIS_TAC[prime_def]

THEN METIS_TAC [LESS_OR_EQ, PRIME_2,

DIVIDES_LE,DIVIDES_TRANS,DIVIDES_0]]

130 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

We start by invoking complete induction. This gives us an inductive hypothesis that
holds at every number m strictly smaller than n:

45- g ‘!n. ~(n = 1) ==> ?p. prime p /\ p divides n‘;

- e (completeInduct_on ‘n‘);
OK..
1 subgoal:
> val it =

~(n = 1) ==> ?p. prime p /\ p divides n

!m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m

We can move the antecedent to the hypotheses and make our case split. Notice that the
term given to Cases_on need not occur in the goal:

46- e (RW_TAC arith_ss [] THEN Cases_on ‘prime n‘);
OK..
2 subgoals:
> val it =

?p. prime p /\ p divides n

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m
1. ~(n = 1)
2. ~prime n

?p. prime p /\ p divides n

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m
1. ~(n = 1)
2. prime n

As mentioned, the first case is proved with the reflexivity of divisibility:

47- e (METIS_TAC [DIVIDES_REFL]);
OK..
metis: r[+0+7]+0+0+0+0+1#

Goal proved. ...

In the second case, we can get a divisor of n that isn’t 1 or n (since n is not prime):

6.3. EXISTENCE OF PRIME FACTORS 131

48- e (‘?x. x divides n /\ ~(x=1) /\ ~(x=n)‘ by METIS_TAC [prime_def]);
OK..
metis: r[+0+11]+0+0+0+0+0+0+1+1+1+1+0+1+1#
1 subgoal:
> val it =

?p. prime p /\ p divides n

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m
1. ~(n = 1)
2. ~prime n
3. x divides n
4. ~(x = 1)
5. ~(x = n)

At this point, the polished tactic simply invokes METIS_TAC with a collection of theorems.
We will attempt a more detailed exposition. Given the hypotheses, and by DIVIDES LE,
we can assert x < n ∨ n = 0 and thus split the proof into two cases:

49- e (‘x < n \/ (n=0)‘ by METIS_TAC [DIVIDES_LE,LESS_OR_EQ]);
OK..
metis: r[+0+14]+0+0+0+0+0+0+0+0+0+0+1+0+1#
2 subgoals:
> val it =

?p. prime p /\ p divides n

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m
1. ~(n = 1)
2. ~prime n
3. x divides n
4. ~(x = 1)
5. ~(x = n)
6. n = 0

?p. prime p /\ p divides n

0. !m. m < n ==> ~(m = 1) ==> ?p. prime p /\ p divides m
1. ~(n = 1)
2. ~prime n
3. x divides n
4. ~(x = 1)
5. ~(x = n)
6. x < n

In the first subgoal, we can see that the antecedents of the inductive hypothesis are met
and so x has a prime divisor. We can then use the transitivity of divisibility to get the
fact that this divisor of x is also a divisor of n, thus finishing this branch of the proof:

132 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

50- e (METIS_TAC [DIVIDES_TRANS]);
OK..
metis: r[+0+11]+0+0+0+0+0+0+0+1+0+4+1+0+3+0+2+2+1#

Goal proved.

The remaining goal can be clarified by simplification:

51- e (RW_TAC arith_ss []);
OK..
1 subgoal:
> val it =

?p. prime p /\ p divides 0

0. !m. m < 0 ==> ~(m = 1) ==> ?p. prime p /\ p divides m
1. ~(0 = 1)
2. ~prime 0
3. x divides 0
4. ~(x = 1)
5. ~(x = 0)

- DIVIDES_0;
> val it = |- !x. x divides 0 : thm

- e (RW_TAC arith_ss [it]);
OK..
1 subgoal:
> val it =

?p. prime p

0. !m. m < 0 ==> ~(m = 1) ==> ?p. prime p /\ p divides m
1. ~(0 = 1)
2. ~prime 0
3. x divides 0
4. ~(x = 1)
5. ~(x = 0)

The two steps of exploratory simplification have led us to a state where all we have to
do is exhibit a prime. And we already have one to hand:

52- e (METIS_TAC [PRIME_2]);
OK..
metis: r[+0+6]#

Goal proved. ...
> val it =

Initial goal proved.
|- !n. ~(n = 1) ==> ?p. prime p /\ p divides n

6.4. EUCLID’S THEOREM 133

Again, work now needs to be done to compose and perhaps polish a single tactic from
the individual proof steps, but we will not describe it.14 Instead we move forward,
because our ultimate goal is in reach.

6.4 Euclid’s theorem

Theorem. Every number has a prime greater than it.
Informal proof.
Suppose the opposite; then there’s an n such that all p greater than n are not prime.
Consider FACT(n) + 1: it’s not equal to 1 so, by PRIME FACTOR, there’s a prime p that
divides it. Note that p also divides FACT(n) because p ≤ n. By DIVIDES ADDL, we have
p = 1. But then p is not prime, which is a contradiction.
End of proof.

A HOL rendition of the proof may be given as follows:

(EUCLID) !n. ?p. n < p /\ prime p

SPOSE_NOT_THEN STRIP_ASSUME_TAC

THEN MP_TAC (SPEC ‘‘FACT n + 1‘‘ PRIME_FACTOR)

THEN RW_TAC arith_ss [FACT_LESS, DECIDE ‘‘~(x=0) = 0<x‘‘]

THEN METIS_TAC [NOT_PRIME_1, NOT_LESS, PRIME_POS,

DIVIDES_FACT, DIVIDES_ADDL, DIVIDES_ONE]

Let’s prise this apart and look at it in some detail. A proof by contradiction can be started
by using the bossLib function SPOSE_NOT_THEN. With it, one assumes the negation of
the current goal and then uses that in an attempt to prove falsity (F). The assumed
negation ¬(∀n. ∃p. n < p ∧ prime p) is simplified a bit into ∃n. ∀p. n < p ⊃ ¬ prime p

and then is passed to the tactic STRIP_ASSUME_TAC. This moves its argument to the
assumption list of the goal after eliminating the existential quantification on n.

53- g ‘!n. ?p. n < p /\ prime p‘;

- e (SPOSE_NOT_THEN STRIP_ASSUME_TAC);
OK..
1 subgoal:
> val it =

F

!p. n < p ==> ~prime p

Thus we have the hypothesis that all p beyond a certain unspecified n are not prime,
and our task is to show that this cannot be. At this point we take advantage of Euclid’s

14Indeed, the tactic can be simplified into complete induction followed by an invocation of METIS_TAC
with suitable lemmas.

134 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

great inspiration and we build an explicit term from n. In the informal proof we are
asked to ‘consider’ the term FACT n+ 1.15 This term will have certain properties (i.e., it
has a prime factor) that lead to contradiction. Question: how do we ‘consider’ this term
in the formal HOL proof? Answer: by instantiating a lemma with it and bringing the
lemma into the proof. The lemma and its instantiation are:16

54- PRIME_FACTOR;
> val it = |- !n. ~(n = 1) ==> (?p. prime p /\ p divides n) : thm

- val th = SPEC ‘‘FACT n + 1‘‘ PRIME_FACTOR;
> val th =

|- ~(FACT n + 1 = 1) ==> (?p. prime p /\ p divides FACT n + 1)

It is evident that the antecedent of th can be eliminated. In HOL, one could do this in a
so-called forward proof style (by proving ` ¬(FACT n+ 1 = 1) and then applying modus
ponens, the result of which can then be used in the proof), or one could bring th into
the proof and simplify it in situ. We choose the latter approach.

55- e (MP_TAC (SPEC ‘‘FACT n + 1‘‘ PRIME_FACTOR));
OK..
1 subgoal:
> val it =

(~(FACT n + 1 = 1) ==> ?p. prime p /\ p divides FACT n + 1) ==> F

!p. n < p ==> ~prime p

The invocation MP_TAC (`M) applied to a goal (∆, g) returns the goal (∆,M ⊃ g). Now
we simplify:

56- e (RW_TAC arith_ss []);
OK..
2 subgoals:
> val it =

~prime p \/ ~(p divides FACT n + 1)

0. !p. n < p ==> ~prime p
1. prime p

~(FACT n = 0)

!p. n < p ==> ~prime p

We recall that zero is less than every factorial, a fact found in arithmeticTheory under
the name FACT_LESS. Thus we can solve the top goal by simplification:

15The HOL parser thinks FACT n + 1 is equivalent to (FACT n) + 1.
16The function SPEC implements the rule of universal specialization.

6.4. EUCLID’S THEOREM 135

57- e (RW_TAC arith_ss [FACT_LESS, DECIDE ‘‘!x. ~(x=0) = 0 < x‘‘]);
OK..
Goal proved. ...

Notice the ‘on-the-fly’ use of DECIDE to provide an ad hoc rewrite. Looking at the re-
maining goal, one might think that our aim, to prove falsity, has been lost. But this is
not so: a goal ¬P ∨ ¬Q is logically equivalent to P ⇒ Q ⇒ F. In the following invoca-
tion, we use the equality ` A ⇒ B = ¬A ∨ B as a rewrite rule oriented right to left by
use of GSYM.17

58- IMP_DISJ_THM;
> val it = |- !A B. A ==> B = ~A \/ B : thm

- e (RW_TAC arith_ss [GSYM IMP_DISJ_THM]);
OK..
1 subgoal:
> val it =

~(p divides FACT n + 1)

0. !p. n < p ==> ~prime p
1. prime p

: goalstack

We can quickly proceed to show that p divides (FACT n), and thus that p = 1, hence
that p is not prime, at which point we are done. This can all be packaged into a single
invocation of METIS_TAC:

59- e (METIS_TAC [DIVIDES_FACT, DIVIDES_ADDL, DIVIDES_ONE,
NOT_PRIME_1, NOT_LESS, PRIME_POS]);

metis: r[+0+12]+0+0+0+0+0+0+0+1+1+0+0+0+0+1+1+1+1+4#

Goal proved.
[..] |- ~(p divides FACT n + 1)

Goal proved.
[.] |- ~prime p \/ ~(p divides FACT n + 1)

Goal proved.
[.]
|- (~(FACT n + 1 = 1) ==> ?p. prime p /\ p divides FACT n + 1) ==> F

Goal proved.
[.] |- F
> val it =

Initial goal proved.
|- !n. ?p. n < p /\ prime p : goalstack

17Loosely speaking, GSYM swaps the left and right hand sides of any equations it finds.

136 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

Euclid’s theorem is now proved, and we can rest. However, this presentation of the final
proof will be unsatisfactory to some, because the proof is completely hidden in the invo-
cation of the automated reasoner. Well then, let’s try another proof, this time employing
the so-called ‘assertional’ style. When used uniformly, this can allow a readable linear
presentation that mirrors the informal proof. The following proves Euclid’s theorem in
the assertional style. We think it is fairly readable, certainly much more so than the
standard tactic proof just given.18

(AGAIN) !n. ?p. n < p /\ prime p

CCONTR_TAC THEN

‘?n. !p. n < p ==> ~prime p‘ by METIS_TAC [] THEN

‘~(FACT n + 1 = 1)‘ by RW_TAC arith_ss [FACT_LESS,

DECIDE‘‘~(x=0)=0<x‘‘] THEN

‘?p. prime p /\

p divides (FACT n + 1)‘ by METIS_TAC [PRIME_FACTOR] THEN

‘0 < p‘ by METIS_TAC [PRIME_POS] THEN

‘p <= n‘ by METIS_TAC [NOT_LESS] THEN

‘p divides FACT n‘ by METIS_TAC [DIVIDES_FACT] THEN

‘p divides 1‘ by METIS_TAC [DIVIDES_ADDL] THEN

‘p = 1‘ by METIS_TAC [DIVIDES_ONE] THEN

‘~prime p‘ by METIS_TAC [NOT_PRIME_1] THEN

METIS_TAC []

6.5 Turning the script into a theory

Having proved our result, we probably want to package it up in a way that makes it
available to future sessions, but which doesn’t require us to go all through the theorem-
proving effort again. Even having a complete script from which it would be possible to
cut-and-paste is an error-prone solution.

In order to do this we need to create a file with the name xScript.sml, where x is
the name of the theory we wish to export. This file then needs to be compiled. In fact,
we really do use the Moscow ML compiler, carefully augmented with the appropriate
logical context. However, the language accepted by the compiler is not quite the same
as that accepted by the interactive system, so we will need to do a little work to massage
the original script into the correct form.

We’ll give an illustration of converting to a form that can be compiled using the script

<holdir>/examples/euclid.sml

18Note that CCONTR TAC, which is used to start the proof, initiates a proof by contradiction by negating
the goal and placing it on the hypotheses, leaving F as the new goal.

6.5. TURNING THE SCRIPT INTO A THEORY 137

as our base-line. This file is already close to being in the right form. It has all of the
proofs of the theorems in “sewn-up” form so that when run, it does not involve the
goal-stack at all. In its given form, it can be run as input to hol thus:

1$ cd examples/
$../bin/hol < euclid.sml
...

> val EUCLID = |- !n. ?p. n < p /\ prime p : thm
...

> val EUCLID_AGAIN = |- !n. ?p. n < p /\ prime p : thm
-

However, we now want to create a euclidTheory that we can load in other interactive
sessions. So, our first step is to create a file euclidScript.sml, and to copy the body of
euclid.sml into it.

The first non-comment line opens arithmeticTheory. However, when writing for the
compiler, we need to explicitly mention the other HOL modules that we depend on. We
must add

open HolKernel boolLib Parse bossLib

The next line that poses a difficulty is

set_fixity "divides" (Infixr 450);

While it is legitimate to type expressions directly into the interactive system, the com-
piler requires that every top-level phrase be a declaration. We satisfy this requirement
by altering this line into a “do nothing” declaration that does not record the result of
the expression:

val _ = set_fixity "divides" (Infixr 450)

The only extra changes are to bracket the rest of the script text with calls to new_theory

and export_theory. So, before the definition of divides, we add:

val _ = new_theory "euclid";

and at the end of the file:

val _ = export_theory();

Now, we can compile the script we have created using the Holmake tool. To keep
things a little tidier, we first move our script into a new directory.

138 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

2$ mkdir euclid
$ mv euclidScript.sml euclid
$ cd euclid
$../../bin/Holmake
Analysing euclidScript.sml
Trying to create directory .HOLMK for dependency files
Compiling euclidScript.sml
Linking euclidScript.uo to produce theory-builder executable
<<HOL message: Created theory "euclid".>>
Definition has been stored under "divides_def".
Definition has been stored under "prime_def".
Meson search level:
Meson search level:
...
Exporting theory "euclid" ... done.
Analysing euclidTheory.sml
Analysing euclidTheory.sig
Compiling euclidTheory.sig
Compiling euclidTheory.sml

Now we have created four new files, various forms of euclidTheory with four differ-
ent suffixes. Only euclidTheory.sig is really suitable for human consumption. While
still in the euclid directory that we created, we can demonstrate:

3$../../bin/hol
[...]

[closing file "/local/scratch/mn200/Work/hol98/tools/end-init-boss.sml"]
- load "euclidTheory";
> val it = () : unit
- open euclidTheory;
> type thm = thm
val DIVIDES_TRANS =
|- !a b c. a divides b / b divides c ==> a divides c
: thm

...
val DIVIDES_REFL = |- !x. x divides x : thm
val DIVIDES_0 = |- !x. x divides 0 : thm

6.6 Summary

The reader has now seen an interesting theorem proved, in great detail, in HOL. The
discussion illustrated the high-level tools provided in bossLib and touched on issues
including tool selection, undo, ‘tactic polishing’, exploratory simplification, and the
‘forking-off’ of new proof attempts. We also attempted to give a flavour of the thought
processes a user would employ. Following is a more-or-less random collection of other
observations.

6.6. SUMMARY 139

• Even though the proof of Euclid’s theorem is short and easy to understand when
presented informally, a perhaps surprising amount of support development was
required to set the stage for Euclid’s classic argument.

• The proof support offered by bossLib (RW_TAC, METIS_TAC, DECIDE_TAC, DECIDE,
Cases_on, Induct_on, and the “by” construct) was nearly complete for this exam-
ple: it was rarely necessary to resort to lower-level tactics.

• Simplification is a workhorse tactic; even when an automated reasoner such as
METIS_TAC is used, its application has often been set up by some exploratory sim-
plifications. It therefore pays to become familiar with the strengths and weak-
nesses of the simplifier.

• A common problem with interactive proof systems is dealing with hypotheses. Of-
ten METIS_TAC and the “by” construct allow the use of hypotheses without directly
resorting to indexing into them (or naming them, which amounts to the same
thing). This is desirable, since the hypotheses are notionally a set, and moreover,
experience has shown that profligate indexing into hypotheses results in hard-to-
maintain proof scripts. However, it can be clumsy to work with a large set of
hypotheses, in which case the following approaches may be useful.

One can directly refer to hypotheses by using UNDISCH_TAC (makes the designated
hypothesis the antecedent to the goal), ASSUM_LIST (gives the entire hypothesis
list to a tactic), POP_ASSUM (gives the top hypothesis to a tactic), and PAT_ASSUM

(gives the first matching hypothesis to a tactic). (See the REFERENCE for further
details on all of these.) The numbers attached to hypotheses by the proof manager
could likely be used to access hypotheses (it would be quite simple to write such
a tactic). However, starting a new proof is sometimes the most clarifying thing to
do.

In some cases, it is useful to be able to delete a hypothesis. This can be accom-
plished by passing the hypothesis to a tactic that ignores it. For example, to discard
the top hypothesis, one could invoke POP_ASSUM (K ALL_TAC).

• In the example, we didn’t use the more advanced features of bossLib, largely
because they do not, as yet, provide much more functionality than the simple
sequencing of simplification, decision procedures, and automated first order rea-
soning. The THEN tactical has thus served as an adequate replacement. In the
future, these entrypoints should become more powerful.

• It is almost always necessary to have an idea of the informal proof in order to
be successful when doing a formal proof. However, all too often the following
strategy is adopted by novices: (1) rewrite the goal with a few relevant definitions,

140 CHAPTER 6. EXAMPLE: EUCLID’S THEOREM

and then (2) rely on the syntax of the resulting goal to guide subsequent tactic
selection. Such an approach constitutes a clear case of the tail wagging the dog,
and is a poor strategy to adopt. Insight into the high-level structure of the proof is
one of the most important factors in successful verification exercises.

The author has noticed that many of the most successful verification experts work
using a sheet of paper to keep track of the main steps that need to be made.
Perhaps looking away to the paper helps break the mesmerizing effect of the com-
puter screen.

On the other hand, one of the advantages of having a mechanized logic is that the
machine can be used as a formal expression calculator, and thus the user can use
it to quickly and accurately explore various proof possibilities.

• High powered tools like METIS_TAC, DECIDE_TAC, and RW_TAC are the principal way
of advancing a proof in bossLib. In many cases, they do exactly what is desired,
or even manage to surprise the user with their power. In the formalization of
Euclid’s theorem, the tools performed fairly well. However, sometimes they are
overly aggressive, or they simply flounder. In such cases, more specialized proof
tools need to be used, or even written, and hence the support underlying bossLib

must eventually be learned.

• Having a good knowledge of the available lemmas, and where they are located, is
an essential part of being successful. Often powerful tools can replace lemmas in a
restricted domain, but in general, one has to know what has already been proved.
We have found that the entrypoints in DB help in quickly finding lemmas.

Chapter 7

Example: a Simple Parity Checker

This chapter consists of a worked example: the specification and verification of a simple
sequential parity checker. The intention is to accomplish two things:

(i) To present a complete piece of work with HOL.

(ii) To give a flavour of what it is like to use the HOL system for a tricky proof.

Concerning (ii), note that although the theorems proved are, in fact, rather simple,
the way they are proved illustrates the kind of intricate ‘proof engineering’ that is typ-
ical. The proofs could be done more elegantly, but presenting them that way would
defeat the purpose of illustrating various features of HOL. It is hoped that the small
example here will give the reader a feel for what it is like to do a big one.

Readers who are not interested in hardware verification should be able to learn some-
thing about the HOL system even if they do not wish to penetrate the details of the
parity-checking example used here. The specification and verification of a slightly more
complex parity checker is set as an exercise (a solution is provided in the directory
examples/parity).

7.1 Introduction

The sessions of this example comprise the specification and verification of a device
that computes the parity of a sequence of bits. More specifically, a detailed verifica-
tion is given of a device with an input in, an output out and the specification that
the nth output on out is T if and only if there have been an even number of T’s input
on in. A theory named PARITY is constructed; this contains the specification and ver-
ification of the device. All the ML input in the boxes below can be found in the file
examples/parity/PARITYScript.sml. It is suggested that the reader interactively input
this to get a ‘hands on’ feel for the example. The goal of the case study is to illustrate
detailed ‘proof hacking’ on a small and fairly simple example.

141

142 CHAPTER 7. EXAMPLE: A SIMPLE PARITY CHECKER

7.2 Specification

The first step is to start up the HOL system. We again use <holdir>/bin/hol. The ML
prompt is -, so lines beginning with - are typed by the user and other lines are the
system’s response.

To specify the device, a primitive recursive function PARITY is defined so that for n > 0,
PARITY nf is true if the number of T’s in the sequence f(1), . . . , f(n) is even.

1- val PARITY_def = Define‘
(PARITY 0 f = T) /\
(PARITY(SUC n) f = if f(SUC n) then ~(PARITY n f) else PARITY n f)‘;

Definition has been stored under "PARITY_def".
> val PARITY_def =

|- (!f. PARITY 0 f = T) /\
!n f. PARITY (SUC n) f =

(if f (SUC n) then ~PARITY n f else PARITY n f)
: thm

The effect of our call to Define is to store the definition of PARITY on the current the-
ory with name PARITY_def and to bind the defining theorem to the ML variable with
the same name. Notice that there are two name spaces being written into: the names
of constants in theories and the names of variables in ML. The user is generally free to
manage these names however he or she wishes (subject to the various lexical require-
ments), but a common convention is (as here) to give the definition of a constant CON
the name CON_def in the theory and also in ML. Another commonly-used convention is
to use just CON for the theory and ML name of the definition of a constant CON. Unfortu-
nately, the HOL system does not use a uniform convention, but users are recommended
to adopt one. In this case Define has made one of the choices for us, but there are other
scenarios where we have to choose the name used in the theory file.

The specification of the parity checking device can now be given as:

!t. out t = PARITY t inp

It is intuitively clear that this specification will be satisfied if the signal1 functions inp

and out satisfy2:

out(0) = T

and

!t. out(t+1) = (if inp(t+1) then ~(out t) else out t)

1Signals are modelled as functions from numbers, representing times, to booleans.
2We’d like to use in as one of our variable names, but this is a reserved word for let-expressions.

7.2. SPECIFICATION 143

This can be verified formally in HOL by proving the following lemma:

!inp out.
(out 0 = T) /\
(!t. out(SUC t) = if inp(SUC t) then ~out t else out t)

==>
(!t. out t = PARITY t inp)

The proof of this is done by Mathematical Induction and, although trivial, is a good
illustration of how such proofs are done. The lemma is proved interactively using HOL’s
subgoal package. The proof is started by putting the goal to be proved on a goal stack
using the function g which takes a goal as argument.

2- g ‘!inp out.
(out 0 = T) /\
(!t. out(SUC t) = (if inp(SUC t) then ~(out t) else out t)) ==>
(!t. out t = PARITY t inp)‘;

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
!inp out.
(out 0 = T) /\
(!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)) ==>
!t. out t = PARITY t inp

The subgoal package prints out the goal on the top of the goal stack. The top goal is
expanded by stripping off the universal quantifier (with GEN_TAC) and then making the
two conjuncts of the antecedent of the implication into assumptions of the goal (with
STRIP_TAC). The ML function expand takes a tactic and applies it to the top goal; the
resulting subgoals are pushed on to the goal stack. The message ‘OK..’ is printed out
just before the tactic is applied. The resulting subgoal is then printed.

3- expand(REPEAT GEN_TAC THEN STRIP_TAC);
OK..
1 subgoal:
> val it =

!t. out t = PARITY t inp

0. out 0 = T
1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

Next induction on t is done using Induct, which does induction on the outermost uni-
versally quantified variable.

144 CHAPTER 7. EXAMPLE: A SIMPLE PARITY CHECKER

4- expand Induct;
OK..
2 subgoals:
> val it =

out (SUC t) = PARITY (SUC t) inp

0. out 0 = T
1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)
2. out t = PARITY t inp

out 0 = PARITY 0 inp

0. out 0 = T
1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

The assumptions of the two subgoals are shown numbered underneath the horizontal
lines of hyphens. The last goal printed is the one on the top of the stack, which is the
basis case. This is solved by rewriting with its assumptions and the definition of PARITY.

5- expand(ASM_REWRITE_TAC[PARITY_def]);
OK..

Goal proved.
[.] |- out 0 = PARITY 0 inp

Remaining subgoals:
> val it =

out (SUC t) = PARITY (SUC t) inp

0. out 0 = T
1. !t. out (SUC t) = (if inp (SUC t) then ~out t else out t)
2. out t = PARITY t inp

The top goal is proved, so the system pops it from the goal stack (and puts the proved
theorem on a stack of theorems). The new top goal is the step case of the induction.
This goal is also solved by rewriting.

7.3. IMPLEMENTATION 145

6- expand(ASM_REWRITE_TAC[PARITY_def]);
OK..

Goal proved.
[..] |- out (SUC t) = PARITY (SUC t) inp

Goal proved.
[..] |- !t. out t = PARITY t inp
> val it =

Initial goal proved.
|- !inp out.

(out 0 = T) /\
(!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)) ==>
!t. out t = PARITY t inp

The goal is proved, i.e. the empty list of subgoals is produced. The system now applies
the justification functions produced by the tactics to the lists of theorems achieving the
subgoals (starting with the empty list). These theorems are printed out in the order in
which they are generated (note that assumptions of theorems are printed as dots).

The ML function

top_thm : unit -> thm

returns the theorem just proved (i.e. on the top of the theorem stack) in the current
theory, and we bind this to the ML name UNIQUENESS_LEMMA.

7- val UNIQUENESS_LEMMA = top_thm();
> val UNIQUENESS_LEMMA =

|- !inp out.
(out 0 = T) /\
(!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)) ==>
!t. out t = PARITY t inp

: thm

7.3 Implementation

The lemma just proved suggests that the parity checker can be implemented by hold-
ing the parity value in a register and then complementing the contents of the register
whenever T is input. To make the implementation more interesting, it will be assumed
that registers ‘power up’ storing F. Thus the output at time 0 cannot be taken directly
from a register, because the output of the parity checker at time 0 is specified to be T.
Another tricky thing to notice is that if t>0, then the output of the parity checker at time
t is a function of the input at time t. Thus there must be a combinational path from the
input to the output.

146 CHAPTER 7. EXAMPLE: A SIMPLE PARITY CHECKER

The schematic diagram below shows the design of a device that is intended to imple-
ment this specification. (The leftmost input to MUX is the selector.) This works by storing
the parity of the sequence input so far in the lower of the two registers. Each time T is
input at in, this stored value is complemented. Registers are assumed to ‘power up’ in a
state in which they are storing F. The second register (connected to ONE) initially outputs
F and then outputs T forever. Its role is just to ensure that the device works during the
first cycle by connecting the output out to the device ONE via the lower multiplexer. For
all subsequent cycles out is connected to l3 and so either carries the stored parity value
(if the current input is F) or the complement of this value (if the current input is T).

NOT

MUXONE

REG

MUX

REG

in

out

l1 l2

l3 l4

l5

•

•

•

The devices making up this schematic will be modelled with predicates [5]. For ex-
ample, the predicate ONE is true of a signal out if for all times t the value of out is
T.

7.3. IMPLEMENTATION 147

8- val ONE_def = Define ‘ONE(out:num->bool) = !t. out t = T‘;
Definition stored under "ONE_def".
> val ONE_def = |- !out. ONE out = !t. out t = T : thm

Note that, as discussed above, ‘ONE_def’ is used both as an ML variable and as the name
of the definition in the theory. Note also how ‘:num->bool’ has been added to resolve
type ambiguities; without this (or some other type information) the typechecker would
not be able to infer that t is to have type num.

The binary predicate NOT is true of a pair of signals (inp,out) if the value of out is
always the negation of the value of inp. Inverters are thus modelled as having no delay.
This is appropriate for a register-transfer level model, but not at a lower level.

9- val NOT_def = Define‘NOT(inp, out:num->bool) = !t. out t = ~(inp t)‘;
Definition stored under "NOT_def".
> val NOT_def = |- !inp out. NOT (inp,out) = !t. out t = ~inp t : Thm.thm

The final combinational device needed is a multiplexer. This is a ‘hardware conditional’;
the input sw selects which of the other two inputs are to be connected to the output out.

10- val MUX_def = Define‘
MUX(sw,in1,in2,out:num->bool) =
!t. out t = if sw t then in1 t else in2 t‘;

Definition stored under "MUX_def".
> val MUX_def =

|- !sw in1 in2 out.
MUX (sw,in1,in2,out) = !t. out t = (if sw t then in1 t else in2 t)

: thm

The remaining devices in the schematic are registers. These are unit-delay elements;
the values output at time t+1 are the values input at the preceding time t, except at
time 0 when the register outputs F.3

11- val REG_def =
Define ‘REG(inp,out:num->bool) =

!t. out t = if (t=0) then F else inp(t-1)‘;
Definition stored under "REG_def".
> val REG_def =

|- !inp out. REG (inp,out) = !t. out t =
(if t = 0 then F else inp (t - 1))

: thm

The schematic diagram above can be represented as a predicate by conjoining the
relations holding between the various signals and then existentially quantifying the
internal lines. This technique is explained elsewhere (e.g. see [3, 5]).

3Time 0 represents when the device is switched on.

148 CHAPTER 7. EXAMPLE: A SIMPLE PARITY CHECKER

12- val PARITY_IMP_def = Define
‘PARITY_IMP(inp,out) =

?l1 l2 l3 l4 l5.
NOT(l2,l1) /\ MUX(inp,l1,l2,l3) /\ REG(out,l2) /\
ONE l4 /\ REG(l4,l5) /\ MUX(l5,l3,l4,out)‘;

Definition stored under "PARITY_IMP_def".
> val PARITY_IMP_def =

|- !inp out.
PARITY_IMP (inp,out) =
?l1 l2 l3 l4 l5.
NOT (l2,l1) /\ MUX (inp,l1,l2,l3) /\ REG (out,l2) /\ ONE l4 /\
REG (l4,l5) /\ MUX (l5,l3,l4,out)

: thm

7.4 Verification

The following theorem will eventually be proved:

|- !inp out. PARITY_IMP(inp,out) ==> (!t. out t = PARITY t inp)

This states that if inp and out are related as in the schematic diagram (i.e. as in the
definition of PARITY_IMP), then the pair of signals (inp,out) satisfies the specification.

First, the following lemma is proved; the correctness of the parity checker follows
from this and UNIQUENESS_LEMMA by the transitivity of ==>.

13- g ‘!inp out.
PARITY_IMP(inp,out) ==>
(out 0 = T) /\
!t. out(SUC t) = if inp(SUC t) then ~(out t) else out t‘;

> val it =
Proof manager status: 2 proofs.
2. Completed: ...
1. Incomplete:

Initial goal:
!inp out.
PARITY_IMP (inp,out) ==>
(out 0 = T) /\
!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

The first step in proving this goal is to rewrite with definitions followed by a decom-
position of the resulting goal using STRIP_TAC. The rewriting tactic PURE_REWRITE_TAC is
used; this does no built-in simplifications, only the ones explicitly given in the list of the-
orems supplied as an argument. One of the built-in simplifications used by REWRITE_TAC

is |- (x = T) = x. PURE_REWRITE_TAC is used to prevent rewriting with this being done.

7.4. VERIFICATION 149

14- expand(PURE_REWRITE_TAC
[PARITY_IMP_def, ONE_def, NOT_def, MUX_def, REG_def] THEN

REPEAT STRIP_TAC);
OK..
2 subgoals:
> val it =

out (SUC t) = (if inp (SUC t) then ~out t else out t)

0. !t. l1 t = ~l2 t
1. !t. l3 t = (if inp t then l1 t else l2 t)
2. !t. l2 t = (if t = 0 then F else out (t - 1))
3. !t. l4 t = T
4. !t. l5 t = (if t = 0 then F else l4 (t - 1))
5. !t. out t = (if l5 t then l3 t else l4 t)

out 0 = T

0. !t. l1 t = ~l2 t
1. !t. l3 t = (if inp t then l1 t else l2 t)
2. !t. l2 t = (if t = 0 then F else out (t - 1))
3. !t. l4 t = T
4. !t. l5 t = (if t = 0 then F else l4 (t - 1))
5. !t. out t = (if l5 t then l3 t else l4 t)

The top goal is the one printed last; its conclusion is out 0 = T and its assumptions
are equations relating the values on the lines in the circuit. The natural next step would
be to expand the top goal by rewriting with the assumptions. However, if this were
done the system would go into an infinite loop because the equations for out, l2 and
l3 are mutually recursive. Instead we use the first-order reasoner PROVE_TAC to do the
work:

15- expand(PROVE_TAC []);
OK..
Meson search level:

Goal proved.
[......] |- out 0 = T

Remaining subgoals:
> val it =

out (SUC t) = (if inp (SUC t) then ~out t else out t)

0. !t. l1 t = ~l2 t
1. !t. l3 t = (if inp t then l1 t else l2 t)
2. !t. l2 t = (if t = 0 then F else out (t - 1))
3. !t. l4 t = T
4. !t. l5 t = (if t = 0 then F else l4 (t - 1))
5. !t. out t = (if l5 t then l3 t else l4 t)

150 CHAPTER 7. EXAMPLE: A SIMPLE PARITY CHECKER

The first of the two subgoals is proved. Inspecting the remaining goal it can be seen
that it will be solved if its left hand side, out(SUC t), is expanded using the assumption:

!t. out t = if l5 t then l3 t else l4 t

However, if this assumption is used for rewriting, then all the subterms of the form
out t will also be expanded. To prevent this, we really want to rewrite with a formula
that is specifically about out (SUC t). We want to somehow pull the assumption that
we do have out of the list and rewrite with a specialised version of it. We can do just this
using PAT_ASSUM. This tactic is of type term -> thm -> tactic. It selects an assumption
that is of the form given by its term argument, and passes it to the second argument, a
function which expects a theorem and returns a tactic. Here it is in action:

16- e (PAT_ASSUM ‘‘!t. out t = X t‘‘
(fn th => REWRITE_TAC [SPEC ‘‘SUC t‘‘ th]));

<<HOL message: inventing new type variable names: ’a, ’b.>>
OK..
1 subgoal:
> val it =

(if l5 (SUC t) then l3 (SUC t) else l4 (SUC t)) =
(if inp (SUC t) then ~out t else out t)

0. !t. l1 t = ~l2 t
1. !t. l3 t = (if inp t then l1 t else l2 t)
2. !t. l2 t = (if t = 0 then F else out (t - 1))
3. !t. l4 t = T
4. !t. l5 t = (if t = 0 then F else l4 (t - 1))

The pattern used here exploited something called higher order matching. The actual
assumption that was taken off the assumption stack did not have a RHS that looked like
the application of a function (X in the pattern) to the t parameter, but the RHS could
nonetheless be seen as equal to the application of some function to the t parameter. In
fact, the value that matched X was ‘‘\x. if l5 x then l3 x else l4 x‘‘.

Inspecting the goal above, it can be seen that the next step is to unwind the equations
for the remaining lines of the circuit. We do this using the arith_ss simpset that comes
with bossLib to help with the arithmetic embodied by the subtractions and SUC terms.

7.4. VERIFICATION 151

17- e (RW_TAC arith_ss []);
OK..

Goal proved.
[.....]
|- (if l5 (SUC t) then l3 (SUC t) else l4 (SUC t)) =

(if inp (SUC t) then ~out t else out t)

Goal proved.
[......] |- out (SUC t) = (if inp (SUC t) then ~out t else out t)
> val it =

Initial goal proved.
|- !inp out.

PARITY_IMP (inp,out) ==>
(out 0 = T) /\
!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

The theorem just proved is named PARITY_LEMMA and saved in the current theory.

18- val PARITY_LEMMA = top_thm ();
> val PARITY_LEMMA =

|- !inp out.
PARITY_IMP (inp,out) ==>
(out 0 = T) /\
!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

PARITY_LEMMA could have been proved in one step with a single compound tactic. Our
initial goal can be expanded with a single tactic corresponding to the sequence of tactics
that were used interactively:

19- restart()
> ...
- e (PURE_REWRITE_TAC [PARITY_IMP_def, ONE_def, NOT_def,

MUX_def, REG_def] THEN
REPEAT STRIP_TAC THENL [
PROVE_TAC [],
PAT_ASSUM ‘‘!t. out t = X t‘‘

(fn th => REWRITE_TAC [SPEC ‘‘SUC t‘‘ th]) THEN
RW_TAC arith_ss []

]);
<<HOL message: inventing new type variable names: ’a, ’b.>>
OK..
Meson search level:
> val it =

Initial goal proved.
|- !inp out.

PARITY_IMP (inp,out) ==>
(out 0 = T) /\
!t. out (SUC t) = (if inp (SUC t) then ~out t else out t)

152 CHAPTER 7. EXAMPLE: A SIMPLE PARITY CHECKER

Armed with PARITY_LEMMA, the final theorem is easily proved. This will be done in one
step using the ML function prove.

20- val PARITY_CORRECT = prove(
‘‘!inp out. PARITY_IMP(inp,out) ==> (!t. out t = PARITY t inp)‘‘,
REPEAT STRIP_TAC THEN MATCH_MP_TAC UNIQUENESS_LEMMA THEN
MATCH_MP_TAC PARITY_LEMMA THEN ASM_REWRITE_TAC []);

> val PARITY_CORRECT =
|- !inp out. PARITY_IMP (inp,out) ==> !t. out t = PARITY t inp

This completes the proof of the parity checking device.

7.5 Exercises

Two exercises are given in this section: Exercise 1 is straightforward, but Exercise 2 is
quite tricky and might take a beginner several days to solve.

7.5.1 Exercise 1

Using only the devices ONE, NOT, MUX and REG defined in Section 7.3, design and verify a
register RESET_REG with an input inp, reset line reset, output out and behaviour specified
as follows.

• If reset is T at time t, then the value at out at time t is also T.

• If reset is T at time t or t+1, then the value output at out at time t+1 is T, otherwise
it is equal to the value input at time t on inp.

This is formalized in HOL by the definition:

RESET_REG(reset,inp,out) =
(!t. reset t ==> (out t = T)) /\
(!t. out(t+1) = if reset t \/ reset(t+1) then T else inp t)

Note that this specification is only partial; it doesn’t specify the output at time 0 in the
case that there is no reset.

The solution to the exercise should be a definition of a predicate RESET_REG_IMP as
an existential quantification of a conjunction of applications of ONE, NOT, MUX and REG to
suitable line names,4 together with a proof of:

RESET_REG_IMP(reset,inp,out) ==> RESET_REG(reset,inp,out)

4i.e. a definition of the same form as that of PARITY IMP on page 148.

7.5. EXERCISES 153

7.5.2 Exercise 2

1. Formally specify a resetable parity checker that has two boolean inputs reset and
inp, and one boolean output out with the following behaviour:

The value at out is T if and only if there have been an even number of Ts
input at inp since the last time that T was input at reset.

2. Design an implementation of this specification built using only the devices ONE,
NOT, MUX and REG defined in Section 7.3.

3. Verify the correctness of your implementation in HOL.

154 CHAPTER 7. EXAMPLE: A SIMPLE PARITY CHECKER

Chapter 8

Example: Combinatory Logic

8.1 Introduction

This small case study is a formalisation of (variable-free) combinatory logic. This logic is
of foundational importance in theoretical computer science, and has a very rich theory.
The example builds principally on a development done by Tom Melham. The complete
script for the development is available as clScript.sml in the examples/ind def direc-
tory of the distribution. It is self-contained and so includes the answers to the exercises
set at the end of this document.

The HOL sessions assume that the Unicode trace is on (as it is by default), meaning
that even though the inputs may be written in pure ASCII, the output still uses nice
Unicode output (symbols such as ∀ and ⇒). The Unicode symbols could also be used in
the input.

8.2 The type of combinators

The first thing we need to do is define the type of combinators. There are just two of
these, K and S, but we also need to be able to combine them, and for this we need to
introduce the notion of application. For lack of a better ASCII symbol, we will use the
hash (#) to represent this in the logic:

1- Hol_datatype ‘cl = K | S | # of cl => cl‘;
> val it = () : unit

We also want the # to be an infix, so we set its fixity to be a tight left-associative infix:

2- set_fixity "#" (Infixl 1100);
> val it = () : unit

8.3 Combinator reductions

Combinatory logic is the study of how values of this type can evolve given various rules
describing how they change. Therefore, our next step is to define the reductions that

155

156 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

combinators can undergo. There are two basic rules:

K x y → x
S f g x → (fx)(gx)

Here, in our description outside of HOL, we use juxtaposition instead of the #. Further,
juxtaposition is also left-associative, so that K x y should be read as K # x # y which is
in turn (K # x) # y.

Given a term in the logic, we want these reductions to be able to fire at any point, not
just at the top level, so we need two further congruence rules:

x → x′

x y → x′ y

y → y′

x y → x y′

In HOL, we can capture this relation with an inductive definition. First we need to set
our arrow symbol up as an infix to make everything that bit prettier

3- set_fixity "-->" (Infix(NONASSOC, 450));
> val it = () : unit

We make our arrow symbol non-associative, thereby making it a parse error to write
x --> y --> z. It would be nice to be able to write this and have it mean x --> y /\ y --> z,
but this is not presently possible with the HOL parser.

Our next step is to actually define the relation with the xHol_reln function. In addi-
tion to a quotation specifying the rules for the new relation, it requires a name to use as
the stem for the theorems it proves. We pick the string "redn".1 The xHol_reln func-
tion for doing this returns three separate theorems, and we bind the first (the “rules”
theorem) and third (the “cases” theorem):

1The related function Hol_reln can be used if the system’s choice of stem is acceptable. In this case,
Hol_reln can’t cope with the non-alphanumeric characters in --> and will raise an error.

8.4. TRANSITIVE CLOSURE AND CONFLUENCE 157

4val (redn_rules, _, redn_cases) = xHol_reln "redn"
‘(!x y f. x --> y ==> f # x --> f # y) /\
(!f g x. f --> g ==> f # x --> g # x) /\
(!x y. K # x # y --> x) /\
(!f g x. S # f # g # x --> (f # x) # (g # x))‘;

> val redn_rules =
|- (∀x y f. x --> y ⇒ f # x --> f # y) ∧

(∀f g x. f --> g ⇒ f # x --> g # x) ∧
(∀x y. K # x # y --> x) ∧
∀f g x. S # f # g # x --> f # x # (g # x) : thm

val redn_cases =
|- ∀a0 a1.

a0 --> a1 ⇔
(∃x y f. (a0 = f # x) ∧ (a1 = f # y) ∧ x --> y) ∨
(∃f g x. (a0 = f # x) ∧ (a1 = g # x) ∧ f --> g) ∨
(∃y. a0 = K # a1 # y) ∨
∃f g x. (a0 = S # f # g # x) ∧ (a1 = f # x # (g # x))

: thm

In addition to proving these three theorems for us, the inductive definitions package
has also saved them to disk.

Now, using our theorem redn rules we can demonstrate single steps of our reduction
relation:

5- PROVE [redn_rules] ‘‘S # (K # x # x) --> S # x‘‘;
Meson search level: ...
> val it = |- S # (K # x # x) --> S # x : thm

The system we have just defined is as powerful as the λ-calculus, Turing machines, and
all the other standard models of computation.

One useful result about the combinatory logic is that it is confluent. Consider the
term S z (K K) (K y x). It can make two reductions, to S z (K K) y and also to
(z (K y x)) (K K (K y x)). Do these two choices of reduction mean that from this point
on the terms have two completely separate histories? Roughly speaking, to be confluent
means that the answer to this question is no.

8.4 Transitive closure and confluence

A notion crucial to that of confluence is that of transitive closure. We have defined
a system that evolves by specifying how an algebraic value can evolve into possible
successor values in one step. The natural next question is to ask for a characterisation
of evolution over one or more steps of the → relation.

In fact, we will define a relation that holds between two values if the second can be
reached from the first in zero or more steps. This is the reflexive, transitive closure of our
original relation. However, rather than tie our new definition to our original relation,

158 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

we will develop this notion independently and prove a variety of results that are true of
any system, not just our system of combinatory logic.

So, we begin our abstract digression with another inductive definition. Our new
constant is RTC, such that RTC R x y is true if it is possible to get from x to y with zero
or more “steps” of the R relation. (The standard notation for RTC R is R∗.) We can
express this idea with just two rules. The first

RTC R x x

says that it’s always possible to get from x to x in zero or more steps. The second

R x y RTC R y z

RTC R x z

says that if you can take a single step from x to y, and then take zero or more steps
to get y to z, then it’s possible to take zero or more steps to get between x and z. The
realisation of these rules in HOL is again straightforward.

(As it happens, RTC is already a defined constant in the context we’re working in
(it is found in relationTheory), so we’ll hide it from view before we begin. We thus
avoid messages telling us that we are inputting ambiguous terms. The ambiguities
would always be resolved in the favour of more recent definition, but the warnings are
annoying.)

6val _ = hide "RTC";

val (RTC_rules, _, RTC_cases) = Hol_reln ‘
(!x. RTC R x x) /\
(!x y z. R x y /\ RTC R y z ==> RTC R x z)‘;

<<HOL message: inventing new type variable names: ’a>>
> val RTC_rules =

|- ∀R. (∀x. RTC R x x) ∧
∀x y z. R x y ∧ RTC R y z ⇒ RTC R x z : thm

val RTC_cases =
|- ∀R a0 a1. RTC R a0 a1 ⇔ (a1 = a0) ∨

∃y. R a0 y ∧ RTC R y a1 : thm

Now let us go back to the notion of confluence. We want this to mean something like:
“though a system may take different paths in the short-term, those two paths can always
end up in the same place”. This suggests that we define confluent thus:

7- val confluent_def = Define
‘confluent R =

!x y z. RTC R x y /\ RTC R x z ==>
?u. RTC R y u /\ RTC R z u‘;

8.4. TRANSITIVE CLOSURE AND CONFLUENCE 159

This property states of R that we can “complete the diamond”; if we have

x
∗
����

�� ∗
��6

66
6

y z

x
∗
����

�� ∗
��6

66
6

y

∗ ��

z

∗��
u

One nice property of confluent relations is that from any one starting point they pro-
duce no more than one normal form, where a normal form is a value from which no
further steps can be taken.

8- val normform_def = Define‘normform R x = !y. ~(R x y)‘;
<<HOL message: inventing new type variable names: ’a, ’b>>
Definition has been stored under "normform_def".
> val normform_def = |- ∀R x. normform R x ⇔ ∀y. ¬R x y : thm

In other words, a system has an R-normal form at x if there are no connections via R
to any other values. (We could have written ~?y. R x y as our RHS for the definition
above.)

We can now prove the following:
9- g ‘!R. confluent R ==>

!x y z.
RTC R x y /\ normform R y /\
RTC R x z /\ normform R z ==> (y = z)‘;

<<HOL message: inventing new type variable names: ’a>>
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
∀R.
confluent R ⇒
∀x y z. RTC R x y ∧ normform R y ∧ RTC R x z ∧ normform R z ⇒

(y = z)

We rewrite with the definition of confluence:
10- e (RW_TAC std_ss [confluent_def]);

OK..
1 subgoal:
> val it =

y = z

0. ∀x y z. RTC R x y ∧ RTC R x z ⇒ ∃u. RTC R y u ∧ RTC R z u
1. RTC R x y
2. normform R y
3. RTC R x z
4. normform R z

160 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

Our confluence property is now assumption 0, and we can use it to infer that there is a
u at the base of the diamond:

11- e (‘?u. RTC R y u /\ RTC R z u‘ by PROVE_TAC []);
OK..
Meson search level:
1 subgoal:
> val it =

y = z

0. ∀x y z. RTC R x y ∧ RTC R x z ⇒ ∃u. RTC R y u ∧ RTC R z u
1. RTC R x y
2. normform R y
3. RTC R x z
4. normform R z
5. RTC R y u
6. RTC R z u

So, from y we can take zero or more steps to get to u and similarly from z. But, we also
know that we’re at an R-normal form at both y and z. We can’t take any steps at all
from these values. We can conclude both that u = y and u = z, and this in turn means
that y = z, which is our goal. So we can finish with

12- e (PROVE_TAC [normform_def, RTC_cases]);
OK..
Meson search level:

Goal proved. [...]
> val it =

Initial goal proved.
|- ∀R.

confluent R ⇒
∀x y z.
RTC R x y ∧ normform R y ∧ RTC R x z ∧ normform R z ⇒
(y = z)

Packaged up so as to remove the sub-goal package commands, we can prove and save
the theorem for future use by:

13val confluent_normforms_unique = store_thm(
"confluent_normforms_unique",
‘‘!R. confluent R ==>

!x y z. RTC R x y /\ normform R y /\
RTC R x z /\ normform R z ==> (y = z)‘‘,

RW_TAC std_ss [confluent_def] THEN
‘?u. RTC R y u /\ RTC R z u‘ by PROVE_TAC [] THEN
PROVE_TAC [normform_def, RTC_cases]);

· · · � · · ·

8.4. TRANSITIVE CLOSURE AND CONFLUENCE 161

Clearly confluence is a nice property for a system to have. The question is how we
might manage to prove it. Let’s start by defining the diamond property that we used in
the definition of confluence.

14- val diamond_def = Define
‘diamond R = !x y z. R x y /\ R x z ==> ?u. R y u /\ R z u‘;

<<HOL message: inventing new type variable names: ’a>>
Definition has been stored under "diamond_def".
> val diamond_def =

|- ∀R. diamond R ⇔ ∀x y z. R x y ∧ R x z ⇒ ∃u. R y u ∧ R z u
: thm

Now we clearly have that confluence of a relation is equivalent to the reflexive, transitive
closure of that relation having the diamond property.

15val confluent_diamond_RTC = store_thm(
"confluent_diamond_RTC",
‘‘!R. confluent R = diamond (RTC R)‘‘,
RW_TAC std_ss [confluent_def, diamond_def]);

So far so good. How then do we show the diamond property for RTC R? The answer
that leaps to mind is to hope that if the original relation has the diamond property, then
maybe the reflexive and transitive closure will too. The theorem we want is

diamond R ⊃ diamond (RTC R)

Graphically, this is hoping that from

x

����
��

��6
66

6

y

��

z

��
u

we will be able to conclude

x
����

�
��7

77
7

y

��

���
�
�
�
�

z

��

��3
3

3
3

3

u

p

��

q

��
r

162 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

where the dashed lines indicate that these steps (from x to p, for example) are using
RTC R. The presence of two instances of RTC R is an indication that this proof will
require two inductions. With the first we will prove

x
����

�
��7

77
7

y

��

���
�

�
�

�
z

��
u

��

p

��
r

In other words, we want to show that if we take one step in one direction (to z) and
many steps in another (to p), then the diamond property for R will guarantee us the
existence of r, to which will we be able to take many steps from both p and z.

We take some care to state the goal so that after stripping away the outermost as-
sumption (that R has the diamond property), it will match the induction principle for
RTC.2

16- g ‘!R. diamond R ==>
!x p. RTC R x p ==>

!z. R x z ==>
?u. RTC R p u /\ RTC R z u‘;

<<HOL message: inventing new type variable names: ’a>>
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
∀R.
diamond R ⇒
∀x p. RTC R x p ⇒ ∀z. R x z ⇒ ∃u. RTC R p u ∧ RTC R z u

First, we strip away the diamond property assumption (two things need to be stripped:
the outermost universal quantifier and the antecedent of the implication):

17- e (GEN_TAC THEN STRIP_TAC);
OK..
1 subgoal:
> val it =

∀x p. RTC R x p ⇒ ∀z. R x z ⇒ ∃u. RTC R p u ∧ RTC R z u

diamond R

2In this and subsequent proofs using the sub-goal package, we will present the proof manager as if
the goal to be proved is the first ever on this stack. In other words, we have done a dropn 1; after every
successful proof to remove the evidence of the old goal. In practice, there is no harm in leaving these
goals on the proof manager’s stack.

8.4. TRANSITIVE CLOSURE AND CONFLUENCE 163

Now we can use the induction principle for reflexive and transitive closure (alterna-
tively, we perform a “rule induction”). To do this, we use the Induct_on command that
is also used to do structural induction on algebraic data types (such as numbers and
lists). We provide the name of the constant whose induction principle we want to use,
and the tactic does the rest:

18- e (Induct_on ‘RTC‘);
OK..
1 subgoal:
> val it =

(∀x z. R x z ⇒ ∃u. RTC R x u ∧ RTC R z u) ∧
∀x x’ p.
R x x’ ∧ RTC R x’ p ∧ (∀z. R x’ z ⇒ ∃u. RTC R p u ∧ RTC R z u) ⇒
∀z. R x z ⇒ ∃u. RTC R p u ∧ RTC R z u

diamond R

Let’s strip the goal as much as possible with the aim of making what remains to be
proved easier to see:

19- e (REPEAT STRIP_TAC);
OK..
2 subgoals:
> val it =

∃u. RTC R p u ∧ RTC R z u

0. diamond R
1. R x x’
2. RTC R x’ p
3. ∀z. R x’ z ⇒ ∃u. RTC R p u ∧ RTC R z u
4. R x z

∃u. RTC R x u ∧ RTC R z u

0. diamond R
1. R x z

This first goal is easy. It corresponds to the case where the many steps from x to p are
actually no steps at all, and p and x are actually the same place. In the other direction,
x has taken one step to z, and we need to find somewhere reachable in zero or more
steps from both x and z. Given what we know so far, the only candidate is z itself. In
fact, we don’t even need to provide this witness explicitly. PROVE TAC will find it for us,
as long as we tell it what the rules governing RTC are:

164 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

20- e (PROVE_TAC [RTC_rules]);
OK..
Meson search level:

Goal proved. [..] |- ∃u. RTC R p u ∧ RTC R z u
Remaining subgoals:
> val it =

∃u. RTC R p u ∧ RTC R z u

0. diamond R
1. R x x’
2. RTC R x’ p
3. ∀z. R x’ z ⇒ ∃u. RTC R p u ∧ RTC R z u
4. R x z

And what of this remaining goal? Assumptions one and four between them are the top
of an R-diamond. Let’s use the fact that we have the diamond property for R and infer
that there exists a v to which y and z′ can both take single steps:

21- e (‘?v. R x’ v /\ R z v‘ by PROVE_TAC [diamond_def]);
OK..
Meson search level:
1 subgoal:
> val it =

∃u. RTC R p u ∧ RTC R z u

0. diamond R
1. R x x’
2. RTC R x’ p
3. ∀z. R x’ z ⇒ ∃u. RTC R p u ∧ RTC R z u
4. R x z
5. R x’ v
6. R z v

Now we can apply our induction hypothesis (assumption 3) to complete the long, lop-
sided strip of the diamond. We will conclude that there is a u such that RTC R p u and
RTC R v u. We actually need a u such that RTC R z u, but because there is a single
R-step between z and v we have that as well. All we need to provide PROVE TAC is the
rules for RTC:

22- e (PROVE_TAC [RTC_rules]);
OK..
Meson search level:

Goal proved. [...]
> val it =

Initial goal proved.
|- ∀R.

diamond R ⇒
∀x p. RTC R x p ⇒ ∀z. R x z ⇒ ∃u. RTC R p u ∧ RTC R z u

8.4. TRANSITIVE CLOSURE AND CONFLUENCE 165

Again we can (and should) package up the lemma, avoiding the sub-goal package com-
mands:

23val R_RTC_diamond = store_thm(
"R_RTC_diamond",
‘‘!R. diamond R ==>

!x p. RTC R x p ==>
!z. R x z ==>

?u. RTC R p u /\ RTC R z u‘‘,
GEN_TAC THEN STRIP_TAC THEN Induct_on ‘RTC‘ THEN
REPEAT STRIP_TAC THENL [
PROVE_TAC [RTC_rules],
‘?v. R x’ v /\ R z v‘ by PROVE_TAC [diamond_def] THEN
PROVE_TAC [RTC_rules]

]);

· · · � · · ·

Now we can move on to proving that if R has the diamond property, so too does
RTC R. We want to prove this by induction again. It’s very tempting to state the goal as
the obvious

diamond R ⊃ diamond (RTC R)

but doing so will actually make it harder to apply the induction principle when the time
is right. Better to start out with a statement of the goal that is very near in form to the
induction princple. So, we manually expand the meaning of diamond and state our next
goal thus:

24- g ‘!R. diamond R ==> !x y. RTC R x y ==>
!z. RTC R x z ==>

?u. RTC R y u /\ RTC R z u‘;
<<HOL message: inventing new type variable names: ’a>>
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
∀R.
diamond R ⇒
∀x y. RTC R x y ⇒ ∀z. RTC R x z ⇒ ∃u. RTC R y u ∧ RTC R z u

Again we strip the diamond property assumption, apply the induction principle, and
strip repeatedly:

166 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

25- e (GEN_TAC THEN STRIP_TAC THEN Induct_on ‘RTC‘ THEN REPEAT STRIP_TAC);
OK..
2 subgoals:
> val it =

∃u. RTC R y u ∧ RTC R z u

0. diamond R
1. R x x’
2. RTC R x’ y
3. ∀z. RTC R x’ z ⇒ ∃u. RTC R y u ∧ RTC R z u
4. RTC R x z

∃u. RTC R x u ∧ RTC R z u

0. diamond R
1. RTC R x z

The first goal is again an easy one, corresponding to the case where the trip from x to y
has been one of no steps whatsoever.

26- e (PROVE_TAC [RTC_rules]);
OK..
Meson search level: ...

Goal proved. [...]

Remaining subgoals:
> val it =

∃u. RTC R y u ∧ RTC R z u

0. diamond R
1. R x x’
2. RTC R x’ y
3. ∀z. RTC R x’ z ⇒ ∃u. RTC R y u ∧ RTC R z u
4. RTC R x z

This goal is very similar to the one we saw earlier. We have the top of a (“lop-sided”)
diamond in assumptions 1 and 4, so we can infer the existence of a common destination
for x′ and z:

8.4. TRANSITIVE CLOSURE AND CONFLUENCE 167

27- e (‘?v. RTC R x’ v /\ RTC R z v‘ by PROVE_TAC [R_RTC_diamond]);
OK..
Meson search level:
1 subgoal:
> val it =

∃u. RTC R y u ∧ RTC R z u

0. diamond R
1. R x x’
2. RTC R x’ y
3. ∀z. RTC R x’ z ⇒ ∃u. RTC R y u ∧ RTC R z u
4. RTC R x z
5. RTC R x’ v
6. RTC R z v

At this point in the last proof we were able to finish it all off by just appealing to the
rules for RTC. This time it is not quite so straightforward. When we use the induction
hypothesis (assumption 3), we can conclude that there is a u to which both y and v can
connect in zero or more steps, but in order to show that this u is reachable from z, we
need to be able to conclude RTC R z u when we know that RTC R z v (assumption
6 above) and RTC R v u (our consequence of the inductive hypothesis). We leave the
proof of this general result as an exercise, and here assume that it is already proved as
the theorem RTC RTC.

28- e (PROVE_TAC [RTC_rules, RTC_RTC]);
Meson search level:

Goal proved. [...]
> val it =

Initial goal proved.
|- ∀R.

diamond R ⇒
∀x y. RTC R x y ⇒ ∀z. RTC R x z ⇒ ∃u. RTC R y u ∧ RTC R z u

We can package this result up as a lemma and then prove the prettier version directly:
29val diamond_RTC_lemma = prove(

‘‘!R.
diamond R ==>
!x y. RTC R x y ==> !z. RTC R x z ==> ?u. RTC R y u /\ RTC R z u‘‘,

GEN_TAC THEN STRIP_TAC THEN Induct_on ‘RTC‘ THEN
REPEAT STRIP_TAC THENL [
PROVE_TAC [RTC_rules],
‘?v. RTC R x’ v /\ RTC R z v‘ by PROVE_TAC [R_RTC_diamond] THEN
PROVE_TAC [RTC_RTC, RTC_rules]

]);
val diamond_RTC = store_thm(
"diamond_RTC",
‘‘!R. diamond R ==> diamond (RTC R)‘‘,
PROVE_TAC [diamond_def,diamond_RTC_lemma]);

168 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

8.5 Back to combinators

Now, we are in a position to return to the real object of study and prove confluence for
combinatory logic. We have done an abstract development and established that

diamond R ⊃ diamond (RTC R)
∧

diamond (RTC R) ≡ confluent R

(We have also established a couple of other useful results along the way.)
Sadly, it just isn’t the case that →, our one-step relation for combinators, has the

diamond property. A counter-example is K S (K K K). Its possible evolution can be
described graphically:

K S (K K K)

yyttttttt
''NNNNNNN

S K S K

wwooooooooo

S

If we had the diamond property, it should be possible to find a common destination
for K S K and S. However, S doesn’t admit any reductions whatsoever, so there isn’t a
common destination.3

This is a problem. We are going to have to take another approach. We will define
another reduction strategy (parallel reduction), and prove that its reflexive, transitive
closure is actually the same relation as our original’s reflexive and transitive closure.
Then we will also show that parallel reduction has the diamond property. This will
establish that its reflexive, transitive closure has it too. Then, because they are the same
relation, we will have that the reflexive, transitive closure of our original relation has
the diamond property, and therefore, our original relation will be confluent.

8.5.1 Parallel reduction

Our new relation allows for any number of reductions to occur in parallel. We use the
-||-> symbol to indicate parallel reduction because of its own parallel lines:

30- set_fixity "-||->" (Infix(NONASSOC, 450));
> val it = () : unit

Then we can define parallel reduction itself. The rules look very similar to those for →.
The difference is that we allow the reflexive transition, and say that an application of
x u can be transformed to y v if there are transformations taking x to y and u to v. This

3In fact our counter-example is more complicated than necessary. The fact that K S K has a reduction
to the normal form S also acts as a counter-example. Can you see why?

8.5. BACK TO COMBINATORS 169

is why we must have reflexivity incidentally. Without it, a term like (K x y) K couldn’t
reduce because while the LHS of the application (K x y) can reduce, its RHS (K) can’t.

31- val (predn_rules, _, predn_cases) = xHol_reln "predn"
‘(!x. x -||-> x) /\
(!x y u v. x -||-> y /\ u -||-> v

==>
x # u -||-> y # v) /\

(!x y. K # x # y -||-> x) /\
(!f g x. S # f # g # x -||-> (f # x) # (g # x))‘;

> val predn_rules =
|- (∀x. x -||-> x) ∧

(∀x y u v. x -||-> y ∧ u -||-> v ⇒ x # u -||-> y # v) ∧
(∀x y. K # x # y -||-> x) ∧
∀f g x. S # f # g # x -||-> f # x # (g # x) : thm

val predn_cases =
|- ∀a0 a1.

a0 -||-> a1 ⇔
(a1 = a0) ∨
(∃x y u v. (a0 = x # u) ∧ (a1 = y # v) ∧

x -||-> y ∧ u -||-> v) ∨
(∃y. a0 = K # a1 # y) ∨
∃f g x. (a0 = S # f # g # x) ∧ (a1 = f # x # (g # x))

: thm

8.5.2 Using RTC

Now we can set up nice syntax for the reflexive and transitive closures of our two
relations. We will use ASCII symbols for both that consist of the original symbol followed
by an asterisk. Note also how, in defining the two relations, we have to use the $

character to “escape” the symbols’ usual fixities. This is exactly analogous to the way
in which ML’s op keyword is used. First, we create the desired symbol for the concrete
syntax, and then we “overload” it so that the parser will expand it to the desired form.

32- set_fixity "-->*" (Infix(NONASSOC, 450));
> val it = () : unit

- overload_on ("-->*", ‘‘RTC $-->‘‘);
> val it = () : unit

We do exactly the same thing for the reflexive and transitive closure of our parallel
reduction.

33- set_fixity "-||->*" (Infix(NONASSOC, 450));
> val it = () : unit

- overload_on ("-||->*", ‘‘RTC $-||->‘‘);
> val it = () : unit

170 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

Incidentally, in conjunction with PROVE we can now automatically demonstrate rela-
tively long chains of reductions:

34- PROVE [RTC_rules, redn_rules] ‘‘S # K # K # x -->* x‘‘;
Meson search level:
> val it = |- S # K # K # x -->* x : thm

- PROVE [RTC_rules, redn_rules]
‘‘S # (S # (K # S) # K) # (S # K # K) # f # x -->*
f # (f # x)‘‘;

Meson search level:
> val it = |- S # (S # (K # S) # K) # (S # K # K) # f # x -->* f # (f # x)

: thm

(The latter sequence is seven reductions long.)

8.5.3 Proving the RTCs are the same

We start with the easier direction, and show that everything in →∗ is in −||→∗. Because
RTC is monotone (which fact is left to the reader to prove), we can reduce this to
showing that x→ y ⊃ x−||→ y.

Our goal:

35- g ‘!x y. x -->* y ==> x -||->* y‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
∀x y. x -->* y ⇒ x -||->* y

We back-chain using our monotonicity result:

36- e (MATCH_MP_TAC RTC_monotone);
OK..
1 subgoal:
> val it =

∀x y. x --> y ⇒ x -||-> y

Now we can induct over the rules for →:

37- e (Induct_on ‘$-->‘);
OK..
1 subgoal:
> val it =

(∀x y f. x --> y ∧ x -||-> y ⇒ f # x -||-> f # y) ∧
(∀f g x. f --> g ∧ f -||-> g ⇒ f # x -||-> g # x) ∧
(∀x y. K # x # y -||-> x) ∧
∀f g x. S # f # g # x -||-> f # x # (g # x)

8.5. BACK TO COMBINATORS 171

We could split the 4-way conjunction apart into four goals, but there is no real need. It
is quite clear that each follows immediately from the rules for parallel reduction.

38- e (PROVE_TAC [predn_rules]);
OK..
Meson search level:

Goal proved. [...]
> val it =

Initial goal proved.
|- ∀x y. x -->* y ⇒ x -||->* y : goalstack

Packaged into a tidy little sub-goal-package-free parcel, our proof is

39val RTCredn_RTCpredn = store_thm(
"RTCredn_RTCpredn",
‘‘!x y. x -->* y ==> x -||->* y‘‘,
MATCH_MP_TAC RTC_monotone THEN
Induct_on ‘$-->‘ THEN PROVE_TAC [predn_rules]);

· · · � · · ·

Our next proof is in the other direction. It should be clear that we will not just be
able to appeal to the monotonicity of RTC this time; one step of the parallel reduction
relation can not be mirrored with one step of the original reduction relation. It’s clear
that mirroring one step of the parallel reduction relation might take many steps of the
original relation. Let’s prove that then:

40- g ‘!x y. x -||-> y ==> x -->* y‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
∀x y. x -||-> y ⇒ x -->* y

This time our induction will be over the rules defining the parallel reduction relation.

41- e (Induct_on ‘$-||->‘);
OK..
1 subgoal:
> val it =

(∀x. x -->* x) ∧
(∀x y x’ y’. x -||-> y ∧ x -->* y ∧ x’ -||-> y’ ∧ x’ -->* y’ ⇒

x # x’ -->* y # y’) ∧
(∀x y. K # x # y -->* x) ∧
∀f g x. S # f # g # x -->* f # x # (g # x)

There are four conjuncts here, and it should be clear that all but the second can be
proved immediately by appeal to the rules for the transitive closure and for → itself.

172 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

We could split apart the conjunctions and enter a THENL branch. However, we’d need to
repeat the same tactic three times to quickly close three of the four branches. Instead,
we use the TRY tactical to try applying the same tactic to all four branches. If our tactic
fails on branch #2, as we expect, TRY will protect us against this failure and let us
proceed.

42e (REPEAT CONJ_TAC THEN
TRY (PROVE_TAC [RTC_rules, redn_rules]));

OK..
Meson search level:
Meson search level:
Meson search level:
Meson search level: ..
1 subgoal:
> val it =

∀x y x’ y’. x -||-> y ∧ x -->* y ∧ x’ -||-> y’ ∧ x’ -->* y’ ⇒
x # x’ -->* y # y’

Note that wrapping TRY around PROVE TAC is not always wise. It can often take the
PROVE TAC tactic an extremely long time to exhaust its search space, and then give up
with a failure. Here, “we got lucky”.

Anyway, what of this latest sub-goal? If we look at it for long enough, we should
see that it is another monotonicity fact. More accurately, we need what is called a
congruence result for -->*. In this form, it’s not quite right for easy proof. Let’s go away
and prove RTCredn ap monotonic separately. (Another exercise!) Our new theorem
should state

43val RTCredn_ap_congruence = store_thm(
"RTCredn_ap_congruence",
‘‘!x y. x -->* y ==> !z. x # z -->* y # z /\ z # x -->* z # y‘‘,
...);

Now that we have this, our sub-goal is almost immediately provable. Using it, we know
that

x x′ →∗ y x′

y x′ →∗ y y′

All we need to do is “stitch together” the two transitions above and go from x x′ to y y′.
We can do this by appealing to our earlier RTC RTC result.

44e (PROVE_TAC [RTC_RTC, RTCredn_ap_congruence]);
OK..
Meson search level:

Goal proved. [...]
> val it =

Initial goal proved.
|- ∀x y. x -||-> y ⇒ x -->* y : goalstack

8.5. BACK TO COMBINATORS 173

But given that we can finish off what we thought was an awkward branch with just
another application of PROVE TAC, we don’t need to use our fancy TRY-footwork at the
stage before. Instead, we can just merge the theorem lists passed to both invocations,
dispense with the REPEAT CONJ TAC and have a very short tactic proof indeed:

45val predn_RTCredn = store_thm(
"predn_RTCredn",
‘‘!x y. x -||-> y ==> x -->* y‘‘,
Induct_on ‘$-||->‘ THEN
PROVE_TAC [RTC_rules, redn_rules, RTC_RTC, RTCredn_ap_congruence]);

· · · � · · ·

Now it’s time to prove that if a number of parallel reduction steps are chained to-
gether, then we can mirror this with some number of steps using the original reduction
relation. Our goal:

46- g ‘!x y. x -||->* y ==> x -->* y‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
∀x y. x -||->* y ⇒ x -->* y

We use the appropriate induction principle to get to:

47- e (Induct_on ‘RTC‘);
OK..
1 subgoal:
> val it =

(∀x. x -->* x) ∧
∀x x’ y. x -||-> x’ ∧ x’ -||-> y* ∧ x’ -->* y ⇒ x -->* z

This we can finish off in one step. The first conjunct is obvious, and in the second
the x -||-> y and our last result combine to tell us that x -->* y. Then this can be
chained together with the other assumption in the second conjunct and we’re done.

48- e (PROVE_TAC [RTC_rules, predn_RTCredn, RTC_RTC]);
OK..
Meson search level:

Goal proved.[...]
> val it =

Initial goal proved.
|- ∀x y. x -||->* y ⇒ x -->* y : proof

Packaged up, this proof is:

174 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

49val RTCpredn_RTCredn = store_thm(
"RTCpredn_RTCredn",
‘‘!x y. x -||->* y ==> x -->* y‘‘,
Induct_on ‘RTC‘ THEN PROVE_TAC [predn_RTCredn, RTC_RTC, RTC_rules]);

· · · � · · ·

Our final act is to use what we have so far to conclude that →∗ and −||→∗ are equal.
We state our goal:

50- g ‘$-||->* = $-->*‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
$-||->* = $-->*

We want to now appeal to extensionality. The simplest way to do this is to rewrite with
the theorem FUN EQ THM:

51- FUN_EQ_THM;
> val it = |- ∀f g. (f = g) ⇔ ∀x. f x = g x : thm

So, we rewrite:

52- e (SIMP_TAC std_ss [FUN_EQ_THM]);
OK..
1 subgoal:
> val it =

∀x x’. x -||->* x’ = x -->* x’

This goal is an easy consequence of our two earlier implications.

53- e (PROVE_TAC [RTCpredn_RTCredn, RTCredn_RTCpredn]);
OK..
Meson search level:

Goal proved. [...]
> val it =

Initial goal proved.
|- $-||->* = $-->* : goalstack

Packaged, the proof is:

54val RTCpredn_EQ_RTCredn = store_thm(
"RTCpredn_EQ_RTCredn",
‘‘$-||->* = $-->*‘‘,
SIMP_TAC std_ss [FUN_EQ_THM] THEN
PROVE_TAC [RTCpredn_RTCredn, RTCredn_RTCpredn]);

8.5. BACK TO COMBINATORS 175

8.5.4 Proving a diamond property for parallel reduction

Now we just have one substantial proof to go. Before we can even begin, there are a
number of minor lemmas we will need to prove first. These are basically specialisations
of the theorem predn cases. We want exhaustive characterisations of the possibilities
when the following terms undergo a parallel reduction: x y, K, S, K x, S x, K x y, S x y

and S x y z.
To do this, we will write a little function that derives characterisations automatically:

55- fun characterise t = SIMP_RULE (srw_ss()) [] (SPEC t predn_cases);
> val characterise = fn : term -> thm

The characterise function specialises the theorem predn_cases with the input term,
and then simplifies. The srw_ss() simpset includes information about the injectivity
and disjointness of constructors and eliminates obvious impossibilities. For example,

56- val K_predn = characterise ‘‘K‘‘;
<<HOL message: more than one resolution of overloading was possible>>
> val K_predn = |- ∀a1. K -||-> a1 = (a1 = K) : thm

- val S_predn = characterise ‘‘S‘‘;
<<HOL message: more than one resolution of overloading was possible>>
> val S_predn = |- ∀a1. S -||-> a1 = (a1 = S) : thm

Unfortunately, what we get back from other inputs is not so good:

57- val Sx_predn0 = characterise ‘‘S # x‘‘;
> val Sx_predn0 =

|- ∀a1.
S # x -||-> a1 =
(a1 = S # x) ∨
∃y v. (a1 = y # v) ∧ S -||-> y ∧ x -||-> v : thm

That first disjunct is redundant, as the following demonstrates:

58val Sx_predn = prove(
‘‘!x y. S # x -||-> y = ?z. (y = S # z) /\ (x -||-> z)‘‘,
REPEAT GEN_TAC THEN EQ_TAC THEN
RW_TAC std_ss [Sx_predn0, predn_rules, S_predn]);

Our characterise function will just have to help us in the proofs that follow.

59val Kx_predn = prove(
‘‘!x y. K # x -||-> y = ?z. (y = K # z) /\ (x -||-> z)‘‘,
REPEAT GEN_TAC THEN EQ_TAC THEN
RW_TAC std_ss [characterise ‘‘K # x‘‘, predn_rules, K_predn]);

What of K x y? A little thought demonstrates that there really must be two cases this
time.

176 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

60val Kxy_predn = prove(
‘‘!x y z.

K # x # y -||-> z =
(?u v. (z = K # u # v) /\ (x -||-> u) /\ (y -||-> v)) \/
(z = x)‘‘,

REPEAT GEN_TAC THEN EQ_TAC THEN
RW_TAC std_ss [characterise ‘‘K # x # y‘‘, predn_rules,

Kx_predn]);

By way of contrast, there is only one case for S x y because it is not yet a “redex” at the
top-level.

61val Sxy_predn = prove(
‘‘!x y z. S # x # y -||-> z =

?u v. (z = S # u # v) /\ (x -||-> u) /\ (y -||-> v)‘‘,
REPEAT GEN_TAC THEN EQ_TAC THEN
RW_TAC std_ss [characterise ‘‘S # x # y‘‘, predn_rules,

Sx_predn]);

Next, the characterisation for S x y z:

62val Sxyz_predn = prove(
‘‘!w x y z. S # w # x # y -||-> z =

(?p q r. (z = S # p # q # r) /\
w -||-> p /\ x -||-> q /\ y -||-> r) \/

(z = (w # y) # (x # y))‘‘,
REPEAT GEN_TAC THEN EQ_TAC THEN
RW_TAC std_ss [characterise ‘‘S # w # x # y‘‘, predn_rules,

Sxy_predn]);

Last of all, we want a characterisation for x y. What characterise gives us this time
can’t be improved upon, for all that we might look upon the four disjunctions and
despair.

63- val x_ap_y_predn = characterise ‘‘x # y‘‘;
> val x_ap_y_predn =

|- ∀a1.
x # y -||-> a1 =
(a1 = x # y) ∨
(∃y’ v. (a1 = y’ # v) ∧ x -||-> y’ ∧ y -||-> v) ∨
(x = K # a1) ∨
∃f g. (x = S # f # g) ∧ (a1 = f # y # (g # y)) : thm

· · · � · · ·

Now we are ready to prove the final goal. It is

8.5. BACK TO COMBINATORS 177

64- g ‘!x y. x -||-> y ==>
!z. x -||-> z ==> ?u. y -||-> u /\ z -||-> u‘;

> val it =
Proof manager status: 1 proof.
1. Incomplete:

Initial goal:
∀x y. x -||-> y ⇒ ∀z. x -||-> z ⇒ ∃u. y -||-> u ∧ z -||-> u

We now induct and split the goal into its individual conjuncts:

65- e (Induct_on ‘$-||->‘ THEN REPEAT CONJ_TAC);
OK..
4 subgoals:
> val it =

∀f g x z. S # f # g # x -||-> z ⇒
∃u. f # x # (g # x) -||-> u ∧ z -||-> u

∀x y z. K # x # y -||-> z ⇒ ∃u. x -||-> u ∧ z -||-> u

∀x y u v.
x -||-> y ∧
(∀z. x -||-> z ⇒ ∃u. y -||-> u ∧ z -||-> u) ∧
u -||-> v ∧
(∀z. u -||-> z ⇒ ∃u. v -||-> u ∧ z -||-> u) ⇒
∀z. x # u -||-> z ⇒ ∃u. y # v -||-> u ∧ z -||-> u

∀x z. x -||-> z ⇒ ∃u. x -||-> u ∧ z -||-> u

The first goal is easily disposed of. The witness we would provide for this case is simply
z, but PROVE TAC will do the work for us:

66- e (PROVE_TAC [predn_rules]);
OK..
Meson search level: ...

Goal proved. [...]

The next goal includes two instances of terms of the form x # y -||-> z. We can use
our x_ap_y_predn theorem here. However, if we rewrite indiscriminately with it, we
will really confuse the goal. We want to rewrite just the assumption, not the instance
underneath the existential quantifier. Starting everything by repeatedly stripping can’t
lead us too far astray.

178 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

67- e (REPEAT STRIP_TAC);
OK..
1 subgoal:
> val it =

∃u. y # v -||-> u ∧ z -||-> u

0. x -||-> y
1. ∀z. x -||-> z ⇒ ∃u. y -||-> u ∧ z -||-> u
2. u -||-> v
3. ∀z. u -||-> z ⇒ ∃u. v -||-> u ∧ z -||-> u
4. x # u -||-> z

We need to split up assumption 4. We can get it out of the assumption list using the
Q.PAT ASSUM theorem-tactical. We will write

Q.PAT_ASSUM ‘x # y -||-> z‘

(STRIP_ASSUME_TAC o SIMP_RULE std_ss [x_ap_y_predn])

The quotation specifies the pattern that we want to match. The second argument spec-
ifies how we are going to transform the theorem. Reading the compositions from right
to left, first we will simplify with the x_ap_y_predn theorem and then we will assume
the result back into the assumptions, stripping disjunctions and existentials as we go.4

We already know that doing this is going to produce four new sub-goals (there were
four disjuncts in the x_ap_y_predn theorem). At least one of these should be trivial
because it will correspond to the case when the parallel reduction is just a “do noth-
ing” step. Let’s try eliminating the simple cases with a “speculative” call to PROVE TAC

wrapped inside a TRY. And before doing that, we should do some rewriting to make
sure that equalities in the assumptions are eliminated.

So:

4An alternative to using PAT ASSUM is to use by instead: you would have to state the four-way dis-
junction yourself, but the proof would be more “declarative” in style, and though wordier, might be more
maintainable.

8.5. BACK TO COMBINATORS 179

68- e (Q.PAT_ASSUM ‘x # y -||-> z‘
(STRIP_ASSUME_TAC o SIMP_RULE std_ss [x_ap_y_predn]) THEN
RW_TAC std_ss [] THEN
TRY (PROVE_TAC [predn_rules]));

OK..
Meson search level:
Meson search level:
Meson search level:
Meson search level:
2 subgoals:
> val it =

∃u’. y # v -||-> u’ ∧ f # u # (g # u) -||-> u’

0. S # f # g -||-> y
1. ∀z. S # f # g -||-> z ⇒ ∃u. y -||-> u ∧ z -||-> u
2. u -||-> v
3. ∀z. u -||-> z ⇒ ∃u. v -||-> u ∧ z -||-> u

∃u. y # v -||-> u ∧ z -||-> u

0. K # z -||-> y
1. ∀z’. K # z -||-> z’ ⇒ ∃u. y -||-> u ∧ z’ -||-> u
2. u -||-> v
3. ∀z. u -||-> z ⇒ ∃u. v -||-> u ∧ z -||-> u

Brilliant! We’ve eliminated two of the four disjuncts already. Now our next goal features
a term K # z -||-> y in the assumptions. We have a theorem that pertains to just this
situation. But before applying it willy-nilly, let us try to figure out exactly what the
situation is. A diagram of the current situation might look like

_ _ _ _ _ _ _�
�

�
�_ _ _ _ _ _ _

K # z # u // z

��_ _ _ _�

�

�

�
_ _ _ _
y # v // ?u?
�� 		��

��
��

Our theorem tells us that y must actually be of the form K # w for some w, and that
there must be an arrow between z and w. Thus:

180 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

69- e (‘?w. (y = K # w) /\ (z -||-> w)‘ by PROVE_TAC [Kx_predn]);
OK..
Meson search level:
1 subgoal:
> val it =

∃u. y # v -||-> u ∧ z -||-> u

0. K # z -||-> y
1. ∀z’. K # z -||-> z’ ⇒ ∃u. y -||-> u ∧ z’ -||-> u
2. u -||-> v
3. ∀z. u -||-> z ⇒ ∃u. v -||-> u ∧ z -||-> u
4. y = K # w
5. z -||-> w

On inspection, it becomes clear that the u must be w. The first conjunct requires
K # w # v -||-> w, which we have because this is what Ks do, and the second conjunct
is already in the assumption list. Rewriting (eliminating that equality in the assumption
list first will make PROVE TAC’s job that much easier), and then first order reasoning will
solve this goal:

70- e (RW_TAC std_ss [] THEN PROVE_TAC [predn_rules]);
OK..
Meson search level: ...

Goal proved. [...]
Remaining subgoals:
> val it =

∃u’. y # v -||-> u’ ∧ f # u # (g # u) -||-> u’

0. S # f # g -||-> y
1. ∀z. S # f # g -||-> z ⇒ ∃u. y -||-> u ∧ z -||-> u
2. u -||-> v
3. ∀z. u -||-> z ⇒ ∃u. v -||-> u ∧ z -||-> u

This case involving S is analogous. Here’s the tactic to apply:
71- e (‘?p q. (y = S # p # q) /\ (f -||-> p) /\ (g -||-> q)‘

by PROVE_TAC [Sxy_predn] THEN
RW_TAC std_ss [] THEN PROVE_TAC [predn_rules]);

OK..
Meson search level:
Meson search level:

Goal proved.[...]
Remaining subgoals:
> val it =

∀f g x z. S # f # g # x -||-> z ⇒
∃u. f # x # (g # x) -||-> u ∧ z -||-> u

∀x y z. K # x # y -||-> z ⇒ ∃u. x -||-> u ∧ z -||-> u

8.5. BACK TO COMBINATORS 181

This next goal features a K # x # y -||-> z term that we have a theorem for already.
And again, let’s speculatively use a call to PROVE TAC to eliminate the simple cases im-
mediately (Kxy_predn is a disjunct so we’ll get two sub-goals if we don’t eliminate any-
thing).

72- e (RW_TAC std_ss [Kxy_predn] THEN
TRY (PROVE_TAC [predn_rules]));

OK..
Meson search level: ..
Meson search level: ...

Goal proved. [...]
Remaining subgoals:
> val it =

∀f g x z. S # f # g # x -||-> z ⇒
∃u. f # x # (g # x) -||-> u ∧ z -||-> u

Better yet! We got both cases immediately, and have moved onto the last case. We can
try the same strategy.

73- e (RW_TAC std_ss [Sxyz_predn] THEN PROVE_TAC [predn_rules]);
OK..
Meson search level: ..
Meson search level:

Goal proved.[...]
> val it =

Initial goal proved.
|- ∀x y. x -||-> y ⇒ ∀z. x -||-> z ⇒

∃u. y -||-> u ∧ z -||-> u : goalstack

The final goal proof can be packaged into:

182 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

74val predn_diamond_lemma = prove(
‘‘!x y. x -||-> y ==>

!z. x -||-> z ==> ?u. y -||-> u /\ z -||-> u‘‘,
Induct_on ‘$-||->‘ THEN REPEAT CONJ_TAC THENL [
PROVE_TAC [predn_rules],
REPEAT STRIP_TAC THEN
Q.PAT_ASSUM ‘x # y -||-> z‘
(STRIP_ASSUME_TAC o SIMP_RULE std_ss [x_ap_y_predn]) THEN

RW_TAC std_ss [] THEN
TRY (PROVE_TAC [predn_rules]) THENL [
‘?w. (y = K # w) /\ (z -||-> w)‘ by PROVE_TAC [Kx_predn] THEN
RW_TAC std_ss [] THEN PROVE_TAC [predn_rules],
‘?p q. (y = S # p # q) /\ (f -||-> p) /\ (g -||-> q)‘ by

PROVE_TAC [Sxy_predn] THEN
RW_TAC std_ss [] THEN PROVE_TAC [predn_rules]

],
RW_TAC std_ss [Kxy_predn] THEN PROVE_TAC [predn_rules],
RW_TAC std_ss [Sxyz_predn] THEN PROVE_TAC [predn_rules]

]);

· · · � · · ·

We are on the home straight. The lemma can be turned into a statement involving
the diamond constant directly:

75val predn_diamond = store_thm(
"predn_diamond",
‘‘diamond $-||->‘‘,
PROVE_TAC [diamond_def, predn_diamond_lemma]);

And now we can prove that our original relation is confluent in similar fashion:

76val confluent_redn = store_thm(
"confluent_redn",
‘‘confluent $-->‘‘,
PROVE_TAC [predn_diamond, confluent_diamond_RTC,

RTCpredn_EQ_RTCredn, diamond_RTC]);

8.6 Exercises

If necessary, answers to the first three exercises can be found by examining the source
file in examples/ind def/clScript.sml.

1. Prove that

RTC R x y ∧ RTC R y z ⊃ RTC R x z

8.6. EXERCISES 183

You will need to prove the goal by induction, and will probably need to massage
it slightly first to get it to match the appropriate induction principle. Store the
theorem under the name RTC RTC.

2. Another induction. Show that

(∀x y. R1 x y ⊃ R2 x y) ⊃ (∀x y. RTC R1 x y ⊃ RTC R2 x y)

Call the resulting theorem RTC monotone.

3. Yet another RTC induction, but where R is no longer abstract, and is instead the
original reduction relation. Prove

x→∗ y ⊃ ∀z. x z →∗ y z ∧ z x→∗ z y

Call it RTCredn ap congruence.

4. Come up with a counter-example for the following property:

(
∀x y z. R x y ∧ R x z ⊃

∃u. RTC R y u ∧ RTC R z u

)
⊃

diamond (RTC R)

184 CHAPTER 8. EXAMPLE: COMBINATORY LOGIC

Chapter 9

Proof Tools: Propositional Logic

Users of HOL can create their own theorem proving tools by combining predefined rules
and tactics. The ML type-discipline ensures that only logically sound methods can be
used to create values of type thm. In this chapter, a real example is described.

Two implementations of the tool are given to illustrate various styles of proof pro-
gramming. The first implementation is the obvious one, but is inefficient because of
the ‘brute force’ method used. The second implementation attempts to be a great deal
more intelligent. Extensions to the tools to allow more general applicability are also
discussed.

The problem to be solved is that of deciding the truth of a closed formula of proposi-
tional logic. Such a formula has the general form

ϕ ::= v | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ | ϕ = ϕ

formula ::= ∀~v. ϕ
where the variables v are all of boolean type, and where the universal quantification at
the outermost level captures all of the free variables.

9.1 Method 1: Truth Tables

The first method to be implemented is the brute force method of trying all possible
boolean combinations. This approach’s only real virtue is that it is exceptionally easy to
implement. First we will prove the motivating theorem:

val FORALL_BOOL = prove(
‘‘(!v. P v) = P T /\ P F‘‘,
SRW_TAC [][EQ_IMP_THM] THEN Cases_on ‘v‘ THEN SRW_TAC [][]);

The proof proceeds by splitting the goal into two halves, showing

(∀v. P (v)) ⇒ P (>) ∧ P (⊥)

(which goal is automatically shown by the simplifier), and

P (>) ∧ P (⊥) ⇒ P (v)

for an arbitrary boolean variable v. After case-splitting on v, the assumptions are then
enough to show the goal. (This theorem is actually already proved in the theory bool.)

The next, and final, step is to rewrite with this theorem:

185

186 CHAPTER 9. PROOF TOOLS: PROPOSITIONAL LOGIC

val tautDP = SIMP_CONV bool_ss [FORALL_BOOL]

This enables the following

1- tautDP ‘‘!p q. p /\ q /\ ~p‘‘;
> val it = |- (!p q. p /\ q /\ ~p) = F : thm

- tautDP ‘‘!p. p \/ ~p‘‘
> val it = |- (!p. p \/ ~p) = T : thm

and even the marginally more intimidating

2- time tautDP
‘‘!p q c a. ~(((~a \/ p /\ ~q \/ ~p /\ q) /\

(~(p /\ ~q \/ ~p /\ q) \/ a)) /\
(~c \/ p /\ q) /\ (~(p /\ q) \/ c)) \/

~(p /\ q) \/ c /\ ~a‘‘;
runtime: 0.147s, gctime: 0.012s, systime: 0.000s.
> val it =

|- (!p q c a.
~(((~a \/ p /\ ~q \/ ~p /\ q) /\ (~(p /\ ~q \/ ~p /\ q) \/ a)) /\
(~c \/ p /\ q) /\ (~(p /\ q) \/ c)) \/ ~(p /\ q) \/ c /\ ~a) =

T : thm

This is a dreadful algorithm for solving this problem. The system’s built-in function,
tautLib.TAUT_CONV, solves the problem above much faster. The only real merit in this
solution is that it took one line to write. This is a general illustration of the truth
that HOL’s high-level tools, particularly the simplifier, can provide fast prototypes for a
variety of proof tasks.

9.2 Method 2: the DPLL Algorithm

The Davis-Putnam-Loveland-Logemann method [4] for deciding the satisfiability of
propositional formulas in CNF (Conjunctive Normal Form) is a powerful technique, still
used in state-of-the-art solvers today. If we strip the universal quantifiers from our input
formulas, our task can be seen as determining the validity of a propositional formula.
Testing the negation of such a formula for satisfiability is a test for validity: if the for-
mula’s negation is satisfiable, then it is not valid (the satisfying assignment will make
the original false); if the formula’s negation is unsatisfiable, then the formula is valid
(no assignment can make it false).

(The source code for this example is available in the file examples/dpll.sml.)

9.2. METHOD 2: THE DPLL ALGORITHM 187

Preliminaries

To begin, assume that we have code already to convert arbitrary formulas into CNF, and
to then decide the satisfiability of these formulas. Assume further that if the input to
the latter procedure is unsatisfiable, then it will return with a theorem of the form

` ϕ = F

or if it is satisfiable, then it will return a satisfying assignment, a map from variables to
booleans. This map will be a function from HOL variables to one of the HOL terms T or
F. Thus, we will assume

datatype result = Unsat of thm | Sat of term -> term
val toCNF : term -> thm
val DPLL : term -> result

(The theorem returned by toCNF will equate the input term to another in CNF.)

Before looking into implementing these functions, we will need to consider

• how to transform our inputs to suit the function; and

• how to use the outputs from the functions to produce our desired results

We are assuming our input is a universally quantified formula. Both the CNF and DPLL
procedures expect formulas without quantifiers. We also want to pass these procedures
the negation of the original formula. Both of the required term manipulations required
can be done by functions found in the structure boolSyntax. (In general, important
theories (such as bool) are accompanied by Syntax modules containing functions for
manipulating the term-forms associated with that theory.)

In this case we need the functions

strip_forall : term -> term list * term
mk_neg : term -> term

The function strip_forall strips a term of all its outermost universal quantifications,
returning the list of variables stripped and the body of the quantification. The function
mk_neg takes a term of type bool and returns the term corresponding to its negation.

Using these functions, it is easy to see how we will be able to take ∀~v. ϕ as input, and
pass the term ¬ϕ to the function toCNF. A more significant question is how to use the
results of these calls. The call to toCNF will return a theorem

` ¬ϕ = ϕ′

The formula ϕ′ is what will then be passed to DPLL. (We can extract it by using the
concl and rhs functions.) If DPLL returns the theorem ` ϕ′ = F, an application of TRANS
to this and the theorem displayed above will derive the formula ` ¬ϕ = F . In order to
derive the final result, we will need to turn this into ` ϕ. This is best done by proving a
bespoke theorem embodying the equality (there isn’t one such already in the system):

188 CHAPTER 9. PROOF TOOLS: PROPOSITIONAL LOGIC

val NEG_EQ_F = prove(‘‘(~p = F) = p‘‘, REWRITE_TAC []);

To turn ` ϕ into ` (∀~v. ϕ) = T, we will perform the following proof:

` ϕ
` ∀~v. ϕ GENL(~v)

` (∀~v. ϕ) = T
EQT INTRO

The other possibility is that DPLL will return a satisfying assignment demonstrating that
ϕ′ is satisfiable. If this is the case, we want to show that ∀~v. ϕ is false. We can do this
by assuming this formula, and then specialising the universally quantified variables in
line with the provided map. In this way, it will be possible to produce the theorem

∀~v. ϕ ` ϕ[~v := satisfying assignment]

Because there are no free variables in ∀~v. ϕ, the substitution will produce a completely
ground boolean formula. This will straightforwardly rewrite to F (if the assignment
makes ¬ϕ true, it must make ϕ false). Turning φ ` F into ` φ = F is a matter of calling
DISCH and then rewriting with the built-in theorem IMP_F_EQ_F:

` ∀t. t⇒ F = (t = F)

Putting all of the above together, we can write our wrapper function, which we will
call DPLL_UNIV, with the UNIV suffix reminding us that the input must be universally
quantified.

fun DPLL_UNIV t = let
val (vs, phi) = strip_forall t
val cnf_eqn = toCNF (mk_neg phi)
val phi’ = rhs (concl cnf_eqn)

in
case DPLL phi’ of
Unsat phi’_eq_F => let
val negphi_eq_F = TRANS cnf_eqn phi’_eq_F
val phi_thm = CONV_RULE (REWR_CONV NEG_EQ_F) negphi_eq_F

in
EQT_INTRO (GENL vs phi_thm)

end
| Sat f => let

val t_assumed = ASSUME t
fun spec th =

spec (SPEC (f (#1 (dest_forall (concl th)))) th)
handle HOL_ERR _ => REWRITE_RULE [] th

in
CONV_RULE (REWR_CONV IMP_F_EQ_F) (DISCH t (spec t_assumed))

end
end

9.2. METHOD 2: THE DPLL ALGORITHM 189

The auxiliary function spec that is used in the second case relies on the fact that
dest_forall will raise a HOL_ERR exception if the term it is applied to is not universally
quantified. When spec’s argument is not universally quantified, this means that the
recursion has bottomed out, and all of the original formula’s universal variables have
been specialised. Then the resulting formula can be rewritten to false (REWRITE_RULE’s
built-in rewrites will handle all of the necessary cases).

The DPLL_UNIV function also uses REWR_CONV in two places. The REWR_CONV function
applies a single (first-order) rewrite at the top of a term. These uses of REWR_CONV are
done within calls to the CONV_RULE function. This lifts a conversion c (a function taking
a term t and producing a theorem ` t = t′), so that CONV_RULE c takes the theorem ` t
to ` t′.

9.2.1 Conversion to Conjunctive Normal Form

A formula in Conjunctive Normal Form is a conjunction of disjunctions of literals (either
variables, or negated variables). It is possible to convert formulas of the form we are
expecting into CNF by simply rewriting with the following theorems

¬(φ ∧ ψ) = ¬φ ∨ ¬ψ
¬(φ ∨ ψ) = ¬φ ∧ ¬ψ

φ ∨ (ψ ∧ ξ) = (φ ∨ ψ) ∧ (φ ∨ ξ)
(ψ ∧ ξ) ∨ φ = (φ ∨ ψ) ∧ (φ ∨ ξ)

φ⇒ ψ = ¬φ ∨ ψ
(φ = ψ) = (φ⇒ ψ) ∧ (ψ ⇒ φ)

Unfortunately, using these theorems as rewrites can result in an exponential increase in
the size of a formula. (Consider using them to convert an input in Disjunctive Normal
Form, a disjunction of conjunctions of literals, into CNF.)

A better approach is to convert to what is known as “definitional CNF”. HOL includes
functions to do this in the structure defCNF. Unfortunately, this approach adds extra,
existential, quantifiers to the formula. For example

3- defCNF.DEF_CNF_CONV ‘‘p \/ (q /\ r)‘‘;
> val it =

|- p \/ q /\ r =
?x. (x \/ ~q \/ ~r) /\ (r \/ ~x) /\ (q \/ ~x) /\ (p \/ x) : thm

Under the existentially-bound x, the code has produced a formula in CNF. With an ex-
ample this small, the formula is actually bigger than that produced by the näıve transla-
tion, but with more realistic examples, the difference quickly becomes significant. The
last example used with tautDP is 20 times bigger when translated näıvely than when
using defCNF, and the translation takes 150 times longer to perform.

190 CHAPTER 9. PROOF TOOLS: PROPOSITIONAL LOGIC

But what of these extra existentially quantified variables? In fact, we can ignore
the quantification when calling the core DPLL procedure. If we pass the unquantified
body to DPLL, we will either get back an unsatisfiable verdict of the form ` ϕ′ = F, or a
satisfying assignment for all of the free variables. If the latter occurs, the same satisfying
assignment will also satisfy the original. If the former, we will perform the following
proof

` ϕ′ = F

` ϕ′ ⇒ F

` ∀~x. ϕ′ ⇒ F

` (∃~x. ϕ′) ⇒ F

` (∃~x. ϕ′) = F

producing a theorem of the form expected by our wrapper function.

In fact, there is an alternative function in the defCNF API that we will use in pref-
erence to DEF_CNF_CONV. The problem with DEF_CNF_CONV is that it can produce a big
quantification, involving lots of variables. We will rather use DEF_CNF_VECTOR_CONV.
Instead of output of the form

` ϕ = (∃~x. ϕ′)

this second function produces

` ϕ = (∃(v : num → bool). ϕ′)

where the individual variables xi of the first formula are replaced by calls to the v

function v(i), and there is just one quantified variable, v. This variation will not affect
the operation of the proof sketched above. And as long as we don’t require literals to
be variables or their negations, but also allow them to be terms of the form v(i) and
¬v(i) as well, then the action of the DPLL procedure on the formula ϕ′ won’t be affected
either.

Unfortunately for uniformity, in simple cases, the definitional CNF conversion func-
tions may not result in any existential quantifications at all. This makes our implemen-
tation of DPLL somewhat more complicated. We calculate a body variable that will be
passed onto the CoreDPLL function, as well as a transform function that will transform
an unsatisfiability result into something of the desired form. If the result of conver-
sion to CNF produces an existential quantification, we use the proof sketched above.
Otherwise, the transformation can be the identity function, I:

9.2. METHOD 2: THE DPLL ALGORITHM 191

fun DPLL t = let
val (transform, body) = let
val (vector, body) = dest_exists t
fun transform body_eq_F = let
val body_imp_F = CONV_RULE (REWR_CONV (GSYM IMP_F_EQ_F)) body_eq_F
val fa_body_imp_F = GEN vector body_imp_F
val ex_body_imp_F = CONV_RULE FORALL_IMP_CONV fa_body_imp_F

in
CONV_RULE (REWR_CONV IMP_F_EQ_F) ex_body_imp_F

end
in
(transform, body)

end handle HOL_ERR _ => (I, t)
in
case CoreDPLL body of
Unsat body_eq_F => Unsat (transform body_eq_F)

| x => x
end

where we have still to implement the core DPLL procedure (called CoreDPLL above).
The above code uses REWR_CONV with the IMP_F_EQ_F theorem to affect two of the
proof’s transformations. The GSYM function is used to flip the orientation a theorem’s
top-level equalities. Finally, the FORALL_IMP_CONV conversion takes a term of the form

∀x. P (x) ⇒ Q

and returns the theorem

` (∀x. P (x) ⇒ Q) = ((∃x. P (x)) ⇒ Q)

9.2.2 The Core DPLL Procedure

The DPLL procedure can be seen as a slight variation on the basic “truth table” technique
we have already seen. As with that procedure, the core operation is a case-split on a
boolean variable. There are two significant differences though: DPLL can be seen as
a search for a satisfying assignment, so that if picking a variable to have a particular
value results in a satisfying assignment, we do not need to also check what happens
if the same variable is given the opposite truth-value. Secondly, DPLL takes some care
to pick good variables to split on. In particular, unit propagation is used to eliminate
variables that will not cause branching in the search-space.

Our implementation of the core DPLL procedure is a function that takes a term and
returns a value of type result: either a theorem equating the original term to false, or
a satisfying assignment (in the form of a function from terms to terms). As the DPLL
search for a satisfying assignment proceeds, an assignment is incrementally constructed.
This suggests that the recursive core of our function will need to take a term (the current

192 CHAPTER 9. PROOF TOOLS: PROPOSITIONAL LOGIC

formula) and a context (the current assignment) as parameters. The assignment can be
naturally represented as a set of equations, where each equation is either v = T or v = F.

This suggests that a natural representation for our program state is a theorem: the
hypotheses will represent the assignment, and the conclusion can be the current for-
mula. Of course, HOL theorems can’t just be wished into existence. In this case, we can
make everything sound by also assuming the initial formula. Thus, when we begin our
initial state will be φ ` φ. After splitting on variable v, we will generate two new states
φ, (v=T) ` φ1, and φ, (v=F) ` φ2, where the φi are the result of simplifying φ under the
additional assumption constraining v.

The easiest way to add an assumption to a theorem is to use the rule ADD_ASSUM.
But in this situation, we also want to simplify the conclusion of the theorem with the
same assumption. This means that it will be enough to rewrite with the theorem ψ ` ψ,
where ψ is the new assumption. The action of rewriting with such a theorem will cause
the new assumption to appear among the assumptions of the result.

The casesplit function is thus:

fun casesplit v th = let
val eqT = ASSUME (mk_eq(v, boolSyntax.T))
val eqF = ASSUME (mk_eq(v, boolSyntax.F))

in
(REWRITE_RULE [eqT] th, REWRITE_RULE [eqF] th)

end

A case-split can result in a formula that has been rewritten all the way to true or false.
These are the recursion’s base cases. If the formula has been rewritten to true, then we
have found a satisfying assignment, one that is now stored for us in the hypotheses of
the theorem itself. The following function, mk_satmap, extracts those hypotheses into a
finite-map, and then returns the lookup function for that finite-map:

fun mk_satmap th = let
val hyps = hypset th
fun foldthis (t,acc) = let
val (l,r) = dest_eq t

in
Binarymap.insert(acc,l,r)

end handle HOL_ERR _ => acc
val fmap = HOLset.foldl foldthis (Binarymap.mkDict Term.compare) hyps

in
Sat (fn v => Binarymap.find(fmap,v)

handle Binarymap.NotFound => boolSyntax.T)
end

The foldthis function above adds the equations that are stored as hypotheses into
the finite-map. The exception handler in foldthis is necessary because one of the
hypotheses will be the original formula. The exception handler in the function that looks

9.2. METHOD 2: THE DPLL ALGORITHM 193

up variable bindings is necessary because a formula may be reduced to true without
every variable being assigned a value at all. In this case, it is irrelevant what value we
give to the variable, so we arbitrarily map such variables to T.

If the formula has been rewritten to false, then we can just return this theorem di-
rectly. Such a theorem is not quite in the right form for the external caller, which is
expecting an equation, so if the final result is of the form φ ` F, we will have to trans-
form this to ` φ = F.

The next question to address is what to do with the results of recursive calls. If a case-
split returns a satisfying assignment this can be returned unchanged. But if a recursive
call returns a theorem equating the input to false, more needs to be done. If this is
the first call, then the other branch needs to be checked. If this also returns that the
theorem is unsatisfiable, we will have two theorems:

φ0,∆, (v=T) ` F φ0,∆, (v=F) ` F

where φ0 is the original formula, ∆ is the rest of the current assignment, and v is the
variable on which a split has just been performed. To turn these two theorems into the
desired

φ0,∆ ` F

we will use the rule of inference DISJ_CASES:

Γ ` ψ ∨ ξ ∆1 ∪ {ψ} ` φ ∆2 ∪ {ξ} ` φ
Γ ∪∆1 ∪∆2 ` φ

and the theorem BOOL_CASES_AX:

` ∀t. (t = T) ∨ (t = F)

We can put these fragments together and write the top-level CoreDPLL function, in
Figure 9.1.

All that remains to be done is to figure out which variable to case-split on. The most
important variables to split on are those that appear in what are called “unit clauses”, a
clause containing just one literal. If there is a unit clause in a formula then it is of the
form

φ ∧ v ∧ φ′

or

φ ∧ ¬v ∧ φ′

In either situation, splitting on v will always result in a branch that evaluates directly
to false. We thus eliminate a variable without increasing the size of the problem. The

194 CHAPTER 9. PROOF TOOLS: PROPOSITIONAL LOGIC

fun CoreDPLL form = let
val initial_th = ASSUME form
fun recurse th = let
val c = concl th

in
if c = boolSyntax.T then
mk_satmap th

else if c = boolSyntax.F then
Unsat th

else let
val v = find_splitting_var c
val (l,r) = casesplit v th

in
case recurse l of
Unsat l_false => let
in
case recurse r of
Unsat r_false =>
Unsat (DISJ_CASES (SPEC v BOOL_CASES_AX) l_false r_false)

| x => x
end

| x => x
end

end
in
case (recurse initial_th) of
Unsat th => Unsat (CONV_RULE (REWR_CONV IMP_F_EQ_F) (DISCH form th))

| x => x
end

Figure 9.1: The core of the DPLL function

9.2. METHOD 2: THE DPLL ALGORITHM 195

process of eliminating unit clauses is usually called “unit propagation”. Unit propagation
is not usually thought of as a case-splitting operation, but doing it this way makes our
code simpler.

If a formula does not include a unit clause, then choice of the next variable to split on
is much more of a black art. Here we will implement a very simple choice: to split on
the variable that occurs most often. Our function find_splitting_var takes a formula
and returns the variable to split on.

fun find_splitting_var phi = let
fun recurse acc [] = getBiggest acc
| recurse acc (c::cs) = let

val ds = strip_disj c
in
case ds of
[lit] => (dest_neg lit handle HOL_ERR _ => lit)

| _ => recurse (count_vars ds acc) cs
end

in
recurse (Binarymap.mkDict Term.compare) (strip_conj phi)

end

This function works by handing a list of clauses to the inner recurse function. This
strips each clause apart in turn. If a clause has only one disjunct it is a unit-clause and
the variable can be returned directly. Otherwise, the variables in the clause are counted
and added to the accumulating map by count_vars, and the recursion can continue.

The count_vars function has the following implementation:

fun count_vars ds acc =
case ds of
[] => acc

| lit::lits => let
val v = dest_neg lit handle HOL_ERR _ => lit

in
case Binarymap.peek (acc, v) of
NONE => count_vars lits (Binarymap.insert(acc,v,1))

| SOME n => count_vars lits (Binarymap.insert(acc,v,n + 1))
end

The use of a binary tree to store variable data makes it efficient to update the data as
it is being collected. Extracting the variable with the largest count is then a linear scan
of the tree, which we can do with the foldl function:

fun getBiggest acc =
#1 (Binarymap.foldl(fn (v,cnt,a as (bestv,bestcnt)) =>

if cnt > bestcnt then (v,cnt) else a)
(boolSyntax.T, 0)
acc

196 CHAPTER 9. PROOF TOOLS: PROPOSITIONAL LOGIC

9.2.3 Performance

Once inputs get even a little beyond the clearly trivial, the function we have written (at
the top-level, DPLL_UNIV) performs considerably better than the truth table implemen-
tation. For example, the generalisation of the following term, with 29 variables, takes
wrapper two and a half minutes to demonstrate as a tautology:

(s0_0 = (x_0 = ~y_0)) /\ (c0_1 = x_0 /\ y_0) /\
(s0_1 = ((x_1 = ~y_1) = ~c0_1)) /\
(c0_2 = x_1 /\ y_1 \/ (x_1 \/ y_1) /\ c0_1) /\
(s0_2 = ((x_2 = ~y_2) = ~c0_2)) /\
(c0_3 = x_2 /\ y_2 \/ (x_2 \/ y_2) /\ c0_2) /\
(s1_0 = ~(x_0 = ~y_0)) /\ (c1_1 = x_0 /\ y_0 \/ x_0 \/ y_0) /\
(s1_1 = ((x_1 = ~y_1) = ~c1_1)) /\
(c1_2 = x_1 /\ y_1 \/ (x_1 \/ y_1) /\ c1_1) /\
(s1_2 = ((x_2 = ~y_2) = ~c1_2)) /\
(c1_3 = x_2 /\ y_2 \/ (x_2 \/ y_2) /\ c1_2) /\
(c_3 = ~c_0 /\ c0_3 \/ c_0 /\ c1_3) /\
(s_0 = ~c_0 /\ s0_0 \/ c_0 /\ s1_0) /\
(s_1 = ~c_0 /\ s0_1 \/ c_0 /\ s1_1) /\
(s_2 = ~c_0 /\ s0_2 \/ c_0 /\ s1_2) /\ ~c_0 /\
(s2_0 = (x_0 = ~y_0)) /\ (c2_1 = x_0 /\ y_0) /\
(s2_1 = ((x_1 = ~y_1) = ~c2_1)) /\
(c2_2 = x_1 /\ y_1 \/ (x_1 \/ y_1) /\ c2_1) /\
(s2_2 = ((x_2 = ~y_2) = ~c2_2)) /\
(c2_3 = x_2 /\ y_2 \/ (x_2 \/ y_2) /\ c2_2) ==>
(c_3 = c2_3) /\ (s_0 = s2_0) /\ (s_1 = s2_1) /\ (s_2 = s2_2)

(if you want real speed, the built-in function tautLib.TAUT_PROVE does the above in
less than a second, by using an external tool to generate the proof of unsatisfiability,
and then translating that proof back into HOL).

9.3 Extending our Procedure’s Applicability

The function DPLL_UNIV requires its input to be universally quantified, with all free
variables bound, and for each literal to be a variable or the negation of a variable.
This makes DPLL_UNIV a little unfriendly when it comes to using it as part of the proof
of a goal. In this section, we will write one further “wrapper” layer to wrap around
DPLL_UNIV, producing a tool that can be applied to many more goals.

Relaxing the Quantification Requirement The first step is to allow formulas that are
not closed. In order to hand on a formula that is closed to DPLL_UNIV, we can simply
generalise over the formula’s free variables. If DPLL_UNIV then says that the new, ground
formula is true, then so too will be the original. On the other hand, if DPLL_UNIV says

9.3. EXTENDING OUR PROCEDURE’S APPLICABILITY 197

that the ground formula is false, then we can’t conclude anything further and will have
to raise an exception.

Code implementing this is shown below:

fun nonuniv_wrap t = let
val fvs = free_vars t
val gen_t = list_mk_forall(fvs, t)
val gen_t_eq = DPLL_UNIV gen_t

in
if rhs (concl gen_t_eq) = boolSyntax.T then let

val gen_th = EQT_ELIM gen_t_eq
in
EQT_INTRO (SPECL fvs gen_th)

end
else
raise mk_HOL_ERR "dpll" "nonuniv_wrap" "No conclusion"

end

Allowing Non-Literal Leaves We can do better than nonuniv_wrap: rather than quan-
tifying over just the free variables (which we have conveniently assumed will only be
boolean), we can turn any leaf part of the term that is not a variable or a negated vari-
able into a fresh variable. We first extract those boolean-valued leaves that are not the
constants true or false.

fun var_leaves acc t = let
val (l,r) = dest_conj t handle HOL_ERR _ =>

dest_disj t handle HOL_ERR _ =>
dest_imp t handle HOL_ERR _ =>
dest_bool_eq t

in
var_leaves (var_leaves acc l) r

end handle HOL_ERR _ =>
if type_of t <> bool then
raise mk_HOL_ERR "dpll" "var_leaves" "Term not boolean"

else if t = boolSyntax.T then acc
else if t = boolSyntax.F then acc
else HOLset.add(acc, t)

Note that we haven’t explicitly attempted to pull apart boolean negations (which one
might do with dest_neg). This is because dest_imp also destructs terms ~p, returning
p and F as the antecedent and conclusion. We have also used a function dest_bool_eq

designed to pull apart only those equalities which are over boolean values. Its definition
is

198 CHAPTER 9. PROOF TOOLS: PROPOSITIONAL LOGIC

fun dest_bool_eq t = let
val (l,r) = dest_eq t
val _ = type_of l = bool orelse

raise mk_HOL_ERR "dpll" "dest_bool_eq" "Eq not on bools"
in
(l,r)

end

Now we can finally write our final DPLL_TAUT function:

fun DPLL_TAUT tm =
let val (univs,tm’) = strip_forall tm

val insts = HOLset.listItems (var_leaves empty_tmset tm’)
val vars = map (fn t => genvar bool) insts
val theta = map2 (curry (op |->)) insts vars
val tm’’ = list_mk_forall (vars,subst theta tm’)

in
EQT_INTRO (GENL univs

(SPECL insts (EQT_ELIM (DPLL_UNIV tm’’))))
end

Note how this code first pulls off all external universal quantifications (with strip_forall),
and then re-generalises (with list_mk_forall). The calls to GENL and SPECL undo these
manipulations, but at the level of theorems. This produces a theorem equating the orig-
inal input to true. (If the input term is not an instance of a valid propositional formula,
the call to EQT_ELIM will raise an exception.)

Exercises

1. Extend the procedure so that it handles conditional expressions (both arms of the
terms must be of boolean type).

Chapter 10

Example: Abstract Data Types

This chapter consists of the specification of an abstract data type in the HOL-Omega logic,
as a worked example. The goals of this chapter are:

(i) To present how new term and type constants are introduced into the logic,

(ii) To show how abstract data types can be created and used to hide information,

(iii) To show how an abstract algebra can be realized in the HOL-Omega logic.

The notion of abstract data types comes from the field of software engineering, when
one is concerned with creating a model of a system that expresses just what is necessary,
nothing more. This brevity is intended to focus on just the essential aspects of the
system, without the encumberance of unnecessary detail. This is appropriate when
laying down requirements for what a system should do, or when drawing up an initial
design of a system. It is important to not over-specify the system, in order to allow the
eventual implementors of the design to experiment with different algorithms or data
structures in order to find the choices that work best. Those choices should be left until
later, when the implementor has had the time to consider alternative possibilities. The
initial design should decide only what it should do, not how it should do it. The specific
how should be hidden from the rest of the system that uses this part, as an irrelevant
detail, simplifying that portion’s construction.

Such information hiding is useful for both data structure design and for algorithm
design. In this chapter, we shall address just information hiding of data structures. We
would like to specify the essential contents of some data structure while leaving all
inessential details unspecified.

Then the construction of other parts of the system can begin, using the partially spec-
ified data structure, while simultaneously deeper work can commence on selecting the
exact best implementation of the data structure. This implementation can even be
changed completely while the rest of the system is half-done, without causing any rip-
ple effects on the rest of the project, so long as both sides conform to the original partial
specification of the data structure. This kind of modularity is absolutely essential for
good software engineering and the practical maintenance of large systems.

Abstract data types are crucially important in the modeling of abstract algebras. Here
we consider an algebra to be a collection of types and contants, where some of the types

199

200 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

are only named and given kinds, but not defined. Likewise, the constants may also have
types but lack definitions. Instead, along with the signature of the algebra is attached a
collection of properties (boolean expressions) that relate the different constants in the
algebra, and which serve as the axioms of that algebra.

Abstract algebras are very useful in the modeling of hardware and software designs,
where many of the details may be yet undefined, where we desire for the moment to
leave certain aspects unspecified and abstract. As an example of an abstract algebra,
consider the following signature:

type vect : ty
op VT : vect
op VF : vect
op VCONCAT : vect → vect → vect
axiom VCONCAT x (VCONCAT y z) = VCONCAT (VCONCAT x y) z

The above mentions one type, vect, two constant vectors, VT and VF, and one operator
for combining them, VCONCAT, with the proviso that VCONCAT is associative. This
specification has many models, for example it has as a model, non-empty bit strings.
But of all these models, there are some which are “best” in the sense that they are
initial. Initiality is a concept from category theory, defined as follows.

In the category of algebras, the arrows are homomorphisms from one algebra to an-
other. Another algebra of the same signature might look like

type vect’ : ty
op VT’ : vect’
op VF’ : vect’
op VCONCAT’ : vect’ → vect’ → vect’
axiom VCONCAT’ x (VCONCAT’ y z) = VCONCAT’ (VCONCAT’ x y) z

In the category of algebras of this signature, the arrow from the first algebra to this
other algebra is a homomorphism, that is, a function φ from vect to vect’ such that

φ VT = VT’
φ VF = VF’

φ (VCONCAT x y) = VCONCAT’ (φ x) (φ y)

In category theory, an object 0 is called initial if for every object A in the category,
there exists exactly one arrow from 0 to A.

It is a standard result of universal algebra1 that for each signature there is a uniquely
determined algebra which is initial, and which is therefore called the initial algebra.
The initial algebra is in some sense the “best” interpretation of the signature, as it

1George Gratzer. Universal Algebra. Van Nostrand, 1968.

10.1. NEW TERM AND TYPE CONSTANTS 201

incorporates the most information and detail; all other algebras of that signature are in
that sense inferior.

This means that it is would be highly valuable to be able to define a new type and
its constants by describing it as the initial algebra of its signature. And that is what we
will do in this chapter. But before we begin, we will first lay the necessary groundwork
by discussing the different foundational principles for introducing new type and term
constants into the HOL-Omega logic.

10.1 New term and type constants

One of the key features of the HOL-Omega logic is that it is extensible, that is, that new
constants can be created and added to the logic by the user. Both term constants and
type constants may be added. This is very important, as it is the primary way that users
create models of existing real-world applications within the logic: one creates new types
to represent the special kinds of data being manipulated by the application, and then
one creates new term constants, based on those new types, to represent the particular
operations and activities performed by the application.

HOL-Omega contains some very powerful, highly automated tools for easily defining
new types and new term constants, and these are the tools that are most often used to
build a model inside HOL-Omega. Despite their complexity and power, all of these tools
are eventually based on a small number of basic definitional principles in the core of
the logic. These principles give the primitive, essential tools for extending the logic by
adding new type and term names. The high-level tools just provide ways to leverage
these fundamental principles in a more automated and user-friendly way; they do not
add any real new power.

In the following, we will discuss these fundamental principles. The first three of these
are taken almost unchanged from HOL; the fourth is unique to HOL-Omega, and is the
key new feature supporting abstract data types and abstract algebras.

10.1.1 New term constant definition

New term constants may be introduced by the new term constant definition principle,
implemented as the ML function new definition:

new definition : (string * term) -> thm

Evaluating new definition("name", ‘‘c x1 . . . xn = t‘‘)

• where c is the name of the constant to be created,

• x1 . . . xn are zero or more distinct variables, as formal arguments to c,

202 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

• t is a term that may contain the x1 . . . xn, but has no other free term variables, and

• all the free type and kind variables of x1 . . . xn and t are also free type or kind
variables of the type of c,

defines c in the logic as a new constant with the value λx1 . . . xn. t. It also creates
and returns the theorem |- c x1 . . . xn = t, and in addition saves this theorem as a
definition in the current theory under the name name.

Note that new definition cannot be used to create a recursive function; t cannot
refer to the new c being created.

If the above side conditions are met, this is always a valid operation to do, as the new
name c is really just an abbreviation for a term that could already have been constructed
in the logic. In principle all instances of such new term constants could be replaced by
the terms that they abbreviate, so it is impossible to introduce unsoundness by this
definitional principle.

10.1.2 New term constant specification

New term constants may also be introduced by the new term constant specification prin-
ciple, implemented as the ML function new specification:

new specification : string * string list * thm -> thm

Evaluating new specification("name", ["c1",...,"cn"], |- ?x1 . . . xn.t)

• c1 . . . cn are the names of the n constants to be created, all distinct,

• x1 . . . xn are n distinct variables,

• t is a term that may contain the x1 . . . xn, but has no other free term variables, and

• all the free type and kind variables of x1 . . . xn and t are also free type or kind
variables of the type of each ci for 1 ≤ i ≤ n,

defines each ci in the logic as a new constant, for 1 ≤ i ≤ n, with some fixed values
such that

|- t[c1, . . . , cn/x1, . . . , xn].

It also returns the above theorem, and in addition saves it as a definition in the current
theory under the name name.

Note that new specification cannot be used to create recursive functions; t cannot
refer to the new ci being created.

Since the theorem |- ?x1 . . . xn.t is true, there exist values for the constants c1, . . . , cn
such that the definition theorem above is true. However, this is all that is known about

10.1. NEW TERM AND TYPE CONSTANTS 203

the new constants; in general we do not know their exact values, just that they together
satisfy the property t[c1, . . . , cn/x1, . . . , xn]. That is why this is called a specification rather
than a definition. Even if specific witnesses were used to prove |- ?x1 . . . xn.t originally,
the values of the new constants need not be the same as those witnesses. This means
that the values of the constants might not be defined entirely, but only in part, and this
partiality is quite useful in not over-specifying a design.

10.1.3 New type constant definition

New type constants, including new type operator constants, may be introduced by the
new type constant definition principle. The idea is that a new type may be defined as
being isomorphic to a non-empty subset of a pre-existing type. Say that σ is the existing
type, and that P is the non-empty subset of σ. Then the new type τ can be described as

'

&

$

%

'
&

$
%P

existing type σ

'
&

$
%τ

new type

-
bijection abs

�
bijection rep

Here abs and rep are functions which are bijections (one-to-one and onto) between the
subset P of the existing type σ and the newly created type τ . In HOL, this is the only
primitive means provided to create new types.

The new type constant definition principle is implemented as the ML function

new type definition : (string * thm) -> thm

If P is a term of type σ -> bool for some type σ, containing n distinct type variables
(of any kinds), then evaluating new type definition("name", |- ?x:σ. P x) results
in name being declared as a new n-ary type constant in the current theory. Note that σ
must have kind ty:r for some rank r. The n type arguments to name occur in the order
given by an alphabetic ordering of the names of the corresponding type variables. If the
type variables have kinds k1, . . . , kn, respectively, then the kind of the new type constant
name will be k1 => . . . => kn => ty:r. The theorem returned by new type definition

will be of the form |- ?rep:(’a,...,’n)name -> σ. TYPE DEFINITION P rep, and
this theorem will also be stored in the current theory under the automatically-generated
name name TY DEF. TYPE DEFINITION is a constant defined by:

|- TYPE_DEFINITION (P:’a->bool) (rep:’b->’a) =

(!x’ x’’. (rep x’ = rep x’’) ==> (x’ = x’’)) /\

(!x. P x = (?x’. x = rep x’))

204 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

Thus |- ?rep. TYPE DEFINITION P rep asserts that there is a bijection between the
newly defined type (’a,...,’n)name and the set of values of type σ that satisfy P .

The use of new type definition and the definition of new term constants involving
this type are more fully explained in DESCRIPTION.

10.1.4 New type constant specification

In HOL-Omega, new type constants may also be introduced by the new type constant
specification principle, where apart from any particular existing types, new types may be
introduced according to a general property that describes them. This definitional prin-
ciple is not present in HOL, and it is the sole new definitional principle in HOL-Omega.
This feature is the fundamental basis of abstract data types. As in the corresponding
definitional principle for specifying term constants, a theorem must be provided that
states that some types exist that satisfy the general property. This definitional principle
is implemented as the ML function new type specification:

new type specification : string * string list * thm -> thm

Evaluating new specification("name", ["t1",...,"tn"], |- ?:α1 . . . αn.q), where

• t1 . . . tn are the names of the n type constants to be created, all distinct,

• α1 . . . αn are n distinct type variables,

• q is a term of type bool that contains no free term variables,

• q may contain the α1 . . . αn, but has no other free type variables, and

• all the free kind variables of α1 . . . αn and q are also free kind variables of the type
of each ti for 1 ≤ i ≤ n,

defines each ti in the logic as a new type constant with the same kind as αi, for 1 ≤ i ≤ n,
with some fixed type values such that

|- q[t1, . . . , tn/α1, . . . , αn].

It also returns the above theorem, and in addition saves it as a definition in the current
theory under the automatically-generated name name TY SPEC.

We will see this definitional principle demonstrated in this chapter.

10.2. BIT VECTORS 205

10.2 Bit Vectors

The following example is taken from Tom Melham’s prescient 1994 paper, “The HOL
Logic Extended with Quantification over Type Variables.”

Consider the type of non-empty bit vectors. We can characterize these algebraically as
an HOL-Omega type vect, with two constants t and f and an associative binary operator
c which concatenates two bit vectors together.

In addition, we wish for the type of bit vectors to be “initial,” in the sense that an
initial algebra is initial in category theory. That is, we want the type we come up with
to be the “most general” or “best possible” type that satisfies what we ask, and nothing
we didn’t ask. Being initial means that for any other type that also exhibits the same
structure of having two constants and an associative binary operator, there must be one
and only one homomorphism from the bit vector type to the other type.

Such a homomorphism is a function φ that maintains the computational structure
of the bit vector type with its operators after mapping them into the other type. For
example, φmust map c to some binary operation c’ on the other type that is associative,
and also maintains the pattern of computation of c when mapped from the bit vector
type to the other type:

∀(x : vect)(y : vect). φ (c x y) = c’ (φ x) (φ y).

This means that we get the same answer if we first combine x and y using c and then
map the result using φ, or instead we first map x to φ x and y to φ y, and then combine
those values using c’; and this should work for any possible values of x and y.

To create this new type of bit vectors, our strategy will be to first prove the existance
of a type with the properties mentioned above, and then use the new type constant
specification principle described earlier to actually introduce the type as a new type
constant in the logic. So we need to prove the following theorem in HOL-Omega:

vect exists:

` ∃:α. 1

∃(t : α) (f : α) (c : α→ α→ α). 2

(∀x y z. c x (c y z) = c (c x y) z) ∧ 3

(∀:β. 4

∀(t’ : β) (f’ : β) (c’ : β → β → β). 5

(∀x y z. c’ x (c’ y z) = c’ (c’ x y) z) ⇒ 6

(∃!φ : α→ β. 7

(φ t = t’) ∧ (φ f = f’) ∧ 8

(∀(x : α)(y : α). φ (c x y) = c’ (φ x) (φ y)))) 9

In this theorem, α is a type variable which stands for what will be the new bit vector
type, and β is a type variable which stands for all “other” types that also exhibit the
same algebraic signature, as described above.

206 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

The theorem states that there exists a type α (see line 1) and also values t, f, and c

(see line 2) such that c is associative (line 3), and for all possible other types β (line 4)
and all possible values t’, f’, and c’ (line 5) such that c’ is associative (line 6), there
must be one and only one homomorphism φ of type α→ β (line 7) for which t maps to
t’, f maps to f’ (line 8), and c’ maintains the pattern of computation of c (line 9).

It is important to realize that the universal quantification of the type β on line 4 is
necessary. If this were left out, then β would be a free type variable of the theorem, and
this would violate a condition required by the new type constant specification principle.

If this requirement were not present, the principle would become unsound. For ex-
ample, consider a theorem of the form ` ∃:α.P where a type variable β different from α

appears free in P . This theorem implicitly considers the type variable β to be universally
quantified, so that is meaning is that for any type σ which could be substituted for β,
there exists a type α for which P [σ/β] is true. But there is no way for α to depend on β,
as these are two different type variables.

Take for example the theorem ` ∃:α. (∀(x:α)(y:α). x = y) = (∀(x:β)(y:β). x = y),
which can be proven in HOL-Omega by taking α = β. If we could use new type constant
specification with this theorem, then we could create a new type, say atype, with the
specification theorem ` (∀(x:atype)(y:atype). x = y) = (∀(x:β)(y:β). x = y). We can
then substitute in this theorem for β either the type unit or the type bool, and obtain

` (∀(x:atype)(y:atype). x = y) = (∀(x:unit)(y:unit). x = y) and
` (∀(x:atype)(y:atype). x = y) = (∀(x:bool)(y:bool). x = y),

from which follows ` (∀(x:unit)(y:unit). x = y) = (∀(x:bool)(y:bool). x = y). But the
type unit has exactly one element, whereas the type bool has two, so this simplifies to
` T = F, a false theorem.

So to use the theorem vect exists, the type variable β must be universally quantified.
If we can prove the theorem vect exists, we can then use the type and term constant

specification principles to establish the new type vect and associated constants VT, VF,
and VCONCAT such that

vect consts spec:

` (∀x y z. VCONCAT x (VCONCAT y z) = VCONCAT (VCONCAT x y) z) ∧ 1

(∀:β. 2

∀(t’ : β) (f’ : β) (c’ : β → β → β). 3

(∀x y z. c’ x (c’ y z) = c’ (c’ x y) z) ⇒ 4

(∃!φ : α→ β. 5

(φ VT = t’) ∧ (φ VF = f’) ∧ 6

(∀(x : α)(y : α). φ (VCONCAT x y) = c’ (φ x) (φ y)))) 7

To prove the theorem vect exists, we could first prove an instance of it for some
particular type substituted for α as a witness throughout the body of the theorem (lines
2-9), and then use the forward inference rule TY EXISTS to derive vect exists.

10.2. BIT VECTORS 207

In fact, we can go further, and first prove an instance for particular values substituted
for t, f, and c. This means that we would have to establish some new type, say “bits”,
and then create term constants t0:bits, f0:bits, and c0:bits → bits → bits in
the logic, for which we can prove the following theorem:

bits is initial:

(∀x y z. c0 x (c0 y z) = c0 (c0 x y) z) ∧ 1

(∀:β. 2

∀(t’ : β) (f’ : β) (c’ : β → β → β). 3

(∀x y z. c’ x (c’ y z) = c’ (c’ x y) z) ⇒ 4

(∃!φ : bits→ β. 5

(φ t0 = t’) ∧ (φ f0 = f’) ∧ 6

(∀(x : bits)(y : bits). φ (c0 x y) = c’ (φ x) (φ y)))) 7

So we need to establish some type bits such that the theorem bits is initial

is true. We can almost use lists of booleans (bool list) as this type; we could set
t0 = [T], f0 = [F], and c0 = APPEND. There’s just one problem; we are trying to
represent the type of non-empty bit vectors, and bool list includes the empty list [].

The answer is to create bits as a new type isomorphic to a subset of bool list, that
omits the element []. This can be done in HOL-Omega using the new type constant
definition principle described earlier.

10.2.1 Defining a new type

The first step in forming a subset type is to determine the subset predicate; in this
example, for a list of booleans l, we choose the predicate λl : bool list. l 6= [].

1- set_trace "Unicode" 0;
> val it = () : unit
- new_theory "bit_vector";
<<HOL message: Created theory "bit_vector">>
> val it = () : unit

- val P = ‘‘\l:bool list. ~(l = [])‘‘;
> val P =

‘‘\l. l <> []‘‘ :
term

We then need to prove that the predicate is inhabited, that there is at least one ele-
ment that satisfies the predicate.

208 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

2- val NOT_CONS_NIL = listTheory.NOT_CONS_NIL;
> val NOT_CONS_NIL =

|- !a1 a0. a0::a1 <> []
: thm

- val bits_inhab = TAC_PROOF(([],
‘‘?l. ^P l‘‘),
EXISTS_TAC ‘‘[T]‘‘
THEN BETA_TAC
THEN REWRITE_TAC[NOT_CONS_NIL]
);

> val bits_inhab =
|- ?l. (\l. l <> []) l
: thm

Using this theorem we can create the new type bits as that subset of bool list.

3- val bits_def = new_type_definition ("bits", bits_inhab);
> val bits_def =

|- ?rep. TYPE_DEFINITION (\l. l <> []) rep
: thm

10.2.2 Abstraction and representation bijections

The theorem we get from the call to new type definition is not very useful as is. The
first step is to define two new functions in the logic that map between the new type
and the subset of the original type. The new type is considered the “abstract” type, and
the prior type is considered the “representation” type. Therefore the two functions to
be defined are bits ABS : bool list -> bits and bits REP : bits -> bool list.
These functions are bijections between the old and new types.

4- val bits_bijs = define_new_type_bijections
{name="bits_bijs",
ABS ="bits_ABS",
REP ="bits_REP",
tyax=bits_def};

> val bits_bijs =
|- (!a. bits_ABS (bits_REP a) = a) /\

!r. (\l. l <> []) r <=> (bits_REP (bits_ABS r) = r)
: thm

To further assist the user, HOL provides four ML functions that take a bijections theo-
rem such as bits bijs, and automatically prove the one-to-one and onto properties of
both the abstraction and the representation bijections.

10.2. BIT VECTORS 209

5- val bits_REP_one_one = BETA_RULE (prove_rep_fn_one_one bits_bijs);
> val bits_REP_one_one =

|- !a a’. (bits_REP a = bits_REP a’) <=> (a = a’)
: thm

- val bits_REP_onto = BETA_RULE (prove_rep_fn_onto bits_bijs);
> val bits_REP_onto =

|- !r. r <> [] <=> ?a. r = bits_REP a
: thm

- val bits_ABS_one_one = BETA_RULE (prove_abs_fn_one_one bits_bijs);
> val bits_ABS_one_one =

|- !r r’.
r <> [] ==> r’ <> [] ==> ((bits_ABS r = bits_ABS r’) <=> (r = r’))

: thm

- val bits_ABS_onto = BETA_RULE (prove_abs_fn_onto bits_bijs);
> val bits_ABS_onto =

|- !a. ?r. (a = bits_ABS r) /\ r <> []
: thm

The bijection theorem itself can be broken into two useful theorems.

6- val (bits_ABS_REP,bits_EQ_REP_ABS) = CONJ_PAIR (BETA_RULE bits_bijs);
> val bits_ABS_REP =

|- !a. bits_ABS (bits_REP a) = a
: thm

val bits_EQ_REP_ABS =
|- !r. r <> [] <=> (bits_REP (bits_ABS r) = r)
: thm

The last theorem is actually more useful as an implication, instead of an equality,
especially when using the automatic simplification tactics, so we prove that version.

7- val bits_REP_ABS = store_thm(
"bits_REP_ABS",
‘‘!r. ~(r = []) ==> (bits_REP (bits_ABS r) = r)‘‘,
REWRITE_TAC [bits_EQ_REP_ABS]
);

> val bits_REP_ABS =
|- !r. r <> [] ==> (bits_REP (bits_ABS r) = r)
: thm

Finally, considering the one-to-one and onto properties of bits REP, every represent-
ing value that bits REP maps onto will satisfy the original subset predicate.

210 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

8- val bits_REP_NOT_NULL = store_thm(
"bits_REP_NOT_NULL",
‘‘!a. ~(bits_REP a = [])‘‘,
SIMP_TAC list_ss [bits_REP_onto,bits_REP_one_one]
);

> val bits_REP_NOT_NULL =
|- !a. bits_REP a <> [] : thm

10.2.3 Defining new term constants of the new type

Now we are ready to create the constants we need in the type bits. Each definition is
based on a value or function on bool lists, and makes use of the bits ABS and bits REP

bijections to move arguments and function results back and forth between the two types.

9- val t0_def = Define ‘t0 = bits_ABS [T]‘;
Definition has been stored under "t0_def"
> val t0_def = |- t0 = bits_ABS [T] : thm

- val f0_def = Define ‘f0 = bits_ABS [F]‘;
Definition has been stored under "f0_def"
> val f0_def = |- f0 = bits_ABS [F] : thm

- val c0_def = Define ‘c0 x y = bits_ABS (bits_REP x ++ bits_REP y)‘;
Definition has been stored under "c0_def"
> val c0_def =

|- !x y. c0 x y = bits_ABS (bits_REP x ++ bits_REP y)
: thm

Based on these definitions, we can now prove properties about these operators. The
associativity of c0 follows easily from the associativity of the append operation on lists.

10- val c0_assoc = store_thm(
"c0_assoc",
‘‘!x y z:bits. c0 x (c0 y z) = c0 (c0 x y) z‘‘,
SIMP_TAC list_ss [c0_def,bits_REP_ABS,bits_REP_NOT_NULL]
);

> val c0_assoc =
|- !x y z. c0 x (c0 y z) = c0 (c0 x y) z
: thm

10.2.4 Induction on the new type

That was fairly easy, but to prove more difficult theorems about the type bits we will
need to fashion more sophisticated proof machinery, such as an induction principle. The
induction principle states that for any property P:bits -> bool, the property will hold
of all values in the type bits if the property is true of both t0 and f0, and when the

10.2. BIT VECTORS 211

property is true of any two elements of bits, then it must be true of their concatenation
using c0.

First we prove a helpful lemma.

11- val bits_CONS_EQ_REP_ABS_APPEND = store_thm(
"bits_CONS_EQ_REP_ABS_APPEND",
‘‘!x y ys. x :: y :: ys =

bits_REP (bits_ABS [x]) ++ bits_REP (bits_ABS (y::ys))‘‘,
SIMP_TAC list_ss [bits_REP_ABS]
);

> val bits_CONS_EQ_REP_ABS_APPEND =
|- !x y ys.

x::y::ys = bits_REP (bits_ABS [x]) ++ bits_REP (bits_ABS (y::ys))
: thm

Now we can state and prove an induction principle for bits.

12- val bits_induct = store_thm(
"bits_induct",
‘‘!P:bits -> bool.

(P t0) /\
(P f0) /\
(!x y. P x /\ P y ==> P (c0 x y)) ==>
(!b. P b)‘‘,

REWRITE_TAC [t0_def,f0_def,c0_def]
THEN GEN_TAC THEN STRIP_TAC
THEN ONCE_REWRITE_TAC [GSYM bits_ABS_REP]
THEN GEN_TAC
THEN MP_TAC (SPEC ‘‘b:bits‘‘ bits_REP_NOT_NULL)
THEN SPEC_TAC (‘‘bits_REP b‘‘,‘‘l:bool list‘‘)
THEN measureInduct_on ‘LENGTH l‘
THEN Cases_on ‘l‘ (* two subgoals *)
THEN REWRITE_TAC[NOT_CONS_NIL] (* eliminates one subgoal *)
THEN Cases_on ‘t‘ (* two subgoals *)
THENL
[Cases_on ‘h‘ (* two subgoals *)
THEN ASM_REWRITE_TAC [],

REWRITE_TAC [bits_CONS_EQ_REP_ABS_APPEND]
THEN ASM_SIMP_TAC list_ss []

]
);

> val bits_induct =
|- !P. P t0 /\ P f0 /\ (!x y. P x /\ P y ==> P (c0 x y)) ==> !b. P b
: thm

212 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

10.2.5 Combinator for recursive functions

The next step is to define a combinator to simplify fashioning recursive functions on
bits. This is similar to the way that the combinator FOLDR can be used to fashion recur-
sive functions on lists without actually making any new recursive definitions. The new
combinator will be named “bits fold,” with type ’b -> ’b -> (’b -> ’b -> ’b) ->

bits -> ’b. The first three arguments will specify how the resulting function behaves
in the three cases where the fourth argument (of type bits) is of the form t0, f0, or
c0 a b for some a and b. If bits fold x y op is called on the argument t0, it should
return x; if it is called on the argument f0, it should return y; and if it is called on the
argument c0 a b, it should return op(bits fold x y op a)(bits fold x y op b).

We define this function bits fold using two auxilliary functions, bit fold1 on booleans
and bits fold1 on lists of booleans:

bit fold1 (x:’b) (y:’b) : bool -> ’b

bits fold1 (x:’b) (y:’b) op : bool list -> ’b

bits fold (x:’b) (y:’b) op : bits -> ’b

13- val bit_fold1_def = Define
‘(bit_fold1 x y T = x:’b) /\
(bit_fold1 x y F = y)‘;

Definition has been stored under "bit_fold1_def"
> val bit_fold1_def =

|- (!x y. bit_fold1 x y T = x) /\ !x y. bit_fold1 x y F = y
: thm

- val bits_fold1_def = Define
‘bits_fold1 (x:’b) (y:’b) (op:’b -> ’b -> ’b) (z :: zs) =

if zs = []
then bit_fold1 x y z
else op (bit_fold1 x y z) (bits_fold1 x y op zs)‘;

Definition has been stored under "bits_fold1_def"
> val bits_fold1_def =

|- !x y op z zs.
bits_fold1 x y op (z::zs) =
if zs = [] then
bit_fold1 x y z

else
op (bit_fold1 x y z) (bits_fold1 x y op zs)

: thm

- val bits_fold_def = Define
‘bits_fold (x:’b) y op z = bits_fold1 x y op (bits_REP z)‘;

Definition has been stored under "bits_fold_def"
> val bits_fold_def =

|- !x y op z. bits_fold x y op z = bits_fold1 x y op (bits_REP z)
: thm

10.2. BIT VECTORS 213

Notice that the function bits fold1 is actually undefined on empty boolean lists.
Now we need to prove that bits fold as defined yields the proper answers for each

of the three cases of its bits argument. The first two cases, on t0 and f0, are easy.

14- val bits_fold_scalars = store_thm(
"bits_fold_scalars",
‘‘!(x :’b) (y:’b) (op:’b -> ’b -> ’b).

(bits_fold x y op t0 = x) /\
(bits_fold x y op f0 = y)‘‘,

SIMP_TAC list_ss
[bits_fold_def,t0_def,f0_def,bits_REP_ABS,bits_fold1_def,bit_fold1_def]

);
> val bits_fold_scalars =

|- !x y op. (bits_fold x y op t0 = x) /\ (bits_fold x y op f0 = y)
: thm

The third case for bits fold, on c0 a b, is just the statement that bits fold x y op

is a homomorphism. Since bits fold is defined in terms of bits fold1, we will first
prove that bits fold1 x y op is a homomorphism.

For clarity, let’s abbreviate bits fold1 x y op by f . Then f : bool list -> ’b is a
homomorphism if and only if f(a ++ b) = op(f a)(f b) for all a, b that are non-empty
lists of booleans. This equation could be expressed in category theory notation as the
following commuting diagram:

list # list

list

’b # ’b

’b

-
f ## f

-
f

?

++

?

op

First, because we want to quantify over just those boolean lists that are non-empty,
we wish to use the restricted quantifier library, res quanLib. This allows us to say
“!(a:bool list) (b:bool list) :: (\v.~(v = [])). . . .” The idea is that the uni-
versally quantified variables, a and b, range not over all values of their type, but only
over the restricted subset that satisfies the predicate given after the double colon (::).

15- load "res_quanLib";
> val it = () : unit
- open res_quanLib;
> ...

Then the proof that bits fold1 is a homomorphism uses a simple induction on the
boolean list a, with case splits for the cases in the definition of bits fold1.

214 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

16- val bits_fold1_is_homo = store_thm(
"bits_fold1_is_homo",
‘‘!(x :’b) (y:’b) (op:’b -> ’b -> ’b).

(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
!(a:bool list) (b:bool list) :: (\v.~(v = [])).

bits_fold1 x y op (a ++ b) =
op (bits_fold1 x y op a) (bits_fold1 x y op b)‘‘,

REPEAT GEN_TAC
THEN DISCH_TAC
THEN SIMP_TAC (bool_ss ++ resq_SS) [pred_setTheory.IN_ABS]
THEN Induct (* two subgoals *)
THEN REWRITE_TAC [NOT_CONS_NIL] (* eliminates one subgoal *)
THEN REWRITE_TAC [listTheory.APPEND,bits_fold1_def]
THEN Cases_on ‘a‘ (* two subgoals *)
THEN ASM_SIMP_TAC list_ss []
);

> val bits_fold1_is_homo =
|- !x y op.

(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
!a b::(\v. v <> []).
bits_fold1 x y op (a ++ b) =
op (bits_fold1 x y op a) (bits_fold1 x y op b)

: thm

Given that bits fold1 is a homomorphism, it is easy to prove that bits fold is a
homomorphism as well.

For clarity, let’s abbreviate bits fold x y op by f . Then f : bits -> ’b is a homo-
morphism if and only if f(c0 a b) = op(f a)(f b) for all a, b in bits. This equation could
be expressed in category theory notation as the following commuting diagram:

bits # bits

bits

’b # ’b

’b

-
f ## f

-
f

?

c0

?

op

The proof is accomplished just by simplification, using the theorem bits fold1 is homo.

10.2. BIT VECTORS 215

17- val bits_fold_is_homo = store_thm(
"bits_fold_is_homo",
‘‘!(x :’b) (y:’b) (op:’b -> ’b -> ’b).

(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
!a b.

bits_fold x y op (c0 a b) =
op (bits_fold x y op a) (bits_fold x y op b)‘‘,

SIMP_TAC (list_ss ++ resq_SS)
[bits_fold_def,c0_def,bits_REP_ABS,bits_REP_NOT_NULL,
pred_setTheory.IN_ABS,bits_fold1_is_homo]

);
> val bits_fold_is_homo =

|- !x y op.
(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
!a b.
bits_fold x y op (c0 a b) =
op (bits_fold x y op a) (bits_fold x y op b)

: thm

This completes the proof that the recursive function formed by bits fold x y op has
the correct behavior on each of the three cases of how a value of the type bits was
formed, whether by t0, f0, or by c0 a b.

10.2.6 Proof of initiality

Now we can prove that bits with t0, f0, c0 is initial; that is, there is exactly one ho-
momorphism from bits to any other type ’b with t′:’b, f ′:’b, and c′:’b -> ’b -> ’b,
where c′ is associative.

bits is initial:

` ∀:β. ∀(t’ : β) (f’ : β) (c’ : β → β → β). 1

(∀x y z. c’ x (c’ y z) = c’ (c’ x y) z) ⇒ 2

(∃!φ : bits→ β. 3

(φ t0 = t’) ∧ (φ f0 = f’) ∧ 4

(∀(x : α)(y : α). φ (c0 x y) = c’ (φ x) (φ y))) 5

This proof is interesting, and we will trace it in some detail here. We begin by estab-
lishing the goal to be proved.

216 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

18- g ‘!:’b. !(x:’b) (y:’b) (op:’b -> ’b -> ’b).
(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
?!(fn:bits -> ’b).

(fn t0 = x) /\
(fn f0 = y) /\

(!a b. fn (c0 a b) = op (fn a) (fn b))‘;
> val it =

Proof manager status: 1 proof.
1. Incomplete goalstack:

Initial goal:

!:’b.
!x y op.
(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
?!fn.
(fn t0 = x) /\ (fn f0 = y) /\
!a b. fn (c0 a b) = op (fn a) (fn b)

: proofs

First we remove the universal quantifications and move the antecedent of the impli-
cation to the assumption list.

19- e (REPEAT STRIP_TAC);
OK..
1 subgoal:
> val it =

?!fn. (fn t0 = x) /\ (fn f0 = y) /\ !a b. fn (c0 a b) = op (fn a) (fn b)

!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3
: proof

Next we transform the unique existence quantification into a conjunction of two
clauses, one of which states the existence, and the other the uniqueness.

10.2. BIT VECTORS 217

20- e (SIMP_TAC bool_ss [EXISTS_UNIQUE_DEF]);
OK..
1 subgoal:
> val it =

(?fn.
(fn t0 = x) /\ (fn f0 = y) /\
!a b. fn (c0 a b) = op (fn a) (fn b)) /\

!x’ y’.
((x’ t0 = x) /\ (x’ f0 = y) /\
!a b. x’ (c0 a b) = op (x’ a) (x’ b)) /\ (y’ t0 = x) /\
(y’ f0 = y) /\ (!a b. y’ (c0 a b) = op (y’ a) (y’ b)) ==>
(x’ = y’)

!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3
: proof

Now we split this conjunction into two subgoals, and deferring uniqueness until later,
we begin to work on the first subgoal, the existence property.

21- e (CONJ_TAC);
OK..
2 subgoals:
> val it =

!x’ y’.
((x’ t0 = x) /\ (x’ f0 = y) /\
!a b. x’ (c0 a b) = op (x’ a) (x’ b)) /\ (y’ t0 = x) /\
(y’ f0 = y) /\ (!a b. y’ (c0 a b) = op (y’ a) (y’ b)) ==>
(x’ = y’)

!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3

?fn. (fn t0 = x) /\ (fn f0 = y) /\ !a b. fn (c0 a b) = op (fn a) (fn b)

!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3
: proof

Now is when we make use of our bits fold combinator to supply the right function
on bits, given the values x:’b, y:’b, and op:’b -> ’b -> ’b.

218 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

22- e (EXISTS_TAC ‘‘bits_fold (x:’b) y op‘‘);
OK..
1 subgoal:
> val it =

(bits_fold x y op t0 = x) /\ (bits_fold x y op f0 = y) /\
!a b.
bits_fold x y op (c0 a b) =
op (bits_fold x y op a) (bits_fold x y op b)

!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3
: proof

The clauses on t0 and f0 are easily solved using the theorem bits fold scalars.

23- e (REWRITE_TAC[bits_fold_scalars]);
OK..
1 subgoal:
> val it =

!a b.
bits_fold x y op (c0 a b) =
op (bits_fold x y op a) (bits_fold x y op b)

!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3
: proof

The rest of the goal is almost exactly an instance of bits fold is homo.

24- e (POP_ASSUM MP_TAC THEN REWRITE_TAC[bits_fold_is_homo]);
OK..

Goal proved.
[.]
|- !a b.

bits_fold x y op (c0 a b) =
op (bits_fold x y op a) (bits_fold x y op b)

Goal proved.
[.]
|- (bits_fold x y op t0 = x) /\ (bits_fold x y op f0 = y) /\

!a b.
bits_fold x y op (c0 a b) =
op (bits_fold x y op a) (bits_fold x y op b)

Goal proved.
[.]
|- ?fn.

(fn t0 = x) /\ (fn f0 = y) /\ !a b. fn (c0 a b) = op (fn a) (fn b)

10.2. BIT VECTORS 219

This completes the proof of the existence half of this theorem, and the HOL-Omega
goalstack returns us to the pending uniqueness goal.

25Remaining subgoals:
> val it =

!x’ y’.
((x’ t0 = x) /\ (x’ f0 = y) /\
!a b. x’ (c0 a b) = op (x’ a) (x’ b)) /\ (y’ t0 = x) /\
(y’ f0 = y) /\ (!a b. y’ (c0 a b) = op (y’ a) (y’ b)) ==>
(x’ = y’)

!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3
: proof

We can clean this up by renaming the two universally quantified functions x’ and y’

as the more descriptive f and g, respectively, when we remove the quantifications.

26- e (Q.X_GEN_TAC ‘f‘ THEN Q.X_GEN_TAC ‘g‘);
OK..
1 subgoal:
> val it =

((f t0 = x) /\ (f f0 = y) /\ !a b. f (c0 a b) = op (f a) (f b)) /\
(g t0 = x) /\ (g f0 = y) /\ (!a b. g (c0 a b) = op (g a) (g b)) ==>
(f = g)

!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3

: proof

The next step is to move the antecedent to the hypotheses, breaking up the conjunc-
tion into its clauses.

27- e (STRIP_TAC);
OK..
1 subgoal:
> val it =

f = g

0. !b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3
1. f t0 = x
2. f f0 = y
3. !a b. f (c0 a b) = op (f a) (f b)
4. g t0 = x
5. g f0 = y
6. !a b. g (c0 a b) = op (g a) (g b)

: proof

To prove two functions are equal, we use the principle of extensionality of functions
in the logic.

220 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

28- e (CONV_TAC FUN_EQ_CONV);
OK..
1 subgoal:
> val it =

!b. f b = g b

0. !b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3
1. f t0 = x
2. f f0 = y
3. !a b. f (c0 a b) = op (f a) (f b)
4. g t0 = x
5. g f0 = y
6. !a b. g (c0 a b) = op (g a) (g b)
: proof

This goal is a property of all values b of type bits. We can prove this using our
previously proven induction principle, bits induct. We will use higher order matching
to have the expression P b in the consequent of the induction principle be matched to
the full body of the current goal.

29- bits_induct;
> val it =

|- !P. P t0 /\ P f0 /\ (!x y. P x /\ P y ==> P (c0 x y)) ==> !b. P b
: thm

- e (HO_MATCH_MP_TAC bits_induct);
OK..
1 subgoal:
> val it =

(f t0 = g t0) /\ (f f0 = g f0) /\
!b b’. (f b = g b) /\ (f b’ = g b’) ==> (f (c0 b b’) = g (c0 b b’))

0. !b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3
1. f t0 = x
2. f f0 = y
3. !a b. f (c0 a b) = op (f a) (f b)
4. g t0 = x
5. g f0 = y
6. !a b. g (c0 a b) = op (g a) (g b)
: proof

That was exactly the induction we needed. Now the rest of this goal can be easily
solved by a single, simple step, moving all the antecedents to the assumptions, and then
rewriting the goal with all the assumptions.

10.2. BIT VECTORS 221

30- e (REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);
OK..

Goal proved.
[......]
|- (f t0 = g t0) /\ (f f0 = g f0) /\

!b b’. (f b = g b) /\ (f b’ = g b’) ==> (f (c0 b b’) = g (c0 b b’))

Goal proved.
[......] |- !b. f b = g b

Goal proved.
[......] |- f = g

Goal proved.
|- ((f t0 = x) /\ (f f0 = y) /\ !a b. f (c0 a b) = op (f a) (f b)) /\

(g t0 = x) /\ (g f0 = y) /\ (!a b. g (c0 a b) = op (g a) (g b)) ==>
(f = g)

Goal proved.
|- !x’ y’.

((x’ t0 = x) /\ (x’ f0 = y) /\
!a b. x’ (c0 a b) = op (x’ a) (x’ b)) /\ (y’ t0 = x) /\
(y’ f0 = y) /\ (!a b. y’ (c0 a b) = op (y’ a) (y’ b)) ==>
(x’ = y’)

Goal proved.
[.]
|- (?fn.

(fn t0 = x) /\ (fn f0 = y) /\
!a b. fn (c0 a b) = op (fn a) (fn b)) /\

!x’ y’.
((x’ t0 = x) /\ (x’ f0 = y) /\
!a b. x’ (c0 a b) = op (x’ a) (x’ b)) /\ (y’ t0 = x) /\
(y’ f0 = y) /\ (!a b. y’ (c0 a b) = op (y’ a) (y’ b)) ==>
(x’ = y’)

Goal proved.
[.]
|- ?!fn.

(fn t0 = x) /\ (fn f0 = y) /\ !a b. fn (c0 a b) = op (fn a) (fn b)
> val it =

Initial goal proved.
|- !:’b.

!x y op.
(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
?!fn.
(fn t0 = x) /\ (fn f0 = y) /\
!a b. fn (c0 a b) = op (fn a) (fn b)

: proof

222 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

We can package up this proof into a single tactic in the following proof script.

31- val bits_is_initial = store_thm(
"bits_is_initial",
‘‘!:’b. !(x:’b) (y:’b) (op:’b -> ’b -> ’b).

(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
?!(fn:bits -> ’b).

(fn t0 = x) /\
(fn f0 = y) /\

(!a b. fn (c0 a b) = op (fn a) (fn b))‘‘,
REPEAT STRIP_TAC
THEN SIMP_TAC bool_ss [EXISTS_UNIQUE_DEF]
THEN CONJ_TAC
THENL
[EXISTS_TAC ‘‘bits_fold (x:’b) y op‘‘
THEN REWRITE_TAC[bits_fold_scalars]
THEN POP_ASSUM MP_TAC
THEN REWRITE_TAC[bits_fold_is_homo],

Q.X_GEN_TAC ‘f‘
THEN Q.X_GEN_TAC ‘g‘
THEN STRIP_TAC
THEN CONV_TAC FUN_EQ_CONV
THEN HO_MATCH_MP_TAC bits_induct (* induct on b *)
THEN REPEAT STRIP_TAC (* 3 subgoals *)
THEN ASM_REWRITE_TAC []

]
);

> val bits_is_initial =
|- !:’b.

!x y op.
(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
?!fn.
(fn t0 = x) /\ (fn f0 = y) /\
!a b. fn (c0 a b) = op (fn a) (fn b)

: thm

10.2.7 Existence and creation of bit vector type

Now that we’ve proven bits is initial, it follows immediately that there exists some
type ’a with t:’a, f:’a, and c:’a -> ’a -> ’a, with c associative, where the type and
operators are initial.

10.2. BIT VECTORS 223

32- val vect_exists = store_thm(
"vect_exists",
‘‘?:’a.

?(t:’a) (f:’a) (c:’a -> ’a -> ’a).
(!a1 a2 a3. c a1 (c a2 a3) = c (c a1 a2) a3) /\
(!:’b.

!(x:’b) (y:’b) (op:’b -> ’b -> ’b).
(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
?!fn:’a -> ’b. (fn t = x) /\

(fn f = y) /\
(!a1 a2. fn (c a1 a2) = op (fn a1) (fn a2)))‘‘,

TY_EXISTS_TAC ‘‘:bits‘‘
THEN EXISTS_TAC ‘‘t0‘‘
THEN EXISTS_TAC ‘‘f0‘‘
THEN EXISTS_TAC ‘‘c0‘‘
THEN REWRITE_TAC [c0_assoc,bits_is_initial]
);

> val vect_exists =
|- ?:’a.

?t f c.
(!a1 a2 a3. c a1 (c a2 a3) = c (c a1 a2) a3) /\
!:’b.
!x y op.
(!b1 b2 b3. op b1 (op b2 b3) = op (op b1 b2) b3) ==>
?!fn.
(fn t = x) /\ (fn f = y) /\
!a1 a2. fn (c a1 a2) = op (fn a1) (fn a2)

: thm

This achieves our goal of proving vect exists. Now we can use this theorem with the
type specification principle, as previously described, to actually introduce a new type
name into the HOL-Omega logic, about which the only things known are associativity
and initiality. We turn on the display of types to highlight the presence of the new type.

33- show_types := true;
> val it = () : unit

- val vect_TY_SPEC = new_type_specification("vect",["vect"],vect_exists);
> val vect_TY_SPEC =

|- ?(t :vect) (f :vect) (c :vect -> vect -> vect).
(!(a1 :vect) (a2 :vect) (a3 :vect).

c a1 (c a2 a3) = c (c a1 a2) a3) /\
!:’b.
!(x :’b) (y :’b) (op :’b -> ’b -> ’b).
(!(b1 :’b) (b2 :’b) (b3 :’b).

op b1 (op b2 b3) = op (op b1 b2) b3) ==>
?!(fn :vect -> ’b).
(fn t = x) /\ (fn f = y) /\
!(a1 :vect) (a2 :vect). fn (c a1 a2) = op (fn a1) (fn a2)

: thm

224 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

10.2.8 Creation of bit vector constants

Now that we have the theorem vect TY SPEC which states the existence of values t, f,
and c, we can use the definitional principle for term constant specification to introduce
actual term constants of the new type into the logic.

34- val vect_consts_spec =
new_specification ("vect_consts_spec",

["VT", "VF", "VCONCAT"],
vect_TY_SPEC);

> val vect_consts_spec =
|- (!(a1 :vect) (a2 :vect) (a3 :vect).

VCONCAT a1 (VCONCAT a2 a3) = VCONCAT (VCONCAT a1 a2) a3) /\
!:’b.
!(x :’b) (y :’b) (op :’b -> ’b -> ’b).
(!(b1 :’b) (b2 :’b) (b3 :’b).

op b1 (op b2 b3) = op (op b1 b2) b3) ==>
?!(fn :vect -> ’b).
(fn VT = x) /\ (fn VF = y) /\
!(a1 :vect) (a2 :vect). fn (VCONCAT a1 a2) = op (fn a1) (fn a2)

: thm

- type_of ‘‘VT‘‘;
> val it = ‘‘:vect‘‘ : hol_type
- type_of ‘‘VF‘‘;
> val it = ‘‘:vect‘‘ : hol_type
- type_of ‘‘VCONCAT‘‘;
> val it =

‘‘:vect -> vect -> vect‘‘
: hol_type

For convenience, we can split the term constants property into its conjuncts.

35- val (VCONCAT_ASSOC, vect_is_initial) = CONJ_PAIR vect_consts_spec;
> val VCONCAT_ASSOC =

|- !(a1 :vect) (a2 :vect) (a3 :vect).
VCONCAT a1 (VCONCAT a2 a3) = VCONCAT (VCONCAT a1 a2) a3

: thm
val vect_is_initial =
|- !:’b.

!(x :’b) (y :’b) (op :’b -> ’b -> ’b).
(!(b1 :’b) (b2 :’b) (b3 :’b).

op b1 (op b2 b3) = op (op b1 b2) b3) ==>
?!(fn :vect -> ’b).
(fn VT = x) /\ (fn VF = y) /\
!(a1 :vect) (a2 :vect). fn (VCONCAT a1 a2) = op (fn a1) (fn a2)

: thm

10.2. BIT VECTORS 225

10.2.9 Bit vectors as an abstract data type

The key thing here is that these two properties, VCONCAT ASSOC and vect is initial,
are literally all that is known about values of type vect. For the type bits that we
created earlier, if we wanted to, we could reach back into the representation type of
bits to derive new properties about bits itself. In contrast to this, no such underlying
structure is available for vect. In particular, there is no theorem relating values of vect
and bits, as there were relating values of bits and bool list. While the bits type
was necessary to demonstrate the existence of vect, that does not mean that vect has
all the properties of bits, but only those properties we designed vect to have. In this
case, since initiality is such a powerful property, many of the properties of bits could
now be derived for vect, but this approach allows us to limit the provable properties of
the specified type to the particular subset we choose. We have truly achieved here an
abstract data type, having just the properties we wished, and nothing more.

226 CHAPTER 10. EXAMPLE: ABSTRACT DATA TYPES

Chapter 11

Example: The Category of Types

This chapter exhibits the new features of HOL-Omega in an example of real use. It
reveals some of the potential and power provided, and what new logical developments
are possible beyond those of HOL. This chapter studies a simplified version of category
theory, modeled as a shallow embedding in the HOL-Omega logic, as a worked example.
The goals of this chapter are:

(i) To demonstrate the flexibility and consistency of the new logic’s type system
because of the kind system,

(ii) To show type abbreviations and term definitions involving the new forms, and

(iii) To show proofs of propositions involving the new forms, using both new tactics
and variations of old ones.

Category theory is a fascinating and deep mathematical theory that has great general-
ity and applicability to many fields of mathematics. It is very simple in its foundations,
and yet has surprisingly profound results that are widely adaptable in different contexts.

For beginners in category theory, a good book is Basic Category Theory for Computer
Scientists, by Benjamin C. Pierce, MIT Press, 1991.

11.1 Categories

A category consists of objects and arrows, where each arrow points from a source object
to a target object. We can represent that an arrow f points from object a to object b by
the notation f : a → b. Sometimes we will write the name of the arrow above it, as
in a

f→ b. The category must contain, for each object a, a corresponding identity arrow
ida : a → a, pointing from the object to itself. Also, for each pair of arrows f : a → b

and g : b → c, where the target of the first arrow is the source of the second, there
must exist an arrow which is the composition of f and g, written g ◦ f . In addition, the
composition operation must satisfy the following two laws:

1. (identity) f ◦ ida = f and idb ◦ f = f for all f : a→ b,

2. (associativity) h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f : a→ b, g : b→ c, and h : c→ d.

227

228 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

In this chapter, we shall examine one particular category, which we call Type. In Type,
the objects are the types of the HOL-Omega logic that have kind ty:0, and the arrows are
the term functions in the logic between such types. Then the identity arrow for a type
α is the identity function I : α -> α, defined as I = \x:α.x. The composition of two
arrows is simply functional composition. For functions f : α -> β and g : β -> γ,
their composition is defined in HOL-Omega as g o f = \x. g (f x), where o is an infix
binary operator. With these definitions, it is easy to see that the above laws hold.

In any category, when two arrows are composed, one must check that the target of
one arrow is the source of the other. In the category Type, this customary check is
performed fully automatically as part of the type-checking of the logic. Thus this check
is discharged immediately, simply due to the fact that the HOL-Omega logic is strongly
typed. This is very convenient, as the user never needs to worry about performing this
check themselves; it is all handled silently by the type-checker.

11.2 Functors

Along with natural transformations, functors are one of the major ideas of category
theory. A functor is a pair of two maps, one from objects to objects, and one from
arrows to arrows, that satisfy certain properties.

For our purposes we focus on just functors from the category Type to itself. These
functors have a map from types to types, and a map from functions to functions. The
first map we express as a type operator in the HOL-Omega logic, of kind ty:0 ⇒ ty:0. The
second map we express as a higher-order function in the logic which takes a function
as an argument and returns a function as its result. If the object map is a type operator
′F : ty:0 ⇒ ty:0, then the arrow map is a term function of the type ′F functor, where
functor is the type abbreviation

functor = λ′F. ∀α β. (α→ β) → (α ′F → β ′F).

A type abbreviation does not actually introduce a new type constant into the logic, but it
provides a name that can be expanded by the type parser, to allow inputs that are more
pleasant and readable. The same type abbreviation is also used when printing types,
shrinking the output to make the printed versions of types more readable as well. Such
a type abbreviation is introduced by the ML function type abbrev.

1- val _ = new_theory "functor";
<<HOL message: Created theory "functor">>
- set_trace "Unicode" 0;
> val it = () : unit

- type_abbrev ("functor",
‘‘: \’F. !’a ’b. (’a -> ’b) -> (’a ’F -> ’b ’F)‘‘);

> val it = () : unit

11.2. FUNCTORS 229

We can see how types are condensed by using this type abbreviation.

2- ‘‘:!’a ’b. (’a -> ’b) -> (’a list -> ’b list)‘‘;
> val it = ‘‘:list functor‘‘ : hol_type
- ‘‘:!’a ’b. (’a -> ’b) -> ((’a -> ’a) -> (’b -> ’b))‘‘;
> val it = ‘‘:(\’b. ’b -> ’b) functor‘‘ : hol_type

The type abbreviations that are presently defined may be displayed by printing the
current type grammar. After the grammar rules is a list of the current type abbreviations.

3- type_grammar();
> val it =

Rules:
(20) TY ::= "!" <..binders..> "." TY | "?" <..binders..> "." TY |

"\" <..binders..> "." TY
(50) TY ::= TY o TY [comp] | TY -> TY [fun] (R-associative)
(60) TY ::= TY + TY [sum] (R-associative)
(70) TY ::= TY # TY [prod] (R-associative)
(80) TY ::= TY TY (type application)
(90) TY ::= TY : KIND | TY :<= RANK (kind or rank cast of type)
(100) TY ::= functor | TY list | TY set | TY recspace |

num | (TY, TY)prod | TY option | unit | one |
(TY, TY)sum | label | (’k => TY)itself |
(’k => TY)kind_itself | comp | W | C | B | A |
S | K | I | (TY, TY)fun | ind | bool

TY ::= TY[TY] (array type)
Type abbreviations:
A = \’f :’k => ’l. ’f (not printed)
B = \’f :’l => ’m ’g :’k => ’l ’a :’k. ’a ’g ’f (not printed)
C = \’f :’l => ’k => ’m ’a :’k ’b :’l. (’b, ’a) ’f (not printed)
I = \’a :’k. ’a
K = \’a :’k ’b :’l. ’a (not printed)
S =
\’a :’k => ’l => ’m ’b :’k => ’l ’c :’k. (’c, ’c ’b) ’a
(not printed)

W = \’f :’k => ’k => ’l ’a :’k. (’a, ’a) ’f (not printed)
comp = \’g :’l => ’m ’f :’k => ’l ’a :’k. ’a ’f ’g
functor = \’F :ty => ty. !’a ’b. (’a -> ’b) -> ’a ’F -> ’b ’F
’a set = ’a -> bool (not printed)
unit = one : grammar

The list of type abbreviations includes the functor abbreviation that was just defined,
but also a number of other useful abbreviations, including type operator versions of the
combinators A, B, C, I, K, S, and W (not to be confused with the term versions of these
combinators). Of particular value are the abbreviations for the identity type operator
I = \(’a:’k).’a and the constant type operator K = \(’a:’k)(’b:’l).’a. Also, for
composing two type operators, there is an infix type abbreviation o, which is defined as
a postfix binary type operator comp, but whenever possible prints as the infix o.

230 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

4- ‘‘:comp‘‘;
> val it = ‘‘:\’g :ty => ty ’f :ty => ty ’a. ’a ’f ’g‘‘ : hol_type
- ‘‘:(’a,’b)comp‘‘;
> val it = ‘‘:(’a :ty => ty) o (’b :ty => ty)‘‘ : hol_type

Given the type abbreviation functor, we can now define the functor predicate in the
logic, which decides if a given function F is in fact a functor by testing whether it satis-
fies two conditions. A functor maps identity arrows to identity arrows, and it maps the
composition of two arrows to the composition of the maps of each arrow individually.

functor (F : ′F functor) =
(∀:α. F (I : α→ α) = I) ∧ Identity
(∀:α β γ. ∀(f : α→ β)(g : β → γ). F (g ◦ f) = F g ◦ F f) Composition

5- val functor_def = new_definition("functor_def", Term
‘functor (F’: ’F functor) =

(* Identity *)
(!:’a. F’ (I:’a->’a) = I) /\

(* Composition *)
(!:’a ’b ’c. !(f:’a -> ’b) (g:’b -> ’c).

F’ (g o f) = F’ g o F’ f)
‘);

> val functor_def =
|- !F’.

functor F’ <=>
(!:’a. F’ I = I) /\ !:’a ’b ’c. !f g. F’ (g o f) = F’ g o F’ f

: thm

By the way, in this definition we use the variable name F’ for the functor because the
name F is already reserved for the truth value false.

By default, the types involved in the definition are not printed, including the type
arguments in type application terms. Turning on the printing of types shows the full
structure of the definition, including type arguments which were not originally present
in the user’s input but inferred and inserted during type-checking.

6- show_types := true;
> val it = () : unit

- functor_def;
> val it =

|- !(F’ :(’F :ty => ty) functor).
functor F’ <=>
(!:’a. F’ [:’a, ’a:] (I :’a -> ’a) = (I :’a ’F -> ’a ’F)) /\
!:’a ’b ’c.
!(f :’a -> ’b) (g :’b -> ’c).
F’ [:’a, ’c:] (g o f) = F’ [:’b, ’c:] g o F’ [:’a, ’b:] f

: thm

11.2. FUNCTORS 231

The last line of the definition shows three different type instantiations of the variable
F’, all within the same expression. This would have been impossible in HOL, as there a
variable can only have one type within a single expression. The use of universal types in
the type of F’ permit one to “manually” specify the particular type instantiation needed
for each occurrence of F’. This is in contrast to the “automatic” instantiations of term
constants for different types within the same expression that have long been a standard
part of higher order logic. Despite having these two different means for forming type
instances of terms within the same logic, everything works cleanly, without confusion.

In the following, these type application arguments will normally be omitted for clarity.

11.2.1 Examples of functors

11.2.1.1 Identity functor

The identity function in HOL is the constant I, defined as I = \x:’a.x. When wrapped
by two type abstractions as \:’a ’b. I: (’a -> ’b) -> (’a -> ’b), it becomes a
functor of type I functor. This is the identity functor, which maps each object to itself,
and each arrow to itself. We can prove that this is a functor, using the simplification set
for combinators to help simplify expressions with I and o.

7- show_types := false;
> val it = () : unit

- open combinTheory combinSimps;
> . . .

- val combin_ss = bool_ss ++ COMBIN_ss;
> val combin_ss = . . .

- val identity_functor = store_thm
("identity_functor",
‘‘functor ((\:’a ’b. I) : I functor)‘‘,
SIMP_TAC combin_ss [functor_def]
);

> val identity_functor = |- functor (\:’a ’b. I) : thm

11.2.1.2 Constant functor

One of the combinators in HOL is the constant K, defined as K = \(x:’a)(y:’b).x. Sim-
ilarly, the type abbreviation K is defined as \(’a:’k)(’b:’l).’a. Then \:’b ’c. K I

: (’b -> ’c) -> (’a -> ’a) is a functor of type (’a K) functor. This constant functor
maps every object to a particular object ’a, and every arrow to the identity arrow on ’a.

232 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

8- val constant_functor = store_thm
("constant_functor",
‘‘!:’a. functor ((\:’b ’c. K I) : (’a K) functor)‘‘,
SIMP_TAC combin_ss [functor_def]
);

> val constant_functor =
|- !:’a. functor (\:’b ’c. K I) : thm

11.2.1.3 List map functor

In HOL, the map function on lists is defined as

9- listTheory.MAP;
> val it =

|- (!f. MAP f [] = []) /\ !f h t. MAP f (h::t) = f h::MAP f t
: thm

- type_of ‘‘MAP‘‘;
<<HOL message: inventing new type variable names: ’a, ’b>>
> val it =

‘‘:(’a -> ’b) -> ’a list -> ’b list‘‘
: hol_type

When wrapped with two type abstractions as \:’a ’b. MAP, it becomes a functor of type
list functor. This functor maps each object ’a to ’a list, and each arow f : ’a -> ’b

to the arrow MAP f : ’a list -> ’b list. To prove this is a functor, we bring in two
preproven theorems about MAP from other parts of HOL-Omega.

10- load "quotientLib";
> val it = () : unit
- val MAP_I = quotient_listTheory.LIST_MAP_I;
> val MAP_I = |- MAP I = I : thm
- val MAP_o = rich_listTheory.MAP_o;
> val MAP_o =

|- !f g. MAP (f o g) = MAP f o MAP g
: thm

- val map_functor = store_thm
("map_functor",
‘‘functor ((\:’a ’b. MAP) : list functor)‘‘,
SIMP_TAC bool_ss [functor_def,MAP_I,MAP_o]
);

> val map_functor = |- functor (\:’a ’b. MAP) : thm

11.2.1.4 Diagonal functor

In HOL, two types ’a and ’b may be combined into a pair type using the infix binary
type operator #, as ’a # ’b. Values of this type are written as (x:’a, y:’b). Then

11.2. FUNCTORS 233

two functions f :’a -> ’c and g :’b -> ’d may be combined using the infix binary
operator ## as (f ## g) : ’a # ’b -> ’c # ’d. The operator ## is defined as

11- pairTheory.PAIR_MAP_THM;
> val it =

|- !f g x y. (f ## g) (x,y) = (f x,g y)
: thm

The diagonal functor maps objects ’a to pair types ’a # ’a, and arrows f :’a -> ’b

to arrows (f ## f) :’a # ’a -> ’b # ’b.

12- load "quotient_pairTheory";
> val it = () : unit
- val PAIR_I = quotient_pairTheory.PAIR_MAP_I;
> val PAIR_I = |- I ## I = I : thm
- val PAIR_o = quotient_pairTheory.PAIR_MAP_o;
> val PAIR_o =

|- !f1 g1 f2 g2. g1 o f1 ## g2 o f2 = (g1 ## g2) o (f1 ## f2)
: thm

- val diagonal_functor = store_thm
("diagonal_functor",
‘‘functor ((\:’b ’c. \f. f ## f) : (\’a. ’a # ’a) functor)‘‘,
SIMP_TAC bool_ss [functor_def,PAIR_I,PAIR_o]
);

> val diagonal_functor =
|- functor (\:’b ’c. (\f. f ## f))
: thm

11.2.1.5 Power set functor

The HOL-Omega type function λα. α→ bool takes a type ’a to the type ’a -> bool, the
type of predicates on the type ’a. Since a predicate is the same as a subset of the values
of the type, this type is the same as the type of sets of elements from the type ’a. Each
of these sets is a subset of the complete set of values of the type ’a, so this type function
λα. α→ bool is actually the power set operation on types.

In HOL, the image function on sets is defined as

13- pred_setTheory.IMAGE_DEF;
> val it =

|- !(f :’a -> ’b) (s :’a -> bool). IMAGE f s = {f x | x IN s}
: thm

- type_of ‘‘IMAGE‘‘;
<<HOL message: inventing new type variable names: ’a, ’b>>
> val it =

‘‘:(’a -> ’b) -> (’a -> bool) -> ’b -> bool‘‘
: hol_type

234 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

When wrapped with two type abstractions as \:’a ’b. IMAGE, it becomes a functor of
type (λα. α→ bool) functor. This functor maps each object ’a to ’a -> bool, and each
arrow f : ’a -> ’b to the arrow IMAGE f : (’a -> bool) -> (’b -> bool).

To prove this is a functor, we first prove some theorems about IMAGE applied to iden-
tity arrows and composition, making use of preproven theorems in the theory pred set.

14- val I_EQ = store_thm
("I_EQ",
‘‘I = \x:’a. x‘‘,
SIMP_TAC combin_ss [FUN_EQ_THM]
);

> val I_EQ = |- I = (\x. x) : thm

- pred_setTheory.IMAGE_ID;
> val it =

|- !s. IMAGE (\x. x) s = s
: thm

- val IMAGE_I = store_thm
("IMAGE_I",
‘‘IMAGE (I:’a -> ’a) = I‘‘,
SIMP_TAC combin_ss [FUN_EQ_THM,I_EQ,pred_setTheory.IMAGE_ID]
);

> val IMAGE_I = |- IMAGE I = I : thm

- pred_setTheory.IMAGE_COMPOSE;
> val it =

|- !f g s. IMAGE (f o g) s = IMAGE f (IMAGE g s)
: thm

- val IMAGE_o = store_thm
("IMAGE_o",
‘‘!(f :’a -> ’b) (g :’b -> ’c).

IMAGE (g o f) = IMAGE g o IMAGE f‘‘,
SIMP_TAC combin_ss [FUN_EQ_THM,pred_setTheory.IMAGE_COMPOSE]
);

> val IMAGE_o =
|- !f g. IMAGE (g o f) = IMAGE g o IMAGE f
: thm

Now we can prove that \:’a ’b.IMAGE is a functor of type (\’a.’a -> bool)functor.

15- val powerset_functor = store_thm
("powerset_functor",
‘‘functor ((\:’a ’b. IMAGE) : (\’a. ’a -> bool) functor)‘‘,
SIMP_TAC bool_ss [functor_def,IMAGE_I,IMAGE_o]
);

> val powerset_functor =
|- functor (\:’a ’b. IMAGE) :

thm

11.2. FUNCTORS 235

11.2.1.6 List of lists map functor

We earlier saw how the MAP function is made into a functor. Similarly, we can compose
the MAP function with itself, to create a function that maps a function across a list of
lists. The term MAP o MAP has type (’a -> ’b) -> ’a list list -> ’b list list,
so the term \:’a ’b. MAP o MAP has type !’a ’b. (’a -> ’b) -> ’a list list ->

’b list list, which is the same as the type (list o list) functor. Notice how
neatly the composition of the MAP function with itself matches the composition of the
type operator list with itself in the type of the functor \:’a ’b. MAP o MAP. In fact,
this is an example of a more general principle, which we shall explore next.

11.2.2 Composition of functors

Inspired by the above, we can prove that for any two functors F’ and G, the functional
composition of the arrow maps of the two functors may itself be made into a functor.

16- show_types := true;
> val it = () : unit

- val functor_o = store_thm
("functor_o",
‘‘!(F’: ’F functor) (G: ’G functor).

functor F’ /\ functor G ==>
functor (\:’a ’b. G o F’)‘‘,

SIMP_TAC combin_ss [functor_def]
);

> val functor_o =
|- !(F’ :(’F :ty => ty) functor) (G :(’G :ty => ty) functor).

functor F’ /\ functor G ==>
(functor

(\:’a ’b.
((G [:’a ’F, ’b ’F:] o F’ [:’a, ’b:])

:(’a -> ’b) -> ’a ’F ’G -> ’b ’F ’G)) :bool)
: thm

Note that here the two functors have type arguments applied to each, helpfully inserted
by the parser, so as to transform the functors from values of universal type to values of
functional type. Then they can be composed using the normal functional composition
operator o, with the result then being wrapped up inside the type abstractions \:’a ’b

to make a functor. This approach is entirely valid, and yet there is a simpler approach,
where we define the composition of two functors directly.

Given two functors F and G, the composition of the two functors is defined as a new
functor, whose map on objects is the composition of the object maps of the two functors,
and whose map on arrows is the composition of the two arrow maps of the two functors.
This can be easily defined in HOL-Omegaas follows.

236 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

17- val oo_def = Define
‘$oo (G: ’G functor) (F’: ’F functor) = \:’a ’b. G o F’ [:’a,’b:]‘;

Definition has been stored under "oo_def"
> val oo_def =

|- !(G :(’G :ty => ty) functor) (F’ :(’F :ty => ty) functor).
oo G F’ = (\:’a ’b. G [:’a ’F, ’b ’F:] o F’ [:’a, ’b:])

: thm

Again, the parser has helpfully inserted the needed type arguments. We can improve
the presentation of this functor composition operation by making oo an infix operator,
and by overloading the infix o operator to refer to oo:

18- add_infix("oo", 800, HOLgrammars.RIGHT);
> val it = () : unit
- overload_on ("o", ‘‘$oo : ’G functor -> ’F functor -> (’G o ’F) functor‘‘);
> val it = () : unit

Now the definition of function composition will display using the infix o operator.

19- oo_def;
> val it =

|- !(G :(’G :ty => ty) functor) (F’ :(’F :ty => ty) functor).
((G o F’) :(’G o ’F) functor) =
(\:’a ’b.

((G [:’a ’F, ’b ’F:] o F’ [:’a, ’b:])
:(’a -> ’b) -> ’a ’F ’G -> ’b ’F ’G))

: thm

This shows that the value returned by G o F’ has a functor type. Nevertheless, to
prove that this value truly is a functor, we must prove that it satisfies the conditions of
the functor predicate.

20- val functor_oo = store_thm
("functor_oo",
‘‘!(F’: ’F functor) (G: ’G functor).

functor F’ /\ functor G ==>
functor (G o F’)‘‘,

SIMP_TAC combin_ss [functor_def,oo_def]
);

> val functor_oo =
|- !(F’ :(’F :ty => ty) functor) (G :(’G :ty => ty) functor).

functor F’ /\ functor G ==>
(functor ((G o F’) :(’G o ’F) functor) :bool)

: thm

We can immediately derive that (\:’a ’b. MAP) o (\:’a ’b. MAP) is a functor, as
a simple corollary of this theorem.

11.2. FUNCTORS 237

21- show_types := false;
> val it = () : unit

- val map_oo_map_functor = save_thm
("map_oo_map_functor",
MATCH_MP functor_oo (CONJ map_functor map_functor)
);

> val map_oo_map_functor =
|- functor ((\:’a ’b. MAP) o (\:’a ’b. MAP))
: thm

Similarly, we can show that \:’a ’b. MAP o MAP is a functor.

22- val functor_o = store_thm
("functor_o",
‘‘!(F’: ’F functor) (G: ’G functor).

functor F’ /\ functor G ==>
functor (\:’a ’b. G o F’)‘‘,

SIMP_TAC combin_ss [functor_def]
);

> val functor_o =
|- !F’ G. functor F’ /\ functor G ==> functor (\:’a ’b. G o F’)
: thm

- val map_o_map_functor = save_thm
("map_o_map_functor",
(TY_BETA_RULE o MATCH_MP functor_o) (CONJ map_functor map_functor)
);

> val map_o_map_functor =
|- functor (\:’a ’b. MAP o MAP)
: thm

The use of TY BETA RULE above simplifies the theorem. This can be seen if we turn on
the display of types.

23- show_types := true;
> val it = () : unit

- map_o_map_functor;
> val it =

|- (functor
(\:’a ’b.

(((MAP :(’a list -> ’b list) -> ’a list list -> ’b list list) o
(MAP :(’a -> ’b) -> ’a list -> ’b list))
:(’a -> ’b) -> ’a list list -> ’b list list)) :bool)

: thm

whereas if we omit the use of TY BETA RULE, we obtain

238 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

24- MATCH_MP functor_o (CONJ map_functor map_functor);
> val it =

|- (functor
(\:’a ’b.

(((\:’a ’b. (MAP :(’a -> ’b) -> ’a list -> ’b list))
[:’a list, ’b list:] o

(\:’a ’b. (MAP :(’a -> ’b) -> ’a list -> ’b list))
[:’a, ’b:])
:(’a -> ’b) -> ’a list list -> ’b list list)) :bool)

: thm

Logically the two are equivalent, but the second version has unreduced type beta-
redexes, whereas the first version is reduced, and so simpler and easier to read. In
essence, this shows how defining an operator like oo to directly compose two functors
is really simpler than just relying on functional composition to accomplish the task.

11.3 Natural Transformations

Alongside functors, natural transformations are the other major idea of category theory.
A natural transformation is essentially a mapping from one functor to another, that
preserves the structure of the image of the first functor into the structure of the image of
the second functor. A natural transformation η : F →̇ G from the functor F:’F functor

to the functor G:’G functor is actually a function from objects to arrows; it maps an
object α to an arrow η[α] : α ’F → α ’G. In addition, the function η must preserve
the structure of the image of F into the image of G; this means that it must make the
following diagram commute for all possible arrows h : α→ β:

α ’F α ’G

β ’F β ’G

-

?
-

?

η[α]

η[β]

F (h) G(h)

The first step is to define a type abbreviation for the type of natural transformations,
based on the type operators associated with the two functors on which it is based.

25- val _ = type_abbrev ("nattransf", Type ‘: \’F ’G. !’a. ’a ’F -> ’a ’G‘);

- ‘‘: !’a. ’a list -> ’a set‘‘;
> val it =

‘‘:(list, \’a. ’a -> bool) nattransf‘‘
: hol_type

11.3. NATURAL TRANSFORMATIONS 239

Now we can define a natural transformation as such a function φ, along with two
associated functors F and G, which makes the above diagram commute. This is the
same as saying that the arrow φ[α] composed with G h is the same as the arrow F h

composed with φ[β], for all arrows h : α→ β.

26- val nattransf_def = new_definition("nattransf_def", Term
‘nattransf (phi : (’F,’G) nattransf)

(F’ : ’F functor)
(G : ’G functor) =

!:’a ’b. !(h:’a -> ’b).
G h o phi = phi o F’ h‘);

> val nattransf_def =
|- !(phi :(’F :ty => ty, ’G :ty => ty) nattransf) (F’ :’F functor)

(G :’G functor).
nattransf phi F’ G <=>
!:’a ’b.
!(h :’a -> ’b).
((G [:’a, ’b:] h o phi [:’a:]) :’a ’F -> ’b ’G) =
((phi [:’b:] o F’ [:’a, ’b:] h) :’a ’F -> ’b ’G)

: thm

Here we can see how the parser has inserted type arguments to phi, F’, and G, where
the specific types in the type arguments are determined through type inference. In
particular, phi is given different type arguments for its two instances in the body, and
so this definition could not have been expressed within classic HOL, in which a variable
can only have one single type.

11.3.1 Examples of Natural Transformations

11.3.1.1 Identity natural transformation

One simple example of a natural transformation is the identity natural transformation.
This natural transformation maps each functor to itself. Therefore, there is an instance
of the identity natural transformation for each different functor F:’F functor. As a func-
tion, this natural transformation maps each object ’a to the identity arrow on ’a ’F,
that is, I:’a ’F -> ’a ’F.

27- val identity_nattransf = store_thm
("identity_nattransf",
‘‘!:’F. !F’ : ’F functor.

nattransf (\:’a. I) F’ F’‘‘,
SIMP_TAC combin_ss [nattransf_def]
);

> val identity_nattransf =
|- !:’F :ty => ty.

!(F’ :’F functor). nattransf (\:’a. (I :’a ’F -> ’a ’F)) F’ F’
: thm

240 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

11.3.1.2 Reverse natural transformation

Another simple natural transformation is REVERSE, which reverses the elements of a list:

28- listTheory.REVERSE_DEF;
> val it =

|- (REVERSE ([] :’a list) = ([] :’a list)) /\
!(h :’a) (t :’a list). REVERSE (h::t) = ((REVERSE t ++ [h]) :’a list)

: thm

- val nattransf_REVERSE = store_thm
("nattransf_REVERSE",
‘‘nattransf (\:’a. REVERSE)

(\:’a ’b. MAP)
(\:’a ’b. MAP)‘‘,

SIMP_TAC bool_ss [nattransf_def]
THEN REPEAT STRIP_TAC
THEN REWRITE_TAC[FUN_EQ_THM]
THEN Induct
THEN FULL_SIMP_TAC list_ss []
);

> val nattransf_REVERSE =
|- nattransf (\:’a. (REVERSE :’a list -> ’a list))

(\:’a ’b. (MAP :(’a -> ’b) -> ’a list -> ’b list))
(\:’a ’b. (MAP :(’a -> ’b) -> ’a list -> ’b list))

: thm

11.3.1.3 Initial prefixes natural transformation

A more interesting natural transformation is the function INITS, which takes a list l

and returns a list of all prefixes of l. This natural transformation is from the functor
λα β. MAP to the functor λα β.(MAP o MAP). INITS is defined recursively as follows.

29- val INITS_def = Define
‘(INITS [] = [[]]) /\
(INITS ((x:’a)::xs) = [] :: MAP (CONS x) (INITS xs))‘;

Definition has been stored under "INITS_def"
> val INITS_def =

|- (INITS ([] :’a list) = [([] :’a list)]) /\
!(x :’a) (xs :’a list).
INITS (x::xs) = ([] :’a list)::MAP (CONS x) (INITS xs)

: thm

To prove that INITS is a natural transformation, we need to first prove a couple of
lemmas. The first lemma shows how MAP and CONS commute. The second lemma de-
scribes how MAP and INITS commute. Finally, the second lemma implies that INITS is a
natural transformation. Each of these proofs are by induction on lists, and then uses the
simplifier with the lists simplification set to finish off the different cases of the induction.

11.3. NATURAL TRANSFORMATIONS 241

30- val MAP_o_CONS = store_thm
("MAP_o_CONS",
‘‘!(f:’a -> ’b) x. MAP f o CONS x = CONS (f x) o MAP f‘‘,
REPEAT GEN_TAC
THEN REWRITE_TAC[FUN_EQ_THM]
THEN Induct
THEN ASM_SIMP_TAC list_ss []
);

> val MAP_o_CONS =
|- !(f :’a -> ’b) (x :’a).

((MAP f o CONS x) :’a list -> ’b list) =
((CONS (f x) o MAP f) :’a list -> ’b list)

: thm

- val MAP_INITS = store_thm
("MAP_INITS",
‘‘!l f:’a -> ’b. (MAP o MAP) f (INITS l) = INITS (MAP f l)‘‘,
Induct
THEN FULL_SIMP_TAC list_ss [INITS_def,rich_listTheory.MAP_MAP_o,MAP_o_CONS]
THEN ASM_REWRITE_TAC [GSYM rich_listTheory.MAP_MAP_o]
);

> val MAP_INITS =
|- !(l :’a list) (f :’a -> ’b).

(((MAP :(’a list -> ’b list) -> ’a list list -> ’b list list) o
(MAP :(’a -> ’b) -> ’a list -> ’b list)) f (INITS l) :
’b list list) =

INITS (MAP f l) :
thm

- val nattransf_INITS = store_thm
("nattransf_INITS",
‘‘nattransf (\:’a. INITS)

(\:’a ’b. MAP)
(\:’a ’b. MAP o MAP)‘‘,

SIMP_TAC bool_ss [nattransf_def]
THEN REPEAT STRIP_TAC
THEN REWRITE_TAC[FUN_EQ_THM]
THEN Induct
THEN FULL_SIMP_TAC list_ss [MAP_INITS]
);

> val nattransf_INITS =
|- (nattransf (\:’a. (INITS :’a list -> ’a list list))

(\:’a ’b. (MAP :(’a -> ’b) -> ’a list -> ’b list))
(\:’a ’b.

(((MAP :(’a list -> ’b list) -> ’a list list -> ’b list list) o
(MAP :(’a -> ’b) -> ’a list -> ’b list))
:(’a -> ’b) -> ’a list list -> ’b list list)) :bool)

: thm

242 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

11.3.2 Vertical composition of natural transformations

Two natural transformations may be composed together in either of two ways, vertically
or horizontally. We shall examine horizontal composition in a moment, but for now, here
is the definition of vertical composition of natural transformations.

31- val ooo_def = Define ‘$ooo (phi2: (’G,’H)nattransf)
(phi1: (’F,’G)nattransf) =

\:’a. phi2 o (phi1[:’a:])‘;
Definition has been stored under "ooo_def"
> val ooo_def =

|- !(phi2 :(’G :ty => ty, ’H :ty => ty) nattransf)
(phi1 :(’F :ty => ty, ’G) nattransf).
ooo phi2 phi1 =
(\:’a. ((phi2 [:’a:] o phi1 [:’a:]) :’a ’F -> ’a ’H))

: thm

We can improve the presentation of this composition operation by making it an infix
operator and by overloading the o symbol to refer to this operation.

32- val _ = add_infix("ooo", 800, HOLgrammars.RIGHT);
- val _ = overload_on ("o", Term ‘$ooo : (’G,’H)nattransf ->

(’F,’G)nattransf ->
(’F,’H)nattransf‘);

- ooo_def;
> val it =

|- !(phi2 :(’G :ty => ty, ’H :ty => ty) nattransf)
(phi1 :(’F :ty => ty, ’G) nattransf).
((phi2 o phi1) :(’F, ’H) nattransf) =
(\:’a. ((phi2 [:’a:] o phi1 [:’a:]) :’a ’F -> ’a ’H))

: thm

Now that we can prove that the vertical composition of two natural transformations,
as defined above, in fact yields a natural transformation.

33- val nattransf_comp = store_thm
("nattransf_comp",
‘‘nattransf (phi1 : (’F,’G)nattransf) F’ G /\
nattransf (phi2 : (’G,’H)nattransf) G H ==>
nattransf ((phi2 o phi1) : (’F,’H)nattransf) F’ H‘‘,

SIMP_TAC bool_ss [nattransf_def,ooo_def]
THEN REPEAT STRIP_TAC
THEN ASM_REWRITE_TAC[o_ASSOC]
THEN ASM_REWRITE_TAC[GSYM o_ASSOC]
);

> val nattransf_comp =
|- nattransf (phi1 :(’F :ty => ty, ’G :ty => ty) nattransf)

(F’ :’F functor) (G :’G functor) /\
nattransf (phi2 :(’G, ’H :ty => ty) nattransf) G (H :’H functor) ==>
nattransf ((phi2 o phi1) :(’F, ’H) nattransf) F’ H

: thm

11.3. NATURAL TRANSFORMATIONS 243

11.3.3 Horizontal composition of natural transformations

We can also define the horizontal composition of two natural transformations.

34- val hcomp_def = Define ‘hcomp (phi2: (’F2,’G2)nattransf)
(F2:’F2 functor)
(phi1: (’F1,’G1)nattransf) =

\:’a. phi2 o F2 (phi1[:’a:])‘;
Definition has been stored under "hcomp_def"
> val hcomp_def =

|- !(phi2 :(’F2 :ty => ty, ’G2 :ty => ty) nattransf) (F2 :’F2 functor)
(phi1 :(’F1 :ty => ty, ’G1 :ty => ty) nattransf).
hcomp phi2 F2 phi1 =
(\:’a.

((phi2 [:’a ’G1:] o F2 [:’a ’F1, ’a ’G1:] (phi1 [:’a:]))
:’a ’F1 ’F2 -> ’a ’G1 ’G2))

: thm

Unfortunately, the definition requires that we use one of the functors associated with
the second natural transformation, so this operation cannot have the nice binary style
of the vertical composition operator. We need to include the F2 functor argument in the
definition of hcomp, and this makes it a 3-ary operation, not binary.

Having defined the horizontal composition of two natural transformations, we can
prove that the composition is also a natural transformation itself.

35- show_types := false;
> val it = () : unit

- val nattransf_hcomp = store_thm
("nattransf_hcomp",
‘‘nattransf (phi1 : (’F1,’G1) nattransf) F1 G1 /\
nattransf (phi2 : (’F2,’G2) nattransf) F2 G2 /\
functor F2 ==>
nattransf (hcomp phi2 F2 phi1)

(F2 o F1)
(G2 o G1)‘‘,

SIMP_TAC bool_ss [nattransf_def,functor_def,hcomp_def,oo_def]
THEN REPEAT STRIP_TAC
THEN ASM_SIMP_TAC bool_ss [o_THM,o_ASSOC]
THEN POP_ASSUM (fn th => REWRITE_TAC[GSYM o_ASSOC,GSYM th])
THEN ASM_REWRITE_TAC[]
);

> val nattransf_hcomp =
|- nattransf phi1 F1 G1 /\ nattransf phi2 F2 G2 /\ functor F2 ==>

nattransf (hcomp phi2 F2 phi1) (F2 o F1) (G2 o G1)
: thm

Alternatively, we could have just as easily defined horizontal composition using the
G2 functor instead of F2.

244 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

36- val hcomp’_def = Define ‘hcomp’ (phi2: (’F2,’G2)nattransf)
(G2:’G2 functor)
(phi1: (’F1,’G1)nattransf) =

\:’a. G2 phi1 o (phi2[:’a ’F1:])‘;
Definition has been stored under "hcomp’_def"
> val hcomp’_def =

|- !phi2 G2 phi1. hcomp’ phi2 G2 phi1 = (\:’a. G2 phi1 o phi2)
: thm

Using this different definition of the horizontal composition of two natural transfor-
mations, we can again prove that the composition is also a natural transformation.

37- val nattransf_hcomp’ = store_thm
("nattransf_hcomp’",
‘‘nattransf (phi1 : (’F1,’G1) nattransf) F1 G1 /\
nattransf (phi2 : (’F2,’G2) nattransf) F2 G2 /\
functor F2 ==>
nattransf (hcomp’ phi2 G2 phi1)

(F2 o F1)
(G2 o G1)‘‘,

SIMP_TAC bool_ss [nattransf_def,functor_def,hcomp’_def,oo_def]
THEN REPEAT STRIP_TAC
THEN ASM_SIMP_TAC bool_ss [o_THM,o_ASSOC]
THEN POP_ASSUM (fn th => REWRITE_TAC[GSYM o_ASSOC,GSYM th])
THEN ASM_REWRITE_TAC[]
);

> val nattransf_hcomp’ =
|- nattransf phi1 F1 G1 /\ nattransf phi2 F2 G2 /\ functor F2 ==>

nattransf (hcomp’ phi2 G2 phi1) (F2 o F1) (G2 o G1)
: thm

In fact, the two definitions of horizontal composition are equivalent, given that phi2
is a natural transformation.

38- val nattransf_hcomp_hcomp’ = store_thm
("nattransf_hcomp_hcomp’",
‘‘!(phi1 : (’F1,’G1) nattransf) (phi2 : (’F2,’G2) nattransf) F2 G2.

nattransf phi2 F2 G2 ==>
(hcomp phi2 F2 phi1 = hcomp’ phi2 G2 phi1)‘‘,

SIMP_TAC bool_ss [nattransf_def,hcomp_def,hcomp’_def]
);

> val nattransf_hcomp_hcomp’ =
|- !phi1 phi2 F2 G2.

nattransf phi2 F2 G2 ==> (hcomp phi2 F2 phi1 = hcomp’ phi2 G2 phi1)
: thm

This is a result of the fact that two natural transformations commute, in the following
fashion.

11.3. NATURAL TRANSFORMATIONS 245

39- val nattransf_commute = store_thm
("nattransf_commute",
‘‘nattransf (phi1 : (’F1,’G1) nattransf) F1 G1 /\
nattransf (phi2 : (’F2,’G2) nattransf) F2 G2 ==>
(phi2 o F2 (phi1[:’a:]) = G2 phi1 o phi2)‘‘,

SIMP_TAC bool_ss [nattransf_def]
);

> val nattransf_commute =
|- nattransf phi1 F1 G1 /\ nattransf phi2 F2 G2 ==>

(phi2 o F2 phi1 = G2 phi1 o phi2)
: thm

11.3.4 Composition of natural transformations with functors

In addition to composing natural transformations with themselves, we can compose
them with functors. There are two ways that a functor may be combined with a natural
transformation, where either the functor is applied first and then the natural transfor-
mation, or the reverse. We define operations for both of these, positioning the functor
on the right for the version where the functor is applied first, and on the left for the
version where the functor is applied last.

To begin, here is the composition of a natural transformation with a functor, where
the functor is applied first.

40- show_types := true;
> val it = () : unit

- val oof_def = Define ‘$oof (phi: (’F,’G) nattransf) (H’: ’H functor) =
\:’a. phi [:’a ’H:]‘;

Definition has been stored under "oof_def"
> val oof_def =

|- !(phi :(’F :ty => ty, ’G :ty => ty) nattransf)
(H’ :(’H :ty => ty) functor). oof phi H’ = (\:’a. phi [:’a ’H:])

: thm

As before, we can improve the presentation by making this an infix operator and
overloading the o symbol.

41- val _ = add_infix("oof", 750, HOLgrammars.LEFT);
- val _ = overload_on ("o", Term ‘$oof : (’F,’G) nattransf ->

’H functor ->
(’F o ’H,’G o ’H) nattransf‘);

- (dest_const o fst o strip_comb) ‘‘(phi:(’F,’G)nattransf) o (H:’H functor)‘‘;
> val it =

("oof",
‘‘:(’F :ty => ty, ’G :ty => ty) nattransf ->

(’H :ty => ty) functor -> (!’a. ’a ’H ’F -> ’a ’H ’G)‘‘)
: string * hol_type

246 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

Now we can prove that this composition of a natural transformation with a functor is
itself a natural transformation.

42- show_types := false;
> val it = () : unit

- val nattransf_functor_comp = store_thm
("nattransf_functor_comp",
‘‘nattransf (phi : (’F,’G)nattransf) F’ G /\
functor (H : ’H functor) ==>
nattransf (phi o H) (* phi oof H *)

(F’ o H) (* F’ oo H *)
(G o H)‘‘, (* G oo H *)

SIMP_TAC combin_ss [nattransf_def,functor_def,oo_def,oof_def]
);

> val nattransf_functor_comp =
|- nattransf phi F’ G /\ functor H ==>

nattransf (phi o H) (F’ o H) (G o H)
: thm

Here is the other composition of a functor with a natural transformation, where the
functor is applied last, as previously mentioned.

43- show_types := true;
> val it = () : unit

- val foo_def = Define ‘$foo (H: ’H functor) (phi: (’F,’G)nattransf) =
\:’a. H (phi[:’a:])‘;

Definition has been stored under "foo_def"
> val foo_def =

|- !(H :(’H :ty => ty) functor)
(phi :(’F :ty => ty, ’G :ty => ty) nattransf).
foo H phi = (\:’a. H [:’a ’F, ’a ’G:] (phi [:’a:]))

: thm

Again, we can improve the presentation by declaring the operation as a binary infix,
and overloading the o operator. Note that the HOL-Omega system can distinguish be-
tween compositions of natural transformations with themselves or with functors on the
left or on the right, simply by looking at the types of the arguments to o.

44- val _ = add_infix("foo", 750, HOLgrammars.LEFT);
- val _ = overload_on ("o", Term ‘$foo : ’H functor ->

(’F,’G) nattransf ->
(’H o ’F,’H o ’G) nattransf‘);

- (dest_const o fst o strip_comb) ‘‘(H:’H functor) o (phi:(’F,’G)nattransf)‘‘;
> val it =

("foo",
‘‘:(’H :ty => ty) functor ->

(’F :ty => ty, ’G :ty => ty) nattransf ->
(!’a. ’a ’F ’H -> ’a ’G ’H)‘‘)

: string * hol_type

11.4. ALGEBRAS AND INITIAL ALGEBRAS 247

In this case also, the composition of a functor with a natural transformation, where
the functor is applied last, is itself a natural transformation.

45- show_types := false;
> val it = () : unit

- val functor_nattransf_comp = store_thm
("functor_nattransf_comp",
‘‘nattransf (phi : (’F,’G)nattransf) F’ G /\
functor (H : ’H functor) ==>
nattransf (H o phi) (* H foo phi *)

(H o F’) (* H oo F’ *)
(H o G)‘‘, (* H oo G *)

SIMP_TAC combin_ss [nattransf_def,functor_def,oo_def,foo_def]
THEN REPEAT STRIP_TAC
THEN POP_ASSUM (fn th => REWRITE_TAC[GSYM th])
THEN ASM_REWRITE_TAC[]
);

> val functor_nattransf_comp =
|- nattransf phi F’ G /\ functor H ==>

nattransf (H o phi) (H o F’) (H o G)
: thm

The above examples of manipulating functors and natural transformations are in-
tended to show how easily and fluidly the HOL-Omega system supports such reasoning
about this simple version of category theory. Generally the concepts are not hard to
express, taking only brief phrases in the logic. Once the right definitions are made,
the different concepts combine very neatly and smoothly, just as one would hope for a
subject as beautiful as category theory.

11.4 Algebras and Initial Algebras

Algebras, also called F-algebras, are an important part of category theory. They have
a direct application as abstract data types in computer programming, and thus have a
beneficial effect on program clarity, modularity, and maintenance. Despite this utility,
algebras arise as a beautifully elegant use of the idea of functors.

From this section on, the development of this chapter is taken almost directly from the
book Algebra of Programming by Richard Bird and Oege de Moor, Prentice Hall, 1997.
Some of the descriptions of the ideas presented are very similar to the text of Bird and
de Moor, and they should be given full credit for these.

Given a functor F of type ′F functor, an algebra is defined as an arrow of type α ′F →
α, where the object α is called the carrier of the algebra.

This definition is very abstract, so it may help to have an example. Consider the
natural numbers, along with the zero value and the successor function. In the HOL logic

248 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

these are represented as the type num and the constants 0:num and SUC:num -> num.
These two constants allow one to construct any value of the natural numbers.

This can be thought of as an algebra with one type and two constants, generated by
a functor F where the map of F on objects is α ′F = unit + α and the map of F on
arrows is F ′ h = I ++ h. Here the infix binary operator ++ is defined by the two cases
(f ++ g)(INL a) = INL(f a) and (f ++ g)(INR b) = INR(g b).

Clearly F is a functor, as it maps the identity arrow I = λx:α. x to the identity arrow
F ′ I = λx:(unit + α). x, and it maps the composition g ◦f to F ′(g ◦f) = I ++ (g ◦f) =

(I ◦ I) ++ (g ◦ f) = (I ++ g) ◦ (I ++ f) = F ′ g ◦ F ′ f .
Then the natural numbers could be described as an F -algebra by taking the carrier

num and the arrow nat alg of type unit + num→ num, defined as

Nat alg = λm. case m of INL () ⇒ 0

| INR n ⇒ SUC n .

How does Nat alg describe the natural numbers? This function encodes all of the
information about both of the constants that construct natural numbers, 0:num and
SUC:num -> num. Depending on the input to nat alg, we can select either of these two
functions. So this combines all of the constructors for natural numbers in one function.

The notion of an algebra can be realized in HOL-Omega as a type abbreviation.
46- val _ = type_abbrev ("algebra", Type ‘: \’F ’a. ’a ’F -> ’a‘);

- ‘‘:(\’a. unit + ’a) algebra‘‘;
> val it =

‘‘:\’a. unit + ’a -> ’a‘‘
: hol_type

We define the functor F above for natural numbers in HOL-Omega as Nat fun.
47- val Nat_fun = new_definition("Nat_fun", Term

‘Nat_fun = (\:’a ’b. \h. I ++ h) : (\’a. unit + ’a) functor‘);
> val Nat_fun =

|- Nat_fun = (\:’a ’b. (\h. I ++ h))
: thm

We can show that Nat fun is a functor, and so suitable to form an algebra.
48- val SUM_MAP_I = sumTheory.SUM_MAP_I;

> val SUM_MAP_I = |- I ++ I = I : thm
- val SUM_MAP_o = functorTheory.SUM_o;
> val SUM_MAP_o =

|- !f1 g1 f2 g2. g1 o f1 ++ g2 o f2 = (g1 ++ g2) o (f1 ++ f2)
: thm

- val Nat_functor = store_thm
("Nat_functor",
‘‘functor Nat_fun‘‘,
SIMP_TAC combin_ss [functor_def,Nat_fun,SUM_MAP_I,GSYM SUM_MAP_o]
);

> val Nat_functor = |- functor Nat_fun : thm

11.4. ALGEBRAS AND INITIAL ALGEBRAS 249

We can specify the natural numbers as the algebra described above.

49- val Nat_alg = new_definition("Nat_alg",
‘‘Nat_alg =
(\m. case m of INL () => 0

| INR n => SUC n)
: (\’a. unit + ’a, num) algebra‘‘);

> val Nat_alg =
|- Nat_alg = (\m. case m of INL () => 0 | INR n => SUC n)
: thm

But the same functor F could in principle specify any F -algebra with one type, call it
α, and two constants Z and S with the types Z : α and S : α → α. For example this
functor would also generate an algebra with the type bool and Z = F and S = λt.T,
with the type num with Z = 0 and S = λn.((n+1) MOD 7), or with the type unit list

and Z = [] and S = CONS().
50- val Bool_alg = new_definition("Bool_alg",

‘‘Bool_alg =
(\b. case b of INL () => F

| INR b’ => T)
: (\’a. unit + ’a, bool) algebra‘‘);

> val Bool_alg =
|- Bool_alg = (\b. case b of INL () => F | INR b’ => T)
: thm

So a single functor can give rise to many algebras with the same functor.
Given two algebras f : α ′F → α and g : β ′F → β based on the same functor

F ′ : ′F functor, an F -homomorphism is a mapping h : α→ β such that h ◦ f = g ◦ F ′ h.

51- val homo_def = new_definition("homo_def", Term
‘homo (F’: ’F functor) f g (h:’a -> ’b) = (h o f = g o F’ h)‘);

> val homo_def =
|- !F’ f g h. homo F’ f g h <=> (h o f = g o F’ h)
: thm

There is an F -homomorphism from Nat alg to Bool alg.

52- val Nat_Bool_homo = store_thm
("Nat_Bool_homo",
‘‘homo (\:’a ’b. \h. I ++ h) Nat_alg Bool_alg

(\n. n <> 0)‘‘,
RW_TAC bool_ss [homo_def,Nat_alg,Bool_alg]
THEN CONV_TAC FUN_EQ_CONV
THEN BETA_TY_TAC
THEN Cases
THEN RW_TAC std_ss [oneTheory.one_case_rw]
);

> val Nat_Bool_homo =
|- homo (\:’a ’b. (\h. I ++ h)) Nat_alg Bool_alg (\n. n <> 0)
: thm

250 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

However, there are no F -homomorphisms from Bool alg to Nat alg.

53- val no_Bool_Nat_homo = store_thm
("no_Bool_Nat_homo",
‘‘!phi. ~(homo (\:’a ’b. \h. I ++ h) Bool_alg Nat_alg phi)‘‘,
RW_TAC bool_ss [homo_def,Nat_alg,Bool_alg]
THEN DISCH_THEN (MP_TAC o CONV_RULE FUN_EQ_CONV)
THEN DISCH_THEN (MP_TAC o SPEC ‘‘INR T : unit + bool‘‘)
THEN RW_TAC arith_ss []
);

> val no_Bool_Nat_homo =
|- !phi. ~homo (\:’a ’b. (\h. I ++ h)) Bool_alg Nat_alg phi
: thm

The identity arrow is an F -homomorphism for any algebra to itself.

54- val identity_homo = store_thm
("identity_homo",
‘‘!(F’:’F functor) f.

functor F’ ==>
homo F’ f f (I:’a -> ’a)‘‘,

SIMP_TAC combin_ss [homo_def,functor_def]
);

> val identity_homo =
|- !F’ f. functor F’ ==> homo F’ f f I
: thm

The composition of two F -homomorphisms is also an F -homomorphism.

55- val homo_comp = store_thm
("homo_comp",
‘‘!(F’:’F functor) f1 f3 (h1:’a -> ’b) (h2:’b -> ’c).

(?f2. homo F’ f1 f2 h1 /\ homo F’ f2 f3 h2) /\
functor F’ ==>
homo F’ f1 f3 (h2 o h1)‘‘,

RW_TAC bool_ss [homo_def,functor_def]
THEN ASM_REWRITE_TAC[GSYM o_ASSOC]
THEN ASM_REWRITE_TAC[o_ASSOC]
);

> val homo_comp =
|- !F’ f1 f3 h1 h2.

(?f2. homo F’ f1 f2 h1 /\ homo F’ f2 f3 h2) /\ functor F’ ==>
homo F’ f1 f3 (h2 o h1)

: thm

With all of these possible algebras generated by one functor, the question naturally
arises, are any of these particularly superior to the others? It turns out there are some
which stand out as more completely representing the functor.

Since there is an identity F -homomorphism from each algebra to itself, and since
each composition of two F -homomorphisms is another F -homomorphism, the set of all

11.4. ALGEBRAS AND INITIAL ALGEBRAS 251

algebras of a given functor F form a category Alg(F), where the objects are F -algebras
and the arrows are F -homomorphisms. Then an algebra f is an initial algebra if it is an
initial object in that category. That means that for every algebra g of that functor, there
is exactly one F -homomorphism from the initial algebra f to the other algebra g.

56- val ialg_def = new_definition("ialg_def", Term
‘ialg (F’ : ’F functor)

(alpha : (’F,’t)algebra) =
!:’a. !(f : (’F,’a)algebra). ?!h. homo F’ alpha f h‘);

> val ialg_def =
|- !F’ alpha. ialg F’ alpha <=> !:’a. !f. ?!h. homo F’ alpha f h
: thm

The idea of an initial algebra is surprisingly powerful for such a terse definition. If α
is an initial algebra, then this implies a recursion principle for proofs by recursion, and
also a function definition principle, so that new recursive functions may be defined ac-
cording to the constructors of the type. The definition of ialg above is a very condensed
representation of all this information, which would have been impossible without the
ability in HOL-Omega to quantify over type variables, as in !:’a. . . . above.

The algebra Nat alg is an example of such an initial algebra, which we prove next.
57- val SIMP_REC_THM = prim_recTheory.SIMP_REC_THM;

> val SIMP_REC_THM =
|- !x f.

(SIMP_REC x f 0 = x) /\
!m. SIMP_REC x f (SUC m) = f (SIMP_REC x f m)

: thm

- val SIMP_REC_cata_lemma = store_thm
("SIMP_REC_cata_lemma",
‘‘((h: num -> ’a) o Nat_alg = f o Nat_fun h)
= (h = SIMP_REC (f(INL ())) (f o INR))‘‘,
SIMP_TAC std_ss [Nat_alg,Nat_fun,o_DEF,FUN_EQ_THM,

sumTheory.FORALL_SUM,oneTheory.one_case_rw]
THEN EQ_TAC THEN STRIP_TAC
THENL [Induct, ALL_TAC]
THEN ASM_SIMP_TAC std_ss [SIMP_REC_THM,oneTheory.one]
);

> val SIMP_REC_cata_lemma =
|- (h o Nat_alg = f o Nat_fun h) <=>

(h = SIMP_REC (f (INL ())) (f o INR))
: thm

- val Nat_ialg = store_thm
("Nat_ialg",
‘‘ialg Nat_fun Nat_alg‘‘,
SIMP_TAC bool_ss [ialg_def,homo_def,SIMP_REC_cata_lemma]
);

> val Nat_ialg = |- ialg Nat_fun Nat_alg : thm

252 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

This is a deeper proof that the ones we have encountered previously, but its structure is
typical for such proofs of initial algebras. Proving that there is exactly one homomor-
phism implies that we have to prove 1) that there exists such a homomorphism, and
2) the homomorphism is unique. To prove the existence, we need to exhibit a witness
function, which in general may have to be recursive. Since the witness function needs
to depend on the target algebra f, we must use a recursive combinator to create a re-
cursive function on the fly, depending on f. In this case the predefined HOL constant
SIMP REC suffices for our needs, taking two arguments, the value of the recursive func-
tion at zero, and a function to produce the n + 1-th value given the n-th value of the
recursive function. Note that both of these arguments for SIMP REC make use of f. The
proof divides into the two cases of whether the homomorphism property holds for the
zero constructor or for the successor constructor, and each is solved by simplification.

For 2), the uniqueness of the homomorphism is expressed as for any two versions of
the homomorphism, they must be equal, which by extensionality means that the two
homomorphisms give the same answer for every argument. In general this requires an
proof by induction on the arguments. In this case we appeal to the induction principle
on natural numbers, and then specialize each of the hypotheses for the two versions
of the homomorphism with either the value for the zero case or for the successor case,
depending on whether we are proving the base case or the step case of the induction.
As before, the proof is finished by simplification.

11.5 Catamorphisms

The existence of an initial F -algebra is a very powerful idea, implying for example that
there is a recursion principle for proving properties. In addition, it implies that there is
one and only one function that exists as a homomorphism from this initial algebra to any
other algebra f of the same functor F . This unique function is called the catamorphism
of f , which Bird and de Moor denote as (|f |).

58- val cata_def = new_definition("cata_def", Term
‘cata (F’ : ’F functor)

(alpha : (’F,’t)algebra) (* initial object in category of algebras *)
(f : (’F,’a)algebra) =
@h. homo F’ alpha f h‘);

> val cata_def =
|- !F’ alpha f. cata F’ alpha f = @h. homo F’ alpha f h
: thm

This definition of catamorphisms takes three arguments, a functor and two algebras
of that functor. The first algebra is intended to be an initial algebra; if it is not, then
the result will not have the desired properties. The definition uses the HOL-Omega
choice operator @ to choose some function h which is a homomorphism from the first

11.5. CATAMORPHISMS 253

algebra to the second. If several such homomorphisms exist, then this will select one
of them (consistently). If no such homomorphisms exist, then this will just pick one
function of the underlying type, ’t → ’a, and we will know nothing more about that
function. But if in fact the first algebra alpha is an initial algebra, then exactly one such
homomorphism will always exist, it will be chosen by the @ operator, and the function
returned by cata will in fact be the one and only homomorphism from alpha to f.

For example, the catamorphism from an initial algebra to itself is the identity function.

59- val identity_cata = store_thm
("identity_cata",
‘‘functor (F’ : ’F functor) /\ ialg F’ (alpha : (’F,’t)algebra) ==>
(cata F’ alpha alpha = I)‘‘,
RW_TAC bool_ss [functor_def,cata_def,ialg_def,EXISTS_UNIQUE_THM]
THEN POP_ASSUM (STRIP_ASSUME_TAC o SPEC ‘‘alpha: (’F,’t)algebra‘‘

o TY_SPEC ‘‘:’t‘‘)
THEN SELECT_ELIM_TAC
THEN CONJ_TAC
THENL [EXISTS_TAC ‘‘h:’t -> ’t‘‘

THEN FIRST_ASSUM ACCEPT_TAC,

RW_TAC combin_ss [homo_def]
]

);
> val identity_cata =

|- functor F’ /\ ialg F’ alpha ==> (cata F’ alpha alpha = I)
: thm

254 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

If alpha is an initial algebra, then any catamorphism based on an initial algebra alpha

is in fact a homomorphism.

60- val homo_cata = store_thm
("homo_cata",
‘‘ialg (F’ : ’F functor) (alpha : (’F,’t)algebra) ==>
!:’a. !f: (’F,’a)algebra.

homo F’ alpha (f: (’F,’a)algebra) (cata F’ alpha f)‘‘,
RW_TAC bool_ss [homo_def,cata_def,ialg_def,EXISTS_UNIQUE_THM]
THEN REPEAT STRIP_TAC
THEN POP_ASSUM (STRIP_ASSUME_TAC o SPEC_ALL o TY_SPEC_ALL)
THEN SELECT_ELIM_TAC
THEN PROVE_TAC[]
);

Meson search level: ..
> val homo_cata =

|- ialg F’ alpha ==> !:’a. !f. homo F’ alpha f (cata F’ alpha f)
: thm

Alternatively, one can say that if h is the catamorphism of f , then h has the homo-
morphism property.

61- val cata_property = store_thm
("cata_property",
‘‘ialg (F’ : ’F functor) (alpha : (’F,’t)algebra) ==>
!:’a. !(f : (’F,’a)algebra) h.

((h = cata F’ alpha f) = (h o alpha = f o F’ h))‘‘,
REPEAT STRIP_TAC
THEN FIRST_ASSUM (STRIP_ASSUME_TAC o SPEC_ALL o TY_SPEC_ALL

o REWRITE_RULE[ialg_def,EXISTS_UNIQUE_THM])
THEN REWRITE_TAC [GSYM homo_def]
THEN EQ_TAC
THEN RW_TAC bool_ss [homo_cata]
);

> val cata_property =
|- ialg F’ alpha ==>

!:’a. !f h. (h = cata F’ alpha f) <=> (h o alpha = f o F’ h)
: thm

11.5. CATAMORPHISMS 255

Another way of saying this is that if h is a homomorphism from an initial algebra α to
another algebra f , then h is the catamorphism of f .

62- val eq_cata = store_thm
("eq_cata",
‘‘ialg (F’ : ’F functor) (alpha : (’F,’t)algebra) /\
homo F’ alpha (f: (’F,’a)algebra) h ==>
(cata F’ alpha f = h)‘‘,
RW_TAC bool_ss [homo_def,cata_def,ialg_def,EXISTS_UNIQUE_THM]
THEN FIRST_ASSUM (STRIP_ASSUME_TAC o SPEC_ALL o TY_SPEC ‘‘:’a‘‘)
THEN SELECT_ELIM_TAC
THEN CONJ_TAC
THENL [EXISTS_TAC ‘‘h’: ’t -> ’a‘‘

THEN FIRST_ASSUM ACCEPT_TAC,

ASM_SIMP_TAC bool_ss []
]

);
> val eq_cata =

|- ialg F’ alpha /\ homo F’ alpha f h ==> (cata F’ alpha f = h)
: thm

Interestingly, if α is an initial algebra, and f and g are algebras of the same functor as
α with h being a homomorphism from f to g, then the composition of the catamorphism
of f with h is the same arrow as the catamorphism of g.

63- val cata_fusion = store_thm
("cata_fusion",
‘‘ialg (F’ : ’F functor) (alpha : (’F,’t)algebra) /\
homo F’ f g (h: ’t -> ’a) /\ functor F’ ==>
(h o cata F’ alpha f = cata F’ alpha g)‘‘,
STRIP_TAC
THEN CONV_TAC SYM_CONV
THEN MATCH_MP_TAC eq_cata
THEN ASM_REWRITE_TAC[]
THEN MATCH_MP_TAC homo_comp
THEN ASM_REWRITE_TAC[]
THEN EXISTS_TAC ‘‘f: (’F,’t)algebra‘‘
THEN ASM_SIMP_TAC bool_ss [homo_cata]
);

> val cata_fusion =
|- ialg F’ alpha /\ homo F’ f g h /\ functor F’ ==>

(h o cata F’ alpha f = cata F’ alpha g)
: thm

256 CHAPTER 11. EXAMPLE: THE CATEGORY OF TYPES

For now, we will stop here for this chapter of the tutorial. This development is contin-
ued further in the file aopScript.sml in the directory examples/HolOmega. It culminates
with the banana split theorem:

64SPLIT_def:
|- SPLIT (f:’a -> ’b) (g:’a -> ’c) = \p. (f p, g p)

banana_split:
|- ialg (phi:’t functor) (alpha : (’t,’a) algebra) /\ functor phi ==>

(SPLIT (cata phi alpha (f : (’t,’b) algebra))
(cata phi alpha (g : (’t,’c) algebra))
= cata phi alpha (SPLIT (f o phi FST) (g o phi SND)))

The banana split theorem can be used to automatically synthesize a more efficient al-
gorithm by combining two existing algorithms.

The interested reader is invited to trace through the development on his own.

Chapter 12

Example: Packages

This chapter explains existential types and packages, which are used for information
hiding and modularity in proofs. These are very well described in chapter 24 of Types
and Programming Languages by Benjamin C. Pierce (MIT Press, 2002), and this chapter
will draw significantly from Professor Pierce’s work. Packages are a new variety of term,
and just like the new type abstraction terms, require a new variety of type to serve as
their types. In particular, where a type abstraction term has a universal type, a package
term has a new type called an existential type.

Packages are somewhat similar to objects in object-oriented languages like Java, in
the sense that the internal details of how the object’s data is represented are to some
degree hidden from the users of the object. This is very useful in practice, since it allows
the actual representation of the data within the object to be changed at some later time,
perhaps for efficiency concerns, while not disturbing the object’s appearance to external
code that uses the object as a black box. Packages do not include all of the features
or flexibility of Java objects, omitting for example inheritance of methods and dynamic
dispatch. But they are a first step toward organizing the data structures of a system in
an object-oriented way.

There is also some overlap in purpose between packages and the abstract data types
described in chapter 10; both shield and abstract away some of the details of inter-
nal data structures, for the purposes of information hiding and modularity. The main
difference between these two approaches is that abstract data types are actual new
full-weight types introduced into the HOL-Omega logic whose properties are truly only
partially determined, whereas packages are more light-weight data structures that may
be constructed or deconstructed on the fly as first-class values, and whose internal de-
tails are fixed and real but intentionally obscured, just as an object’s signature only
reveals the general patterns of access to the object’s internal data, not the precise shape
of how it is actually laid out. Thus abstract data types are truly abstract; the internal
representation is not simply unknown at present but in fact is completely unknowable.
By contrast, the internal representation of a package is secret but determined and fixed.
The particular representation might possibly disclose itself through occasions of the use
of the package to compute values.

As mentioned earlier, the types of package terms are existential types. These types
are distinct from any other types that we have described before; for example, there is

257

258 CHAPTER 12. EXAMPLE: PACKAGES

no overlap between universal and existential types. Superficially, these two types look
almost identical, except that where the universal types use a universal quantification
symbol, existential types use an existential quantification symbol. However, despite
these superficial parallels, universal and existential types are not really duals in the
close sense that normal universal and existential quantification are duals of each other.
In particular, the ways that packages are first created and then taken apart and used
are more heavy-weight than the ways that type abstraction terms are created and then
used. Not only is the syntax more cumbersome, the ideas behind existential types are
also somewhat more difficult to grasp at first glance than those behind universal types.
Therefore we take some more time in this chapter to ease their introduction.

The goals of this chapter are:

(i) To present how existential types are created and what they mean,

(ii) To show how packages, terms of existential type, can be created and used,

(iii) To show how packages can be applied in an object-oriented way.

To some extent packages and existential types have already been demonstrated in the
Appetizers chapter 4. In this chapter we will examine them more closely, and illustrate
some of their interesting aspects.

12.1 Existential Types

An existential type is written as ?α.σ or ∃α.σ, where the type variable α may appear
freely within the type σ. Such occurrences of α are considered bound by the existential
quantification. Therefore, although other type variables that are free within σ are also
free type variables of ∃α.σ, the type variable α is never a free type variable of ∃α.σ.

Notably, α may be of any kind or rank, but σ must have a base kind, just as for
universal types. The kind of ∃α.σ itself will be a base kind, where its rank is determined
the same as for universal types: if α has rank rα and σ has rank rσ, then the rank of
∃α.σ will be the maximum of rα + 1 and rσ.

To get an intuition as to the meaning of universal and existential types, a universal
type ∀α.σ may be thought of as a type whose values are functions that map any type σα

such that the kind of α is :>=: the kind of σα to a term value of the type σ[σα/α]. These
are special functions in that 1) they map from types to term values, not from a value
to a value, and 2) the type of the resulting value depends on the actual type σα that is
input. Because of this, these functions are called dependent functions.

In comparison to this, the meaning of an existential type ∃α.σ may be thought of as
a type whose values are pairs of a type and a term, e.g. (σα, t), where σα is a type such
that the kind of α is :>=: the kind of σα, and t is a term with the type σ[σα/α]. These

12.1. EXISTENTIAL TYPES 259

are special pairs in that 1) they join a type and a term in a pair, not two terms, and 2)
the type of the second element of the pair t depends on the actual type σα that is the
first element of the pair. Because of this, these pairs are called dependent pairs.

1- set_trace "Unicode" 0;
> val it = () : unit
- new_theory "package";
<<HOL message: Created theory "package">>
> val it = () : unit

Syntactically, existential types look very much like universal types, except that the
! symbol is replaced by ? (or ∀ by ∃). Just as for universal types, in ∃α.σ the bound
variable α has scope over the body, σ. The free type variables of an existential type are
the free type variables of the body, minus the bound type variable.

2- val ety1 = ‘‘:?’a. ’a -> ’a‘‘;
> val ety1 = ‘‘:?’a. ’a -> ’a‘‘ :
hol_type

- val ety1_vars = type_vars ety1;
> val ety1_vars = [] : hol_type list

- val ety2 = ‘‘:?’a. ’a -> ’b‘‘;
> val ety2 = ‘‘:?’a. ’a -> ’b‘‘ :
hol_type

- val ety2_vars = type_vars ety2;
> val ety2_vars = [‘‘:’b‘‘] : hol_type list

ML functions is exist type, mk exist type, dest exist type, etc. are provided to
test, create, or take apart these types.

3- is_exist_type ety2;
> val it = true : bool

- val ety2’ = mk_exist_type(gamma, gamma --> beta);
> val ety2’ = ‘‘:?’c. ’c -> ’b‘‘ :
hol_type

- val check = eq_ty ety2 ety2’;
> val check = true : bool

- val (bvar,body) = dest_exist_type ety2;
> val bvar = ‘‘:’a‘‘ : hol_type
val body = ‘‘:’a -> ’b‘‘ : hol_type

Similarly, list mk exist type and strip exist type create or take apart multiple
instances of existential types.

260 CHAPTER 12. EXAMPLE: PACKAGES

4- val ety3 = list_mk_exist_type ([alpha,gamma], alpha --> beta --> gamma);
> val ety3 =

‘‘:?’a ’c. ’a -> ’b -> ’c‘‘
: hol_type

- val (ety3_bvars,ety3_body) = strip_exist_type ety3;
> val ety3_bvars =

[‘‘:’a‘‘, ‘‘:’c‘‘] :
hol_type list
val ety3_body =
‘‘:’a -> ’b -> ’c‘‘
: hol_type

12.2 Packages

Terms with existential types are called packages. With respect to such terms, there are
two key issues: how are they created, and how are they used. Therefore there is a
need for a new form to create such pairs, and another new form to take them apart.
Remember that intuitively a value of an existential type (i.e., a package) is a special
kind of pair of a type and a term, where the type of the term depends upon the type
which is the first element of the pair.

In HOL-Omega, a package is constructed using the syntax

pack(:σ, t) ,

where pack is a reserved keyword, σ is a type, and t is a term. Note the presence of a
colon (:) before the type σ to indicate the presence of a type, rather than a term.

In general, this may not be enough information to determine the package uniquely.
In such cases, it suffices to add a type annotation to the package syntax, as for example

pack(:σ, t) : ∃α.σ′ ,

where the type annotation is an existential type ∃α.σ′ such that the type of the body t
is σ′[σ/α]. This annotated version will always determine the package uniquely, so it is
advisable to generally include the type annotation if there is any uncertainty.

The following examples are taken from Pierce’s book, pages 364-365. The first two
show how the same package text, made from the same type and term, can have two
different existential types, depending on whether or not a type annotation is provided.

12.2. PACKAGES 261

5- val pkg1 = ‘‘pack (:num, (5, \x:num. SUC x))‘‘;
> val pkg1 = ‘‘pack (:num,(5,(\x. SUC x)))‘‘ :
term

- val pkg1_ty = type_of pkg1;
> val pkg1_ty =

‘‘:?’x. ’x # (’x -> ’x)‘‘
: hol_type

- val pkg2 = ‘‘pack (:num, (5, \x:num. SUC x)) : ?’x. ’x # (’x -> num)‘‘;
> val pkg2 = ‘‘pack (:num,(5,(\x. SUC x)))‘‘ :
term

- val pkg2_ty = type_of pkg2;
> val pkg2_ty =

‘‘:?’x :(ty:1). ’x # (’x -> num)‘‘
: hol_type

The type of a package pack(:σ, t) is always an existential type ∃α.σ′ such that the
type of the body t is σ′[σ/α]. Remember the kind of α must be :>=: the kind of σ.
In the above two cases, the two existential types are either ∃’x.’x # (’x -> ’x) or
∃’x.’x # (’x -> num), but in both cases the type of the body is σ′[σ/α] which is
num # (num -> num). This shows that in general it is a good idea to provide the type
annotation, even though it might not be always necessary.

Also, it is entirely possible to make different packages which have the exact same
type. In fact, this is part of the point of having packages, because we wish to hide certain
information, in particular the exact representation type which is the first element of the
pair that is the package value. Here are two different packages with the same type.

6- val pkg3 = ‘‘pack (:num, 0) : ?’x. ’x‘‘;
> val pkg3 =

‘‘pack (:num,(0 :num))‘‘ :
term

- val pkg3_ty = type_of pkg3;
> val pkg3_ty = ‘‘:?’x. ’x‘‘ :
hol_type

- val pkg4 = ‘‘pack (:bool, T) : ?’x. ’x‘‘;
> val pkg4 = ‘‘pack (:bool,T)‘‘ : term
- val pkg4_ty = type_of pkg4;
> val pkg4_ty = ‘‘:?’x. ’x‘‘ :
hol_type

- val check = eq_ty pkg3_ty pkg4_ty;
> val check = true : bool

Here is another example of two packages which are different internally, but have the
same existential type. We will see an actual use for these packages in what follows.

262 CHAPTER 12. EXAMPLE: PACKAGES

7- val pkg5 =
‘‘pack (:num, (0, \x:num. SUC x)) : ?’x. ’x # (’x -> num)‘‘;

> val pkg5 =
‘‘pack (:num,((0 :num),(\(x :num). SUC x)))‘‘
: term

- val pkg5_ty = type_of pkg5;
> val pkg5_ty =

‘‘:?’x. ’x # (’x -> num)‘‘
: hol_type

- val pkg6 =
‘‘pack (:bool, (T, \x:bool. 0)) : ?’x. ’x # (’x -> num)‘‘;

> val pkg6 =
‘‘pack (:bool,(T,(\(x :bool). (0 :num))))‘‘
: term

- val pkg6_ty = type_of pkg6;
> val pkg6_ty =

‘‘:?’x. ’x # (’x -> num)‘‘
: hol_type

- val check = eq_ty pkg5_ty pkg6_ty;
> val check = true : bool

This has shown how we construct packages. Now we will see how we take them apart.
In HOL-Omega, packages are taken apart (deconstructed) via the special syntax

let (:α, x) = p in s .

Here α is a type variable, x is a term variable whose type may mention α, p is a term
yielding a package, and s, the body of the let, is a term. The idea here is that the
package p is opened up, and the pair that is inside the package is bound to the pair of α
and x, and then α and x are usable within the body s. Both α and x are bound by this
syntax. The scope of α is x and s, while the scope of x is s. We require that the types of
the free variables of s do not mention the type variable α, and likewise that the type of
s itself does not mention the type variable α. This is only sensible, as the scope of α is
only the variable x and the body s, and α has no meaning outside that scope.

This syntax for deconstructing a package is distinguished from the normal let syntax
for pairs, let (x, y) = e in e′, by the presence of the colon just after the left parenthesis.

Here is an example of deconstructing pkg5 from above.

8- val unpkg5 = ‘‘let (:’x, t:’x # (’x -> num)) = ^pkg5
in (SND t) (FST t)‘‘;

> val unpkg5 =
‘‘let (:’x,(t :’x # (’x -> num))) =

(pack (:num,((0 :num),(\(x :num). SUC x))))
in
SND t (FST t)‘‘

: term

12.2. PACKAGES 263

So now that we can write down how to take a package apart, what does it mean? The
effect of deconstructing a package is given by the following HOL-Omega theorem:

` (let (:α, x) = pack(:σ, t) in s) = (λ:α.λx.s) [:σ:] t

The body of the let, s, is made into a function that expects first a type argument σ,
which is bound to the formal type parameter α, and secondly a term argument t, which
is bound to the formal term parameter x. Then the body s is executed in this context.
This is called package reduction, by analogy with beta reduction: (λx.s) t = s[t/x].

To show the meaning of such uses of packages, we define a simple evaluation tool
using the ML functions SIMP CONV and srw ss from the simplification library.

9- fun eval ths tm = QCONV (SIMP_CONV (srw_ss()) ths) tm;
> val eval = fn : thm list -> term -> thm

- val unpkg5_res = eval [] unpkg5;
<<HOL message: Initialising SRW simpset ... done>>
> val unpkg5_res =

|- (let (:’x,(t :’x # (’x -> num))) =
(pack (:num,((0 :num),(\(x :num). SUC x))))

in
SND t (FST t)) =

(1 :
num) : thm

The simplifier knows how to reduce such deconstructions of packages, and how to eval-
uate the SUC function as well, even though that was hidden within pkg5.

Here is another example, using the same let but with pkg6 from above.

10- val unpkg6 = ‘‘let (:’x, t:’x # (’x -> num)) = ^pkg6
in (SND t) (FST t)‘‘;

> val unpkg6 =
‘‘let (:’x,(t :’x # (’x -> num))) =

(pack (:bool,(T,(\(x :bool). (0 :num)))))
in
SND t (FST t)‘‘

: term

- val unpkg6_res = eval [] unpkg6;
> val unpkg6_res =

|- (let (:’x,(t :’x # (’x -> num))) =
(pack (:bool,(T,(\(x :bool). (0 :num)))))

in
SND t (FST t)) =

(0 :
num) : thm

Note that the resulting value is different (although the type is the same), because al-
though the body of the let is the same, the package that is being unpacked is different.

264 CHAPTER 12. EXAMPLE: PACKAGES

12.3 Underlying Implementation of Packages

One can use the pack and let syntax as described above to construct and deconstruct
packages. In the following, we describe the implementation of this syntax, which can
be skipped by the casual reader without loss. But for those who are interested, the
syntax as given so far for both these new forms to construct and deconstruct packages
is actually syntactic sugar. Underneath, the actual syntax rests on two new fundamental
term constants in the HOL-Omega logic, PACK and UNPACK. These are part of the theory
bool, with the following primal types:

PACK : ∀ψ:κ. ψ (α : κ⇒ ty:1) -> (∃φ:κ. φ α)
UNPACK : (∀ψ:κ. ψ (α : κ⇒ ty:1) -> (β:ty:1)) -> (∃φ:κ. φ α) -> β

Note that the kind variable κ and the type variables α and β are free in the above types,
which provide all the needed flexibility for instances of the constants PACK and UNPACK to
use packages in every appropriate situation. In particular we use the free type variable
α in combination with its argument, the type variable φ, to represent any possible type
expression with free type variable φ, and thus any possible existential type ∃φ:κ. φ α.

The surface syntax for packages given previously is actually translated by the parser
into uses of PACK and UNPACK, as follows.

pack(:σ, t) 7→ PACK [:σ:] t
let (:α, x) = p in s 7→ UNPACK (λ:α.λx.s) p

12.3.1 Package Axioms

Using PACK and UNPACK, the reduction of packages is fundamentally expressed by the
new HOL-Omega axiom UNPACK PACK AX:

` ∀:(α : κ⇒ ty:1) (β : ty:1) (φ : κ).
∀(f : ∀ψ:κ. ψ α -> β) (t : φ α).
UNPACK f (PACK [:φ :] t) = f [:φ :] t

(UNPACK PACK AX)

This axiom is included in the basic simplification set bool ss, so almost every invocation
of the simplifier will attempt this reduction of packages by higher-order rewriting with
UNPACK PACK AX, along with TY BETA CONV and BETA CONV to resolve (λ:α.λx.s) [:σ:] t.

HOL-Omega also includes the new axiom PACK ONTO AX:

` ∀:(α : κ⇒ ty:1). ∀(p : ∃ψ:κ. ψ α).
∃:(φ : κ). ∃(t : φ α).
p = PACK [:φ :] t

(PACK ONTO AX)

PACK ONTO AX expresses the idea that every package was created using PACK from some
type and term. Thus PACK is the sole constructor of values of existential type.

12.4. EXAMPLE: COUNTERS 265

12.4 Example: Counters

To see how packages can be used to simulate the idea of an object, we consider a
counter, as an object for which there are three methods; a new method to create a
counter with an initialized count, a get method to obtain the counter’s current value,
and an inc method to increment the counter’s value.

The first step is to create a record type to hold these three methods. The methods
will need to be parameterized on the actual type of the counter’s contents, since that
data structure is what the object is hiding. Eventually we will form a package with an
existential type, where the actual representation of the counter’s data will be hidden.

When designing the record type, we need to consider that we are working in a logic
that does not have all of the features of a sophisticated programming language. Ac-
cordingly, the get method needs to take that internal data structure as input in order to
compute the count that is output. In Java, an object can update its private data fields,
but in a functional logic like HOL-Omega, any change must be represented by making a
new copy of the original object, with updated contents. Also, whereas in Java a new
object can be constructed by a routine that establishes its initial value, here we need to
use the new method to obtain that initial value, since it must be of the unknown and
parameterized type.

The new record type can be introduced to the HOL-Omega logic by the following.

11- val _ = Hol_datatype
‘counter_recd1 =

<| new : ’a;
get : ’a -> num;
inc : ’a -> ’a

|>‘;
<<HOL message: Defined type: "counter_recd1">>
- val counter_kind = kind_of ‘‘:counter_recd1‘‘;
> val counter_kind = ‘‘::ty => ty‘‘ : kind

This introduces a new type constant in the HOL-Omega logic named counter recd1,
along with term constants for constructing, accessing, and updating the fields of val-
ues of this record type. The type constant created has the arrow kind ty => ty, so
counter recd1 is a type operator that expects a type argument of kind ty.

The aim now is to create packages as values of this abstract data type, as values of
type ∃ψ. ψ counter recd1. One way is to simply use a natural number as the hidden
data structure, so that the increment function is just the successor function SUC.

266 CHAPTER 12. EXAMPLE: PACKAGES

12- val counterADT =
‘‘pack (:num,

<| new := 1;
get := \i:num. i;
inc := \i:num. SUC i

|>) : ?’a. ’a counter_recd1‘‘;
> val counterADT =

‘‘pack
(:num,
<|new := (1 :num); get := (\(i :num). i);
inc := (\(i :num). SUC i)|>)‘‘

: term
- val counterADT_type = type_of counterADT;
> val counterADT_type =

‘‘:?’x. ’x counter_recd1‘‘
: hol_type

This yields a value with the desired existential type.
Next we wish to test this package by using it. The following code creates a new

counter, increments it, and then returns its value.
13- val counter_ex1 =

‘‘let (:’Counter,counter) = ^counterADT in
counter.get (counter.inc counter.new)‘‘;

> val counter_ex1 =
‘‘let (:’Counter,(counter :’Counter counter_recd1)) =

(pack
(:num,
<|new := (1 :num); get := (\(i :num). i);
inc := (\(i :num). SUC i)|>))

in
counter.get (counter.inc counter.new)‘‘

: term

We can test to see how this works by using the eval tool we defined earlier. This
provides a theorem where this program is simplified by evaluation.

14- val ex1_res = eval[] counter_ex1;
> val ex1_res =

|- (let (:’Counter,(counter :’Counter counter_recd1)) =
(pack

(:num,
<|new := (1 :num); get := (\(i :num). i);
inc := (\(i :num). SUC i)|>))

in
counter.get (counter.inc counter.new)) =

(2 :
num) : thm

Here is another example, where we define a routine to increment the counter three
times, and then return the result.

12.5. EXAMPLE: SCHEDULING QUEUES 267

15- val counter_ex2 =
‘‘let (:’Counter,counter) = ^counterADT in
let add3 = \c:’Counter. counter.inc (counter.inc (counter.inc c)) in
counter.get (add3 counter.new)‘‘;

> val counter_ex2 =
‘‘let (:’Counter,(counter :’Counter counter_recd1)) =

(pack
(:num,
<|new := (1 :num); get := (\(i :num). i);
inc := (\(i :num). SUC i)|>))

in
let (add3 :’Counter -> ’Counter) (c :’Counter) =

counter.inc (counter.inc (counter.inc c))
in
counter.get (add3 counter.new)‘‘

: term

We can use the eval tool as before to evaluate this expression. We need to supply
LET DEF, the definition of the constant LET which is used to create the syntactic sugar
let..in form, so that it can be reduced as well. (For some reason this is not included in
the automatic set of simplifications.)

16- LET_DEF;
> val it =

|- (LET :(’a -> ’b) -> ’a -> ’b) = (\(f :’a -> ’b) (x :’a). f x)
: thm

- val ex2_res = eval[LET_DEF] counter_ex2;
> val ex2_res =

|- (let (:’Counter,(counter :’Counter counter_recd1)) =
(pack

(:num,
<|new := (1 :num); get := (\(i :num). i);
inc := (\(i :num). SUC i)|>))

in
let (add3 :’Counter -> ’Counter) (c :’Counter) =

counter.inc (counter.inc (counter.inc c))
in
counter.get (add3 counter.new)) =

(4 :
num) : thm

12.5 Example: Scheduling Queues

To demonstrate the usefulness of packages, we now will develop a theory of scheduling
queues for an operating system.

268 CHAPTER 12. EXAMPLE: PACKAGES

Consider an operating system in which there are multiple processes, some of which
are from time to time suspended in an inactive state, while others are running on the
available processors.

The processes which are suspended are remembered in some kind of a data struc-
ture. When a new process is created, or when a currently running process becomes
suspended, it is added to this data structure. When a process finishes its task and ends,
its processor is then assigned to work on one of the other processes in the data structure.

Exactly which process is chosen is a matter of policy. One simple choice is that it
should be the oldest process residing in the data structure. This leads to a last-in-first-
out policy, which is accomplished by using a queue for the data structure.

However, this is not the only legitimate choice. There may be processes with higher
priority, or there may be some more subtle measure of utility which ranks different
processes more suitable to be assigned to the new processor.

One could even use a first-in-first-out policy, which would be accomplished by using
a stack for the data structure. While this would not possess certain desirable properties
like fairness, that each suspended process will eventually run, it might be suitable for
certain restricted applications.

Even for a given policy, there may be several possible implementations which may
vary in their pragmatics. We may begin, say, with a very simple and clean implementa-
tion of queues, and later move to a more complex representation for faster performance.

What is interesting here is that these different policy choices can be modularized
by simply making them part of the data structure. Each such policy choice would be
implemented by a different data structure. As long as each data structure obeys certain
general properties, we can swap any of a variety of data structures for the one used in
the implementation of the scheduling algorithm. We can even delay the choice of which
policy to use until late in the overall development, or even switch the policy on the fly
during runtime, simply by changing the data structure, as long as each of the family of
data structures used all obey the same general properties.

The rest of the software development can then rely on the data structure to obey these
general properties, but cannot rely on any other special properties of any individual data
structure or the policy it represents. This enforces a modularity that is a vital feature of
good system design, where design choices are isolated and hidden from the rest of the
system, so that later changes have a minimum ripple effect.

Packages are critical to performing this necessary information hiding. This example
demonstrates how packages can be used to accomplish the hiding of the actual data
structure used. This supports proper modularization, so that the software that uses the
scheduling data structure is isolated from the details of its implementation.

To begin, we will consider data structures that collect a number of elements. The
types of these data structures will be modeled as a type operator β of kind ty ⇒ ty that
maps an element of type α into a data structure of type α β.

12.5. EXAMPLE: SCHEDULING QUEUES 269

The data structures themselves may have many different definitions, but here we want
to concentrate on their fundamental operations and general properties. As a beginning,
we want the scheduling data structures to support the following operations:

emptyq : ∀β. β α
insert : ∀β. β → β α→ β α
remove : ∀β. β α→ β # β α
count : ∀β. β → β α→ num

Note that each operation is polymorphic in the element type β.
The meaning of the emptyq operation is to be the empty version of the queue. Like-

wise, the insert operation takes an element and a queue, and inserts the element into
the queue, returning the new, increased queue. The remove operation takes a queue,
selects some element of it, removing that element from the queue, and returns a pair
of the selected element and the new, diminished queue. The count operation takes an
element and a queue, and returns the number of times (possibly zero) that that element
appears in the queue.

These operations can be assembled into a record of related operations that are meant
to work together, as follows.

17- val _ = Hol_datatype
‘sched_q_opers = <| emptyq : !’b. ’b ’a;

insert : !’b. ’b -> ’b ’a -> ’b ’a;
remove : !’b. ’b ’a -> ’b # ’b ’a;
count : !’b. ’b -> ’b ’a -> num |>‘;

<<HOL message: Defined type: "sched_q_opers">>

This datatype definition in the HOL-Omega logic not only creates the type sched q opers,
but also introduces term constants so that we can index the fields of any record of this
type using the familiar notation rcd.emptyq, rcd.insert, etc.

Next we specify the properties that we wish to be true of these operations to constitute
a valid and proper scheduling queue. These should be broad enough to encompass all
the possible implementations we might wish to use, but narrow enough to be a base on
which to build the rest of the program that uses this data structure.

The properties we will choose for this example are the following.

1. The count of any item in the empty queue is zero.

2. For the queue resulting from the insertion of an element y into a queue q, the
count of any element x should be the count of x in the original queue q plus one
if x = y, but otherwise simply the count of x in q.

3. If a queue q has at least one element (that is, q is not empty), then the result of
removing an element from q is a pair (y, q′) which has the following property. The
count of any element x in the original queue q is equal to the count of x in the
result of inserting y into q′.

270 CHAPTER 12. EXAMPLE: PACKAGES

These properties can be represented in the following definition.
18- val is_scheduling_q_def = Define

‘is_scheduling_q (ops:’a sched_q_opers) =
(!:’b. !(x:’b). ops.count x (ops.emptyq[:’b:]) = 0) /\
(!:’b. !(q:’b ’a) (x:’b) (y:’b).

ops.count x (ops.insert y q) =
if x = y then ops.count x q + 1

else ops.count x q) /\
(!:’b. !q:’b ’a.

if (!x:’b. ops.count x q = 0) then T else
let (y, q’) = ops.remove q in
!x:’b. ops.count x q = ops.count x (ops.insert y q’))‘;

Definition has been stored under "is_scheduling_q_def"

The system will respond with the theorem of the definition, which we omit here.
This covers the properties of a scheduling data structure. We will represent the data

structure in an object-oriented way, by forming a record that contains both the current
value of the data structure, and also all of the operations that can be performed on it.
First, we create the type of this record.

19- val _ = Hol_datatype
‘sched_q = <| this : ’b ’a;

ops : ’a sched_q_opers |>‘;
<<HOL message: Defined type: "sched_q">>

For our first scheduling queue implementation, we choose to use a simple list, where
new elements are added to the list at the front, and when an element is removed it is
taken from the back of the list. For simplicity, instead of a complex type representing
processes, we choose to use just a simple natural number. We intend to build a record
of scheduling operations as follows.

val reference_q_def = Define

‘reference_q =

<| this := [] : num list;

ops := <| emptyq := \:’b. [] : ’b list;

insert := \:’b. \(x:’b) xs. CONS x xs;

remove := \:’b. \xs:’b list. (LAST xs, FRONT xs);

count := \:’b. \(x:’b) xs. COUNT x xs

|>

|>‘;

Fortunately, we have predefined operations in the list library for most of this. Both []

and CONS are commonly used, and FRONT and LAST are predefined in the list library.
LAST returns the last element of a list, while FRONT returns all of the list except for the
last element. Both of these are undefined if they are applied to an empty list. What is
not available in the HOL libraries is the COUNT function, but this is easy enough to create.

12.5. EXAMPLE: SCHEDULING QUEUES 271

20- open listTheory;
. . .
- val COUNT_DEF = Define

‘(COUNT (x:’a) [] = 0) /\
(COUNT x (y::ys) = if x = y then COUNT x ys + 1

else COUNT x ys)‘;
Definition has been stored under "COUNT_def"
> val COUNT_DEF =

|- (!(x :’a). COUNT x ([] :’a list) = (0 :num)) /\
!(x :’a) (y :’a) (ys :’a list).
COUNT x (y::ys) =
if x = y then COUNT x ys + (1 :num) else COUNT x ys

: thm

Then the following properties of COUNT are proven by straightforward means.
21> val ALL_COUNT_ZERO =

|- !(xs :’a list).
(!(x :’a). COUNT x xs = (0 :num)) <=> (xs = ([] :’a list))

: thm

> val ALL_COUNT_ZERO_2 =
|- !(xs :’a list) (ys :’a list).

(!(x :’a). (COUNT x xs = (0 :num)) /\ (COUNT x ys = (0 :num))) <=>
(xs = ([] :’a list)) /\ (ys = ([] :’a list))

: thm

> val COUNT_FRONT =
|- !(xs :’a list) (x :’a).

xs <> ([] :’a list) ==>
x <> LAST xs ==>
(COUNT x (FRONT xs) = COUNT x xs)

: thm

> val COUNT_LAST =
|- !(xs :’a list).

xs <> ([] :’a list) ==>
(COUNT (LAST xs) xs = COUNT (LAST xs) (FRONT xs) + (1 :num))

: thm

> val COUNT_APPEND =
|- !(xs :’a list) (ys :’a list) (x :’a).

COUNT x ((xs ++ ys) :’a list) = COUNT x xs + COUNT x ys
: thm

22> val COUNT_REVERSE =
|- !(xs :’a list) (x :’a). COUNT x (REVERSE xs) = COUNT x xs
: thm

The tactics to prove each are provided in the packageScript.sml file in the directory
examples/HolOmega, but not covered further here.

272 CHAPTER 12. EXAMPLE: PACKAGES

The definition of COUNT now allows us to create our reference implementation of
scheduling queues, as a very simple and clean implementation which is not necessarily
efficient, but for which the necessary properties should be easy to prove.

23- val reference_q_def = Define
‘reference_q =

<| this := [] : num list;
ops := <| emptyq := \:’b. [] : ’b list;

insert := \:’b. \(x:’b) xs. CONS x xs;
remove := \:’b. \xs:’b list. (LAST xs, FRONT xs);
count := \:’b. \(x:’b) xs. COUNT x xs

|>
|>‘;

Definition has been stored under "reference_q_def"
> val reference_q_def =

|- (reference_q :(list, num) sched_q) =
<|this := ([] :num list);
ops :=
<|emptyq := (\:’b. ([] :’b list));
insert := (\:’b. (\(x :’b) (xs :’b list). x::xs));
remove := (\:’b. (\(xs :’b list). (LAST xs,FRONT xs)));
count := (\:’b. (\(x :’b) (xs :’b list). COUNT x xs))|> |>

: thm

Now we can prove that the operations of this reference scheduling queue satisfies the
properties required to be a scheduling queue.

24- val reference_q_is_scheduling_q = store_thm(
"reference_q_is_scheduling_q",
‘‘is_scheduling_q reference_q.ops‘‘,
SRW_TAC [ARITH_ss] [reference_q_def,is_scheduling_q_def,COUNT_DEF]
THEN REWRITE_TAC [ALL_COUNT_ZERO]
THEN STRIP_ASSUME_TAC (ISPEC ‘‘q:’b list‘‘ list_CASES)
THEN ASM_REWRITE_TAC [NOT_CONS_NIL]
THEN GEN_TAC
THEN SIMP_TAC list_ss [GSYM COUNT_LAST]
THEN COND_CASES_TAC
THEN SRW_TAC [] [COUNT_FRONT]
);

> val reference_q_is_scheduling_q =
|- is_scheduling_q (reference_q :(list, num) sched_q).ops
: thm

Our intention here is to eventually show that this is one possible implementation
of scheduling queues, but in the process to hide the actual data structure being used.
In this case the data structure is lists, but we don’t wish this to be visible. What we
would like is to use existential types to hide this, through the use of packages, like the
following.

12.5. EXAMPLE: SCHEDULING QUEUES 273

25- val sched_queue_ty = ‘‘:?’a:ty => ty. (’a,num)sched_q‘‘;
> val sched_queue_ty =

‘‘:?’a :ty => ty. (’a, num) sched_q‘‘
: hol_type

- val sched_queue_ty’ = ty_antiq sched_queue_ty;
> val sched_queue_ty’ =

‘‘(ty_antiq(‘:?’a :ty => ty. (’a, num) sched_q ‘))‘‘
: term

Here we create the desired type (sched queue ty) as an existential type, wrapping
around the type (’a,num)sched q, but hiding the actual type operator ’a by the ex-
istential type quantification. (The type antiquotation is required to use the type inside
terms that are being parsed.)

Then a term of this existential type can be created using packages, taking our refer-
ence queue implementation and abstracting away from the actual list datatype.

26- val reference_q_pkg = ‘‘pack(:list, reference_q) : ^sched_queue_ty’‘‘;
> val reference_q_pkg =

‘‘pack (:list,(reference_q :(list, num) sched_q))‘‘
: term

We now create another possible implementation of priority queues. This one will use a
pair of lists, where new additions to the queue are added to the first list at its front, and
removals from the queue are taken from the second list at its front. In the case when
the second list is empty, the first list is reversed and then replaces the second list.

val efficient_q_def = Define

‘efficient_q =

<| this := ([] : num list, [] : num list);

ops := <| emptyq := \:’b. ([] : ’b list, [] : ’b list);

insert := \:’b. \x (xs,ys). (CONS x xs, ys);

remove := \:’b. \(xs,ys). REMOVE xs ys;

count := \:’b. \x (xs,ys). COUNT x xs + COUNT x ys

|>

|>‘;

The operation of removing an element from this data structure is clearly more complex
than before, and we express this using a subsidiary operator REMOVE that we intend to
define. But REMOVE is nontrivial to define, as seen if we try the normal Define tool.

274 CHAPTER 12. EXAMPLE: PACKAGES

27- val REMOVE_def = Define
‘(REMOVE (xs:’a list) ([]:’a list) = REMOVE [] (REVERSE xs)) /\
(REMOVE xs (y::ys) = (y, (xs,ys)))‘;

Initial goal:

?(R :’a list # ’a list -> ’a list # ’a list -> bool).
WF R /\
!(xs :’a list). R (([] :’a list),REVERSE xs) (xs,([] :’a list))

Exception raised at TotalDefn.Define:
between line 141, character 3 and line 142, character 36:
at TotalDefn.defnDefine:

Unable to prove termination!

Try using "TotalDefn.tDefine <name> <quotation> <tac>".
The termination goal has been set up using Defn.tgoal <defn>.
! Uncaught exception:
! HOL_ERR

The normal Define machinery is not able to automatically prove the termination of this
definition, so the system does not accept this as a valid definition.

Instead, the definition package is directing us to Konrad Slind’s excellent total recur-
sive function definition package, which we will now use. We begin by reforming our
definition using the Hol defn tool as described in the DESCRIPTION manual.

28- val REMOVE_defn = Hol_defn "REMOVE"
‘(REMOVE [] [] = (ARB, ([],[]))) /\
(REMOVE (xs:’a list) ([]:’a list) = REMOVE [] (REVERSE xs)) /\
(REMOVE xs (y::ys) = (y, (xs,ys)))‘;

<<HOL message: mk_functional:
pattern completion has added 1 clause to the original specification.>>

> val REMOVE_defn =
HOL function definition (recursive)

Equation(s) :
[..]
|- REMOVE ([] :’a list) ([] :’a list) =

((ARB :’a),([] :’a list),([] :’a list))
[..]
|- REMOVE ((v2 :’a)::(v3 :’a list)) ([] :’a list) =

REMOVE ([] :’a list) (REVERSE (v2::v3))
[..]
|- REMOVE ([] :’a list) ((y :’a)::(ys :’a list)) = (y,([] :’a list),ys)
[..]
|- REMOVE ((v4 :’a)::(v5 :’a list)) ((y :’a)::(ys :’a list)) =

(y,v4::v5,ys)

12.5. EXAMPLE: SCHEDULING QUEUES 275

29Induction :
[..]
|- !(P :’a list -> ’a list -> bool).

P ([] :’a list) ([] :’a list) /\
(!(v2 :’a) (v3 :’a list).

P ([] :’a list) (REVERSE (v2::v3)) ==>
P (v2::v3) ([] :’a list)) /\

(!(y :’a) (ys :’a list). P ([] :’a list) (y::ys)) /\
(!(v4 :’a) (v5 :’a list) (y :’a) (ys :’a list).

P (v4::v5) (y::ys)) ==>
!(v :’a list) (v1 :’a list). P v v1

Termination conditions :
0. !(v3 :’a list) (v2 :’a).

(R :’a list # ’a list -> ’a list # ’a list -> bool)
(([] :’a list),REVERSE (v2::v3)) (v2::v3,([] :’a list))

1. WF (R :’a list # ’a list -> ’a list # ’a list -> bool)
: defn

This has created an ML data structure (here stored in REMOVE defn) which contains the
elements of a provisional recursive function definition. In particular, it contains both the
equations which are the reflections of our original specification, as well as an induction
principle which can be used to induct over this particular pattern of recursion.

But none of this is available for us to use until we prove the termination of the defini-
tion. This we will have to do by hand. Fortunately, Slind’s package provides a number
of useful tools to aid our task.

First, we set up the termination property as a goal to be proved.

30- Defn.tgoal REMOVE_defn;
> val it =

Proof manager status: 1 proof.
1. Incomplete goalstack:

Initial goal:

?(R :’a list # ’a list -> ’a list # ’a list -> bool).
WF R /\
!(v3 :’a list) (v2 :’a).
R (([] :’a list),REVERSE (v2::v3)) (v2::v3,([] :’a list))

: proofs

We need to supply a well-founded relation as a witness for R, that strictly decreases for
each call. A natural choice is measure(\(xs,ys). LENGTH xs). This uses the constant
measure which transforms a function of type ’a -> num into a relation on ’a.

276 CHAPTER 12. EXAMPLE: PACKAGES

31- e (WF_REL_TAC ‘measure (\(xs,ys). LENGTH xs)‘);
OK..
1 subgoal:
> val it =

!(v3 :’a list) (v2 :’a). LENGTH ([] :’a list) < LENGTH (v2::v3)

: proof

This is easily solved by simplification.

32- e (SIMP_TAC list_ss []);
OK..

Goal proved.
|- !(v3 :’a list) (v2 :’a). LENGTH ([] :’a list) < LENGTH (v2::v3)

> val it =
Initial goal proved.
|- ((REMOVE ([] :’a list) ([] :’a list) =

((ARB :’a),([] :’a list),([] :’a list))) /\
(REMOVE ((v2 :’a)::(v3 :’a list)) ([] :’a list) =
REMOVE ([] :’a list) (REVERSE (v2::v3))) /\
(REMOVE ([] :’a list) ((y :’a)::(ys :’a list)) =
(y,([] :’a list),ys)) /\
(REMOVE ((v4 :’a)::(v5 :’a list)) (y::ys) = (y,v4::v5,ys))) /\
!(P :’a list -> ’a list -> bool).
P ([] :’a list) ([] :’a list) /\
(!(v2 :’a) (v3 :’a list).

P ([] :’a list) (REVERSE (v2::v3)) ==>
P (v2::v3) ([] :’a list)) /\

(!(y :’a) (ys :’a list). P ([] :’a list) (y::ys)) /\
(!(v4 :’a) (v5 :’a list) (y :’a) (ys :’a list).

P (v4::v5) (y::ys)) ==>
!(v :’a list) (v1 :’a list). P v v1

: proof

Now that we know the tactics to use, we can convert REMOVE defn into a real definition
by a single call to Defn.tprove.

12.5. EXAMPLE: SCHEDULING QUEUES 277

33- val (REMOVE_def,REMOVE_ind) =
Defn.tprove (REMOVE_defn,
WF_REL_TAC ‘measure (\(xs,ys). LENGTH xs)‘
THEN SIMP_TAC list_ss []

);

> val REMOVE_def =
|- (REMOVE ([] :’a list) ([] :’a list) =

((ARB :’a),([] :’a list),([] :’a list))) /\
(REMOVE ((v2 :’a)::(v3 :’a list)) ([] :’a list) =
REMOVE ([] :’a list) (REVERSE (v2::v3))) /\
(REMOVE ([] :’a list) ((y :’a)::(ys :’a list)) =
(y,([] :’a list),ys)) /\
(REMOVE ((v4 :’a)::(v5 :’a list)) (y::ys) = (y,v4::v5,ys))

: thm
val REMOVE_ind =
|- !(P :’a list -> ’a list -> bool).

P ([] :’a list) ([] :’a list) /\
(!(v2 :’a) (v3 :’a list).

P ([] :’a list) (REVERSE (v2::v3)) ==>
P (v2::v3) ([] :’a list)) /\

(!(y :’a) (ys :’a list). P ([] :’a list) (y::ys)) /\
(!(v4 :’a) (v5 :’a list) (y :’a) (ys :’a list).

P (v4::v5) (y::ys)) ==>
!(v :’a list) (v1 :’a list). P v v1

: thm

Even better, we can wrap both the definition and its proof of termination all up in one
piece by a single call to tDefine.

34- val REMOVE_def =
tDefine "REMOVE"
‘(REMOVE [] [] = (ARB, ([],[]))) /\
(REMOVE (xs:’a list) ([]:’a list) = REMOVE [] (REVERSE xs)) /\
(REMOVE xs (y::ys) = (y, (xs,ys)))‘

(WF_REL_TAC ‘measure (\(xs,ys). LENGTH xs)‘
THEN SIMP_TAC list_ss []);

<<HOL message: mk_functional:
pattern completion has added 1 clause to the original specification.>>

Equations stored under "REMOVE_def".
Induction stored under "REMOVE_ind".
> val REMOVE_def =

|- (REMOVE ([] :’a list) ([] :’a list) =
((ARB :’a),([] :’a list),([] :’a list))) /\
(REMOVE ((v2 :’a)::(v3 :’a list)) ([] :’a list) =
REMOVE ([] :’a list) (REVERSE (v2::v3))) /\
(REMOVE ([] :’a list) ((y :’a)::(ys :’a list)) =
(y,([] :’a list),ys)) /\
(REMOVE ((v4 :’a)::(v5 :’a list)) (y::ys) = (y,v4::v5,ys))

: thm

278 CHAPTER 12. EXAMPLE: PACKAGES

The induction theorem is not returned directly, but we can obtain it from the current
theory using the ML theorem command.

35- val REMOVE_ind = theorem "REMOVE_ind";
> val REMOVE_ind =

|- !(P :’a list -> ’a list -> bool).
P ([] :’a list) ([] :’a list) /\
(!(v2 :’a) (v3 :’a list).

P ([] :’a list) (REVERSE (v2::v3)) ==>
P (v2::v3) ([] :’a list)) /\

(!(y :’a) (ys :’a list). P ([] :’a list) (y::ys)) /\
(!(v4 :’a) (v5 :’a list) (y :’a) (ys :’a list).

P (v4::v5) (y::ys)) ==>
!(v :’a list) (v1 :’a list). P v v1

: thm

Now we prove a number of elementary facts about REMOVE.

36- val REMOVE_CONS = store_thm(
"REMOVE_CONS",
‘‘!xs ys (y:’a). REMOVE xs (y::ys) = (y,(xs,ys))‘‘,
Cases
THEN REWRITE_TAC [REMOVE_def]
);

> val REMOVE_CONS =
|- !(xs :’a list) (ys :’a list) (y :’a). REMOVE xs (y::ys) = (y,xs,ys)
: thm

- val REVERSE_CONS_NOT_NIL = store_thm(
"REVERSE_CONS_NOT_NIL",
‘‘!xs (x:’a). ~(REVERSE (x::xs) = [])‘‘,
SIMP_TAC list_ss []
);

> val REVERSE_CONS_NOT_NIL =
|- !(xs :’a list) (x :’a). REVERSE (x::xs) <> ([] :’a list)
: thm

The interaction of REMOVE with COUNT is more interesting, and we prove the following
lemma for use later. It begins with a use of the REMOVE induction principle to follow the
same recursion structure that REMOVE itself does.

12.5. EXAMPLE: SCHEDULING QUEUES 279

37- val REMOVE_COUNT = store_thm(
"REMOVE_COUNT",
‘‘!xs ys (u:’a) us vs.

(REMOVE xs ys = (u,(us,vs))) ==>
~((xs = []) /\ (ys = [])) ==>
!z. COUNT z xs + COUNT z ys =

if z = u then COUNT z us + COUNT z vs + 1
else COUNT z us + COUNT z vs‘‘,

HO_MATCH_MP_TAC REMOVE_ind
THEN REPEAT CONJ_TAC
THEN REPEAT GEN_TAC
THEN SIMP_TAC list_ss [REMOVE_def,COUNT_DEF,COUNT_APPEND,COUNT_REVERSE]
THEN CONV_TAC (RATOR_CONV (ONCE_DEPTH_CONV SYM_CONV))
THEN STRIP_TAC
THEN GEN_TAC
THEN COND_CASES_TAC
THEN ASM_SIMP_TAC arith_ss [COUNT_DEF]
);

> val REMOVE_COUNT =
|- !(xs :’a list) (ys :’a list) (u :’a) (us :’a list) (vs :’a list).

(REMOVE xs ys = (u,us,vs)) ==>
~((xs = ([] :’a list)) /\ (ys = ([] :’a list))) ==>
!(z :’a).
COUNT z xs + COUNT z ys =
if z = u then
COUNT z us + COUNT z vs + (1 :num)

else
COUNT z us + COUNT z vs

: thm

Now we are ready to create our new scheduling queue implementation. We will call
this the “efficient” implementation, because it is faster than the reference implementa-
tion, and would be a better candidate for eventual deployment.

38- val efficient_q_def = Define
‘efficient_q =

<| this := ([] : num list, [] : num list);
ops := <| emptyq := \:’b. ([] : ’b list, [] : ’b list);

insert := \:’b. \x (xs,ys). (CONS x xs, ys);
remove := \:’b. \(xs,ys). REMOVE xs ys;
count := \:’b. \x (xs,ys). COUNT x xs + COUNT x ys

|>
|>‘;

280 CHAPTER 12. EXAMPLE: PACKAGES

39Definition has been stored under "efficient_q_def"
> val efficient_q_def =

|- (efficient_q :(’b list prod o list, num) sched_q) =
<|this := (([] :num list),([] :num list));
ops :=
<|emptyq := (\:’b. (([] :’b list),([] :’b list)));
insert :=
(\:’b. (\(x :’b) ((xs :’b list),(ys :’b list)). (x::xs,ys)));

remove :=
(\:’b. (\((xs :’b list),(ys :’b list)). REMOVE xs ys));

count :=
(\:’b.

(\(x :’b) ((xs :’b list),(ys :’b list)).
COUNT x xs + COUNT x ys))|> |>

: thm

The efficient implementation can be proven to satisfy the conditions to be a schedul-
ing queue.

Before we start, we need to import the pair library, to be able to easily simplify ex-
pressions involving pairs, such as the pair of lists involved in this implementation.

40- local open pairLib in end;

Here is the proof that the efficient queue is a scheduling queue. It uses the lemmas
we have proven before, and a good deal of simplification.

41- val efficient_q_is_scheduling_q = store_thm(
"efficient_q_is_scheduling_q",
‘‘is_scheduling_q efficient_q.ops‘‘,
SRW_TAC [ARITH_ss] [efficient_q_def,is_scheduling_q_def,COUNT_DEF]
THEN REPEAT (POP_ASSUM MP_TAC)
THEN PairCases_on ‘q‘
THEN SRW_TAC [ARITH_ss] [COUNT_DEF]
THEN REWRITE_TAC [ALL_COUNT_ZERO_2]
THEN POP_ASSUM MP_TAC
THEN Cases_on ‘q0‘
THEN Cases_on ‘q1‘
THEN PairCases_on ‘q’‘
THEN DISCH_TAC
THEN IMP_RES_THEN MP_TAC REMOVE_COUNT
THEN SRW_TAC [] [COUNT_DEF]
THEN COND_CASES_TAC
THEN ASM_SIMP_TAC arith_ss []
);

> val efficient_q_is_scheduling_q =
|- is_scheduling_q (efficient_q :(’b list prod o list, num) sched_q).ops
: thm

Similar to before, we can form a package from this scheduling queue, hiding the
actual data structure.

12.5. EXAMPLE: SCHEDULING QUEUES 281

42- val efficient_q_pkg = ‘‘pack(:\’a. ’a list # ’a list, efficient_q)
: ^sched_queue_ty’‘‘;

> val efficient_q_pkg =
‘‘pack

(:’a list prod o list,
(efficient_q :(’b list prod o list, num) sched_q))‘‘

: term

We can even check to see if the two package terms for the two different implementa-
tions have the same type.

43- val check = eq_ty (type_of reference_q_pkg) (type_of efficient_q_pkg);
> val check = true : bool

So we have now shown two different implementations of priority queues, that both
satisfy the required properties, as specified in is scheduling q. Both of these imple-
mentations, despite their differences, are actually functionally equivalent; they both
implement queues.

But this is not actually necessary to satisfy the properties of is scheduling q. We
could implement a variety of other kinds of data structures that do not operate as pure
queues, and as long as they satisfy is scheduling q, they will be acceptable. As an
example, let’s take an extreme variant. Instead of a first-in-first-out queue, we can
implement a last-in-first-out stack. This will not have one very desirable property that
queues do, of fairness, which guarantees that each element entered into the queue is
eventually removed. But since that is not mentioned in is scheduling q, a stack is
nevertheless an acceptable option.

44- val stack_q_def = Define
‘stack_q =

<| this := [] : num list;
ops := <| emptyq := \:’b. [] : ’b list;

insert := \:’b. \x xs. CONS x xs;
remove := \:’b. \xs. (HD xs,TL xs);
count := \:’b. \x xs. COUNT x xs

|>
|>‘;

Definition has been stored under "stack_q_def"

> val stack_q_def =
|- (stack_q :(list, num) sched_q) =

<|this := ([] :num list);
ops :=
<|emptyq := (\:’b. ([] :’b list));
insert := (\:’b. (\(x :’b) (xs :’b list). x::xs));
remove := (\:’b. (\(xs :’b list). (HD xs,TL xs)));
count := (\:’b. (\(x :’b) (xs :’b list). COUNT x xs))|> |>

: thm

282 CHAPTER 12. EXAMPLE: PACKAGES

This is a simple implementation, so it is not hard to prove that it is a scheduling queue.

45- val stack_q_is_scheduling_q = store_thm(
"stack_q_is_scheduling_q",
‘‘is_scheduling_q stack_q.ops‘‘,
SRW_TAC [] [stack_q_def,is_scheduling_q_def,COUNT_DEF]
THEN Cases_on ‘q‘
THEN SRW_TAC [] [COUNT_DEF]
);

> val stack_q_is_scheduling_q =
|- is_scheduling_q (stack_q :(list, num) sched_q).ops
: thm

As for the other implementations, the scheduling stack can be wrapped up in a pack-
age, hiding its implementation type (list).

46- val stack_q_pkg = ‘‘pack(:list, stack_q) : ^sched_queue_ty’‘‘;
> val stack_q_pkg =

‘‘pack (:list,(stack_q :(list, num) sched_q))‘‘
: term

The purpose of the scheduling stack is not to suggest this as a suitable data structure to
actually schedule processes, but just to show how different implementations may have
significantly different functional behavior. Whatever the properties we specify, those
are what any suitable candidate implementation must meet. Furthermore, those are
also the properties, and only the properties, which the rest of the program can expect
any scheduling queue to meet. Thus this choice of the properties of the data structure
helps to form a boundary, isolating information between parts of the program, which
contributes to good system design and modularity.

The advantage of wrapping these implementations up as packages is that we hide
their implementation types, so that we can write common, general routines that make
use of any of them, interchangably.

12.5. EXAMPLE: SCHEDULING QUEUES 283

The following function counts how many elements in a scheduling package are equal
to a given element.

47- val countp_def = Define
‘countp i (p:^sched_queue_ty’) =

let (:’a,q) = p in
q.ops.count i q.this‘;

Definition has been stored under "countp_def"
> val countp_def =

|- !(i :num) (p :?’a :ty => ty. (’a, num) sched_q).
countp i p =
(let (:’a :ty => ty,(q :(’a, num) sched_q)) = p
in
q.ops.count [:num:] i q.this)

: thm

Here is a function to take a package and create an empty version of that same kind of
package.

48- val emptyp_def = Define
‘emptyp (p:^sched_queue_ty’) =

let (:’a,q) = p in
pack(:’a, <| this := q.ops.emptyq [:num:];

ops := q.ops |>)‘;
Definition has been stored under "emptyp_def"
> val emptyp_def =

|- !(p :?’a :ty => ty. (’a, num) sched_q).
emptyp p =
(let (:’a :ty => ty,(q :(’a, num) sched_q)) = p
in
pack
(:’a :ty => ty,
<|this := q.ops.emptyq [:num:]; ops := q.ops|>))

: thm

Here is a function to insert an element into a scheduling package.
49- val insertp_def = Define

‘insertp i (p:^sched_queue_ty’) =
let (:’a,q) = p in
pack(:’a, <| this := q.ops.insert i q.this;

ops := q.ops |>)‘;
Definition has been stored under "insertp_def"
> val insertp_def =

|- !(i :num) (p :?’a :ty => ty. (’a, num) sched_q).
insertp i p =
(let (:’a :ty => ty,(q :(’a, num) sched_q)) = p
in
pack
(:’a :ty => ty,
<|this := q.ops.insert [:num:] i q.this; ops := q.ops|>))

: thm

284 CHAPTER 12. EXAMPLE: PACKAGES

This function removes an element of the scheduling package and returns it, paired with
the diminished scheduling package.

50- val removep_def = Define
‘removep (p:^sched_queue_ty’) =

let (:’a,q) = p in
let (x,this’) = q.ops.remove q.this in
(x, pack(:’a, <| this := this’;

ops := q.ops |>))‘;
Definition has been stored under "removep_def"
> val removep_def =

|- !(p :?’a :ty => ty. (’a, num) sched_q).
removep p =
(let (:’a :ty => ty,(q :(’a, num) sched_q)) = p
in
let ((x :num),(this’ :num ’a)) = q.ops.remove [:num:] q.this
in
(x,(pack (:’a :ty => ty,<|this := this’; ops := q.ops|>))))

: thm

Similarly, we can lift the definition of the properties of a scheduling queue to packages.

51- val is_scheduling_p_def = Define
‘is_scheduling_p (p : ?’b. (’b,’a)sched_q) =

let (:’a,q) = p in
is_scheduling_q q.ops‘;

Definition has been stored under "is_scheduling_p_def"
> val is_scheduling_p_def =

|- !(p :?’b :ty => ty. (’b, ’a) sched_q).
is_scheduling_p p <=>
(let (:’b :ty => ty,(q :(’b, ’a) sched_q)) = p
in
is_scheduling_q q.ops) : thm

The type checking of packages ensures that the representation type of the package is
not disclosed outside of the let . . . in form. If we try to do this, say by returning the
internal data structure that holds the elements of the queue,

52- val thisp_def = Define
‘thisp (p:^sched_queue_ty’) =

let (:’a,q) = p in
q.this‘;

we would see an error message like the following.

12.5. EXAMPLE: SCHEDULING QUEUES 285

53Exception raised at Preterm.typecheck:
roughly on line 326, characters 8-13:

Type inference failure: unable to infer a type for the application of

(UNPACK :(!(’x :ty => ty). (’x, num) sched_q -> num (’a :ty => ty)) ->
(?(’y :ty => ty). (’y, num) sched_q) -> num ’a)

roughly on line 325, characters 10-20

to

\:’a :ty => ty. (\(q :(’a, num) sched_q). q.this)

roughly on line 326, characters 8-13

which has type

:!’a :ty => ty. (’a, num) sched_q -> num ’a

unification failure message: unify failed

! Uncaught exception:
! HOL_ERR

Now we can take each of our implementations, define their packaged versions, and
show that the packaged version satisfies the predicate is scheduling p.

Here we define the packaged version of the reference scheduling queue.

54- val reference_p_def = Define
‘reference_p = pack(:list, reference_q) : ^sched_queue_ty’‘;

Definition has been stored under "reference_p_def"
> val reference_p_def =

|- (reference_p :?’a :ty => ty. (’a, num) sched_q) =
(pack (:list,(reference_q :(list, num) sched_q)))

: thm

- val reference_p_is_scheduling_p = store_thm(
"reference_p_is_scheduling_p",
‘‘is_scheduling_p reference_p‘‘,
SIMP_TAC bool_ss [is_scheduling_p_def,reference_p_def,

reference_q_is_scheduling_q]
);

> val reference_p_is_scheduling_p =
|- is_scheduling_p (reference_p :?’a :ty => ty. (’a, num) sched_q)
: thm

This defines the packaged version of the efficient scheduling queue.

286 CHAPTER 12. EXAMPLE: PACKAGES

55- val efficient_p_def = Define
‘efficient_p = pack(:\’a. ’a list # ’a list, efficient_q)

: ^sched_queue_ty’‘;
Definition has been stored under "efficient_p_def"
> val efficient_p_def =

|- (efficient_p :?’a :ty => ty. (’a, num) sched_q) =
(pack

(:’a list prod o list,
(efficient_q :(’b list prod o list, num) sched_q)))

: thm

- val efficient_p_is_scheduling_p = store_thm(
"efficient_p_is_scheduling_p",
‘‘is_scheduling_p efficient_p‘‘,
SIMP_TAC bool_ss [is_scheduling_p_def,efficient_p_def,

efficient_q_is_scheduling_q]
);

> val efficient_p_is_scheduling_p =
|- is_scheduling_p (efficient_p :?’a :ty => ty. (’a, num) sched_q)
: thm

And finally, this defines the packaged version of the stack scheduling queue.

56- val stack_p_def = Define
‘stack_p = pack(:list, stack_q) : ^sched_queue_ty’‘;

Definition has been stored under "stack_p_def"
> val stack_p_def =

|- (stack_p :?’a :ty => ty. (’a, num) sched_q) =
(pack (:list,(stack_q :(list, num) sched_q)))

: thm

- val stack_p_is_scheduling_p = store_thm(
"stack_p_is_scheduling_p",
‘‘is_scheduling_p stack_p‘‘,
SIMP_TAC bool_ss [is_scheduling_p_def,stack_p_def,

stack_q_is_scheduling_q]
);

> val stack_p_is_scheduling_p =
|- is_scheduling_p (stack_p :?’a :ty => ty. (’a, num) sched_q)
: thm

Programmers on a project using these scheduling queues will need to be able to ac-
cess the desired properties of the queue, even if they do not know exactly what the
implementation is. Furthermore, since they will not have access to the internal record
structure of the implementation, we should express these properties in terms of the
functions they do have access to, that is, the functions defined above that work on
packages, namely countp, emptyp, insertp, and removep.

To make the properties of a scheduling package easily available, we will first prove

12.5. EXAMPLE: SCHEDULING QUEUES 287

that any package satisfying is scheduling p will be guaranteed of fulfilling the follow-
ing properties.

57- val scheduling_p_props = store_thm(
"scheduling_p_props",
‘‘!(p: ^sched_queue_ty’).

is_scheduling_p p ==>
(!x. countp x (emptyp p) = 0) /\
(!x y. countp x (insertp y p) =

if x = y then countp x p + 1
else countp x p) /\

(~(!x. countp x p = 0) ==>
let (y,p’) = removep p
in !x. countp x p = countp x (insertp y p’))‘‘,

GEN_TAC
THEN REWRITE_TAC [is_scheduling_p_def]
THEN STRIP_ASSUME_TAC (ISPEC ‘‘p:^sched_queue_ty’‘‘ PACK_ONTO_AX)
THEN ASM_REWRITE_TAC []
THEN SIMP_TAC bool_ss []
THEN REWRITE_TAC [is_scheduling_q_def]
THEN REPEAT STRIP_TAC
THENL
[SRW_TAC [] [countp_def,emptyp_def],

SRW_TAC [] [countp_def,insertp_def],

POP_ASSUM MP_TAC
THEN SRW_TAC [] [countp_def,removep_def,insertp_def]
THEN FIRST_ASSUM (MP_TAC o Q.SPEC ‘t.this‘ o TY_SPEC ‘‘:num‘‘)
THEN COND_CASES_TAC
THENL
[POP_ASSUM (STRIP_ASSUME_TAC o SPEC ‘‘x:num‘‘),

SRW_TAC [] [LET_DEF]
]

]
);

> val scheduling_p_props =
|- !(p :?’a :ty => ty. (’a, num) sched_q).

is_scheduling_p p ==>
(!(x :num). countp x (emptyp p) = (0 :num)) /\
(!(x :num) (y :num).

countp x (insertp y p) =
if x = y then countp x p + (1 :num) else countp x p) /\

(~(!(x :num). countp x p = (0 :num)) ==>
(let ((y :num),(p’ :?’a :ty => ty. (’a, num) sched_q)) = removep p
in
!(x :num). countp x p = countp x (insertp y p’)))

: thm

288 CHAPTER 12. EXAMPLE: PACKAGES

For convenience, we can break this up into three theorems for each of the properties,
named by the operation they concentrate on.

58- val emptyp_prop = store_thm(
"emptyp_prop",
‘‘!(p: ^sched_queue_ty’).

is_scheduling_p p ==>
!x. countp x (emptyp p) = 0‘‘,

SIMP_TAC bool_ss [scheduling_p_props]
);

> val emptyp_prop =
|- !(p :?’a :ty => ty. (’a, num) sched_q).

is_scheduling_p p ==> !(x :num). countp x (emptyp p) = (0 :num)
: thm

- val insertp_prop = store_thm(
"insertp_prop",
‘‘!(p: ^sched_queue_ty’).

is_scheduling_p p ==>
!x y. countp x (insertp y p) =

if x = y then countp x p + 1
else countp x p‘‘,

SIMP_TAC bool_ss [scheduling_p_props]
);

> val insertp_prop =
|- !(p :?’a :ty => ty. (’a, num) sched_q).

is_scheduling_p p ==>
!(x :num) (y :num).
countp x (insertp y p) =
if x = y then countp x p + (1 :num) else countp x p

: thm

- val removep_prop = store_thm(
"removep_prop",
‘‘!(p: ^sched_queue_ty’).

is_scheduling_p p ==>
~(!x. countp x p = 0) ==>

let (y,p’) = removep p
in !x. countp x p = countp x (insertp y p’)‘‘,

SIMP_TAC bool_ss [scheduling_p_props]
);

> val removep_prop =
|- !(p :?’a :ty => ty. (’a, num) sched_q).

is_scheduling_p p ==>
~(!(x :num). countp x p = (0 :num)) ==>
(let ((y :num),(p’ :?’a :ty => ty. (’a, num) sched_q)) = removep p
in
!(x :num). countp x p = countp x (insertp y p’))

: thm

12.5. EXAMPLE: SCHEDULING QUEUES 289

These properties hold about any scheduling queue package that satisfies is scheduling p.
In particular, the properties hold for the example implementations defined earlier.

59- val _ = set_trace "types" 0;
- val reference_p_props = save_thm(

"reference_p_props",
MATCH_MP scheduling_p_props reference_p_is_scheduling_p);

> val reference_p_props =
|- (!x. countp x (emptyp reference_p) = 0) /\

(!x y.
countp x (insertp y reference_p) =
if x = y then
countp x reference_p + 1

else
countp x reference_p) /\

(~(!x. countp x reference_p = 0) ==>
(let (y,p’) = removep reference_p
in
!x. countp x reference_p = countp x (insertp y p’)))

: thm
- val efficient_p_props = save_thm(

"efficient_p_props",
MATCH_MP scheduling_p_props efficient_p_is_scheduling_p);

> val efficient_p_props =
|- (!x. countp x (emptyp efficient_p) = 0) /\

(!x y.
countp x (insertp y efficient_p) =
if x = y then
countp x efficient_p + 1

else
countp x efficient_p) /\

(~(!x. countp x efficient_p = 0) ==>
(let (y,p’) = removep efficient_p
in
!x. countp x efficient_p = countp x (insertp y p’)))

: thm
- val stack_p_props = save_thm(

"stack_p_props",
MATCH_MP scheduling_p_props stack_p_is_scheduling_p);

> val stack_p_props =
|- (!x. countp x (emptyp stack_p) = 0) /\

(!x y.
countp x (insertp y stack_p) =
if x = y then countp x stack_p + 1 else countp x stack_p) /\

(~(!x. countp x stack_p = 0) ==>
(let (y,p’) = removep stack_p
in
!x. countp x stack_p = countp x (insertp y p’)))

: thm

290 CHAPTER 12. EXAMPLE: PACKAGES

This concludes the exercise on scheduling queues. The purpose of this exercise was
to show how a modular boundary can be established between the implementation of a
data structure and the rest of the program that uses that data structure. The specific
properties are freely chosen by the system design team, and form a good documentation
of the interface at this modular boundary.

In this fashion, packages and existential types promote good programming prac-
tices, and this also contributes to a cleaner overall system, more resilient under future
changes, and a considerable lessening of the proof effort required to revalidate the sys-
tem when such changes occur.

Chapter 13

More Examples

In addition to the examples already covered in this text, the HOL distribution comes
with a variety of instructive examples in the examples directory. There the following
examples (among others) are to be found, using only the classic HOL logic:

autopilot.sml This example is a HOL rendition (by Mark Staples) of a PVS example
due to Ricky Butler of NASA. The example shows the use of the record-definition
package, as well as illustrating some aspects of the automation available in HOL.

bmark In this directory, there is a standard HOL benchmark: the proof of correctness of
a multiplier circuit, due to Mike Gordon.

euclid.sml This example is the same as that covered in Chapter 6: a proof of Euclid’s
theorem on the infinitude of the prime numbers, extracted and modified from a
much larger development due to John Harrison. It illustrates the automation of
HOL on a classic proof.

ind def This directory contains some examples of an inductive definition package in
action. Featured are an operational semantics for a small imperative programming
language, a small process algebra, and combinatory logic with its type system.
The files were originally developed by Tom Melham and Juanito Camilleri and are
extensively commented. The last is the basis for Chapter 8.

Most of the proofs in these theories can now be done much more easily by using
some of the recently developed proof tools, namely the simplifier and the first
order prover.

fol.sml This file illustrates John Harrison’s implementation of a model-elimination
style first order prover.

lambda This directory develops theories of a “de Bruijn” style lambda calculus, and also
a name-carrying version. (Both are untyped.) The development is a revision of
the proofs underlying the paper “5 Axioms of Alpha Conversion”, Andy Gordon and
Tom Melham, Proceedings of TPHOLs’96, Springer LNCS 1125.

parity This sub-directory contains the files used in the parity example of Chapter 7.

291

292 CHAPTER 13. MORE EXAMPLES

MLsyntax This sub-directory contains an extended example of a facility for defining
mutually recursive types, due to Elsa Gunter of Bell Labs. In the example, the type
of abstract syntax for a small but not totally unrealistic subset of ML is defined,
along with a simple mutually recursive function over the syntax.

Thery.sml A very short example due to Laurent Thery, demonstrating a cute inductive
proof.

RSA This directory develops some of the mathematics underlying the RSA cryptography
scheme. The theories have been produced by Laurent Thery of INRIA Sophia-
Antipolis.

In addition to the examples above, the examples covered in this tutorial concerning
the HOL-Omega logic are also present, as well as further developments, including the
following:

appetizersScript.sml This file gives a series of examples that in a light and easy way
briefly demonstrate the essential new features of the HOL-Omega logic.

functorScript.sml This example shows how a simple version of category theory can
be nicely realized as a shallow embedding within the new logic. Both functors
and natural transformations are defined, and examples of each are demonstrated.
This is similar to a development for HOL2P originally written by Norbert Völker.

aopScript.sml Building on the functor theory above, this shows several examples
taken from The Algebra of Programming, by Richard Bird and Oege de Moor. These
include homomorphisms, initial algebras, catamorphisms, and the banana split
theorem. This development was originally written by Norbert Völker for HOL2P.

monadScript.sml Also building on the functor theory above, this defines the concept
of a monad in three different ways, and proves the three are equivalent. Multiple
examples of monads are presented, and also how one can convert a monad from
one of the styles of definition to another style.

type specScript.sml This file contains examples of creating new types using the new
definitional principle for type specification which has been added to the HOL-
Omega theorem prover. In particular, this is used to create a new type by specifying
it as the initial algebra of a signature. The example used is taken from a 1993
paper by Tom Melham, “The HOL Logic Extended with Quantification over Type
Variables.”

packageScript.sml This example shows more completely how packages and existen-
tial types may be created and used to hide the information about data types. Many

293

of the examples are taken from and related to chapter 24 of the book ”Types and
Programmng Languages” by Benjamin C. Pierce, MIT Press, 2002. There is also
an extended example on process scheduling queues.

burali fortiScript.sml This file contains a development of the Burali-Forti paradox
in the HOL-Omega logic, which attempts to prove false by a clever manipulation of
the type system. This is the same as Girard’s Paradox, which showed that the näıve
combination of higher order logic and an advanced type system was inconsistent.
The development in this file demonstrates how the HOL-Omega logic, which is both
a higher order logic and an advanced type system, prevents the inconsistency that
the paradox attempts to expose. This is not a proof of the logic’s consistency, but it
is a strong demonstration of its resilience in the face of a sophisticated and subtle
attack. This work is described further in an upcoming paper, “The HOL-Omega
Logic and Girard’s Paradox.”

interim This directory contains an extensive, worked example of a generalized version
of category theory, created by Jeremy Dawson of the Australian National Uni-
versity. This generalizes the notions of functor and natural transformation from
those in functorScript.sml, to allow for a much richer realization of category
theory. For example, multiple categories, each with their own composition and
identity operations, may have functors defined between them. The development
of category theory is continued through the definition of adjoints, and introduces
an innovative extension of monads. This example extensively exercises the kind
structure of HOL-Omega, to manage the types relating different categories and the
operations among them.

294 CHAPTER 13. MORE EXAMPLES

References

[1] S.F. Allen, R.L. Constable, D.J. Howe and W.E. Aitken, ‘The Semantics of Reflected
Proof’, Proceedings of the 5th IEEE Symposium on Logic in Computer Science, pp.
95–105, 1990.

[2] R.S. Boyer and J S. Moore, ‘Metafunctions: Proving Them Correct and Using Them
Efficiently as New Proof Procedures’, in: The Correctness Problem in Computer
Science, edited by R.S. Boyer and J S. Moore, Academic Press, New York, 1981.

[3] A.J. Camilleri, T.F. Melham and M.J.C. Gordon, ‘Hardware Verification using
Higher-Order Logic’, in: From HDL Descriptions to Guaranteed Correct Circuit De-
signs: Proceedings of the IFIP WG 10.2 Working Conference, Grenoble, September
1986, edited by D. Borrione (North-Holland, 1987), pp. 43–67.

[4] M. Davis, G. Logemann and D. Loveland, ‘A machine program for theorem prov-
ing’, Communications of the ACM, Vol. 5 (1962), pp. 394–397.

[5] M. Gordon, ‘Why higher-order Logic is a good formalism for specifying and verify-
ing hardware’, in: Formal Aspects of VLSI Design: Proceedings of the 1985 Edinburgh
Workshop on VLSI, edited by G. Milne and P.A. Subrahmanyam (North-Holland,
1986), pp. 153–177.

[6] Donald. E. Knuth. The Art of Computer Programming. Volume 1/Fundamental Al-
gorithms. Addison-Wesley, second edition, 1973.

[7] Saunders Mac Lane and Garrett Birkhoff. Algebra. Collier-MacMillan Limited, Lon-
don, 1967.

[8] R. Milner, ‘A Theory of Type Polymorphism in Programming’, Journal of Computer
and System Sciences, Vol. 17 (1978), pp. 348–375.

[9] George D. Mostow, Joseph H. Sampson, and Jean-Pierre Meyer. Fundamental
Structures of Algebra. McGraw-Hill Book Company, 1963.

[10] L. Paulson, ‘A Higher-Order Implementation of Rewriting’, Science of Computer
Programming, Vol. 3, (1983), pp. 119–149.

295

296 REFERENCES

[11] L. Paulson, Logic and Computation: Interactive Proof with Cambridge LCF, Cam-
bridge Tracts in Theoretical Computer Science 2 (Cambridge University Press,
1987).

[12] R.E. Weyhrauch, ‘Prolegomena to a theory of mechanized formal reasoning’, Arti-
ficial Intelligence 3(1), 1980, pp. 133–170.

[13] A.N. Whitehead and B. Russell, Principia Mathematica, 3 volumes (Cambridge
University Press, 1910–3).

