
1

Part I

Background

2

1

1

truth,

CHAPTER 1

Introduction

'emet eh

'Emet 'aman

'Emet

* \ (-met); Strong's #571: Certainty, stability, truth, rightness,

trustworthiness. derives from the verb , meaning \to be �rm, per-

manent, and established." conveys a sense of dependability, �rmness, and

reliability. Truth is therefore something upon which a person may con�dently

stake his life."

| The Spirit-Filled Life Bible, Thomas Nelson Publishers, 1991, page 774.

All quotations from the Bible are taken from the New King James Version, copyright c 1991

Thomas Nelson, Inc., unless otherwise indicated.

\Behold, You desire truth* in the inward parts,

And in the hidden part You will make me to know wisdom."

| Psalm 51:6

Good software is very di�cult to produce. This contradicts expectations, for

building software requires no large factories or furnaces, ore or acres. It consumes

no rare, irreplaceable materials, and generates no irreducible waste. It requires

no physical agility or grace, and can be made in any locale.

What good software does require, it demands of the intelligence and character

of the person who makes it. These demands include patience, perseverance, care,

3

guaranteed

craftsmanship, attention to detail, and a streak of the detective, for hunting down

errors. Perhaps most central is an ability to solve problems logically, to resolve

incomplete speci�cations to consistent, e�ective designs, to translate nebulous

descriptions of a program's purpose to de�nite detailed algorithms. Finally, soft-

ware remains lifeless and mundane without a well-crafted dose of the artistic and

creative.

Large software systems often have many levels of abstraction. Such depth of

hierarchical structure implies an enormous burden of understanding. In fact, even

the most senior programmers of large software systems cannot possibly know all

the details of every part, but rely on others to understand each particular small

area.

Given that creating software is a human activity, errors occur. What is sur-

prising is how di�cult these errors often are to even detect, let alone isolate,

identify, and correct. Software systems typically pass through hundreds of tests

of their performance without aw, only to fail unexpectedly in the �eld given

some unfortunate combination of circumstances. Even the most diligent and

faithful applications of rigorous disciplines of testing only mitigate this problem.

The core remains, as expressed by Dijkstra: \Program testing can be used to

show the presence of bugs, but never to show their absence!" [Dij72] It is a fact

that virtually every major software system that is released or sold is, not merely

suspected, but in fact to contain errors.

This degree of unsoundness would be considered unacceptable in most other

�elds. It is tolerated in software because there is no apparent alternative. The

resulting erroneous software is justi�ed as being \good enough," giving correct an-

4

any

typical

\X" CORPORATION PROVIDES THIS SOFTWARE \AS IS"WITHOUT ANY

WARRANTEE OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUD-

ING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDI-

TIONS OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PUR-

POSE. IN NO EVENT SHALL \X" CORPORATION BE LIABLE FOR ANY

LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTER-

RUPTION OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES OF ANY KIND, EVEN IF \X" CORPORA-

TION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES

ARISING FROM ANY DEFECT OR ERROR IN THIS SOFTWARE.

swers \most of the time," and the occasional collapses of the system are shrugged

o� as inevitable lapses that must be endured. Virtually every piece of software

that is sold for a personal computer contains a disclaimer of particular per-

formance at all. For example, the following is , not extraordinary:

The limit to which many companies stand behind their software is to promise

to reimburse the customer the price of a oppy disk, if the physical medium is

faulty. This means that the customer must hope and pray that the software per-

forms as advertised, for he has no �rm assurance at all. This lack of responsibility

is not tolerated in most other �elds of science or business. It is tolerated here

because it is, for all practical purposes, impossible to actually create perfect soft-

ware of the size and complexity desired, using the current technology of testing

to detect errors.

There is a reason why testing is inadequate. Fundamentally, testing examines

a piece of software as a \black box," subjecting it to various external stimuli, and

observing its responses. These responses are then compared to what the tester

5

expected, and any variation is investigated. Testing depends solely on what is

externally visible. This approach treats the piece of software as a mysterious

locked chest, impenetrable and opaque to any deeper vision or understanding of

its internal behavior. A good tester does examine the software and study its

structure in order to design his test cases, so as to test internal paths, and check

circumstances around boundary cases. But even with some knowledge of the

internal structure, it is very di�cult in many cases to list a su�cient set of cases

that will exhaustively test all paths through the software, or all combinations of

circumstances in which the software will be expected to function.

In truth, though, this behavioral approach is foreign to most real systems in

physics. Nearly all physical systems may be understood and analyzed in terms

of their component parts. It is far more natural to examine systems in detail,

by investigating their internal structure and organization, to watch their internal

processes and interrelationships, and to derive from that observation a deep un-

derstanding of the \heart" of the system. Here each component may be studied

to some degree as an entity unto itself, existing within an environment which is

the rest of the system. This is essentially the \divide and conquer" strategy ap-

plied to understanding systems, and it has the advantage that the part is usually

simpler than the whole. If a particular component is still too complex to permit

immediate understanding, it may be itself analyzed as being made up of other

smaller pieces, and the process recurses in a natural way.

This concept was recognized by Floyd, Hoare, Dijkstra, and others, beginning

about 1969, and an alternative technique to testing is currently in the process of

being fashioned by the computing community. This approach is called \program

6

every

every

correctness" or \software veri�cation." It is concerned with analyzing a program

down to the smallest element, and then synthesizing an understanding of the

entire program by composing the behaviors of the individual elements and sub-

systems. This attention to detail costs a good deal of e�ort, but it pays o� in that

the programmer gains a much deeper perception of the program and its behavior,

in a way that is complete while being tractable. This deeper examination allows

for stronger conclusions to be reached about the software's quality.

As opposed to testing, veri�cation can trace path through a system, and

consider possible combination of circumstances, and be certain that nothing

has been left out. This is possible because the method relies on mathematical

methods of proof to assure the completeness and correctness of every step. What

is actually achieved by veri�cation is a mathematical proof that the program being

studied satis�es its speci�cation. If the speci�cation is complete and correct, then

the program is guaranteed to perform correctly as well.

However, the claims of the bene�ts of program veri�cation need to be tem-

pered with the realization that substantially what is accomplishedmay be consid-

ered an exercise in redundancy. The proof shows that the speci�cation and the

program, two forms of representing the same system, are consistent with each

other. But deriving a complete and correct formal speci�cation for a problem

from the vague and nuanced words of an English description is a di�cult and un-

certain process itself. If the formal speci�cation arrived at is not what was truly

intended, then the entire proof activity does not accomplish anything of worth.

In fact, it may have the negative e�ect of giving a false sense of certainty to the

user's expectations of how the program will perform. It is important, therefore,

7

its

to remember that what program veri�cation accomplishes is limited in its scope,

to proving the consistency of a program with its speci�cation.

But within that scope, program veri�cation becomes more than redundancy

when the speci�cation is an abstract, less detailed statement than the program.

Usually the speci�cation as given describes only the external behavior of the

program. In one sense, the proof maps the external speci�cation down through

the structure of the program to the elements that must combine to support each

requirement. In another sense, the proof is good engineering, like installing steel

reinforcement within a largely concrete structure. The proof spins a single thread

through every line of code|but this single thread is far stronger than steel; it

has the in�nite strength of logical truth. Clearly this greatly increases one's

con�dence in the �nished product. Here is the relevance of the introductory

quote from Psalm 51. A system is far stronger if it has internal integrity, rather

than simply satisfaction of an external behavioral criterion. The heart of the

system must be correct, and to achieve this requires \wisdom" (truth) in the

\hidden part."

The theory for creating these proofs of program correctness has been devel-

oped and applied to sample programs. It has been found that for even moderately

sized programs, the proofs are often long and involved, and full of complex de-

tails. This raises the possibility of errors occurring in the proof itself, and brings

into question credibility.

This situation naturally calls for automation. Assistance may be provided by

a tool which records and maintains the proof as it is constructed step by step, and

ensures its soundness. This tool becomes an agent which mechanically veri�es

8

VCG

VCG

Veri�cation Condition Generator

the proof's correctness. The Higher Order Logic (HOL) proof assistant is such

a mechanical proof checker. It is an interactive theorem-proving environment

for higher order logic, built originally at Edinburgh in the 1970's, based on an

approach to mechanical theorem proving developed by Robin Milner. It has been

used for general theorem proving, hardware veri�cation, and software veri�cation

and re�nement for a variety of languages. HOL has the central quality that only

true theorems may be proved, and is thus secure. It performs only sound logical

inferences. A proof is then a properly composed set of instructions on what

inferences to make. Each step is thus logically consistent with what was known

to be true before. The result of a successful proof is accredited with the status

of \theorem," and there is no other way to produce a theorem. The derivation is

driven by the human user, who makes use of the facilities of HOL to search and

�nd the proof.

Even greater assistance for program veri�cation may be provided by a tool

which writes the proof automatically, either in part or in whole. One kind of

mechanical tool that has been built is a ().

Such a tool analyzes a program and its speci�cation, and based on the structure of

the program, constructs a proof of its correctness, modulo a set of lemmas called

veri�cation conditions which are left to the programmer to prove. This is a great

aid, as it twice reduces the programmer's burden, lessening both the volume of

proof and the level of proof. Many details and complexities can be automati-

cally handled by the , and only the essentials left to the programmer. In

addition, the veri�cation conditions that remain for him to prove contain no ref-

erences to programming language phrases, such as assignment statements, loops,

or procedures. The veri�cation conditions only describe relationships among the

9

VCG

VCG VCG

VCG VCG

VCG

VCG

underlying datatypes of the programming language, such as integers, booleans,

and lists. All parts of the proof that deal directly with programming language

constructs are handled automatically by the . This does not mean that there

cannot be depth and di�culty in proving the veri�cation conditions; but the

program proving task has been signi�cantly reduced.

Several example Veri�cation Condition Generators have been written by var-

ious researchers over the past twenty years. Unfortunately, they have not been

enough to encourage a widespread use of program veri�cation techniques. One

problem area is the reliability of the itself. The is a program; and just

as any other program, it is subject to errors. This is critical, however, because

the is the foundation on which all later proof e�orts rest. If the is

not sound, then even after proving all of the veri�cation conditions it produces,

the programmer has no �rm assurance that in fact he has proven his original

program correct. Just stating a set of rules for proving each construct in a pro-

gramming language is not enough; there is enough subtlety in the semantics of

programming languages to possibly invalidate rules which were arrived at simply

by intuition, and this has happened for actual rules that have been proposed in

the literature. There is a need for these rules, and the s that incorporate

them, to be rigorously proven themselves.

This we have done in this dissertation. We present a veri�ed Veri�cation

Condition Generator, which for any input program and speci�cation, produces a

list of veri�cation conditions whose truth in fact implies the correctness of the

original program with respect to its speci�cation. This veri�cation of the is

proven as a theorem, and the proof has been mechanically checked in every detail

10

VCGwithin HOL, and thus contains no logical errors. The reliability of this is

therefore complete.

Program veri�cation holds the promise in theory of enabling the creation of

software with qualitatively superior reliability than current techniques. There is

the potential to forever eliminate entire categories of errors, protecting against

the vast majority of run-time errors. However, program veri�cation has not

become widely used in practice, because it is di�cult and complex, and requires

special training and ability. The techniques and tools that are presented here

are still far from being a usable methodology for the everyday veri�cation of

general applications. The mathematical sophistication required is high, the proof

systems are complex, and the tools are only prototypes. However, the results of

this dissertation point the direction to computer support of this di�cult process

that make it more e�ective and secure. Another approach than testing is clearly

needed. If we are to build larger and deeper structures of software, we need a

way to ensure the soundness of our construction, or else, inevitably, the entire

edi�ce will collapse, buried under the weight of its internal inconsistencies and

contradictions.

11

12

