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CHAPTER 11

Total Correctness

\For He will �nish the work and cut it short in righteousness,

Because the will make a short work upon the earth."

| Romans 9:28

\For the Lord of hosts

Will make a determined end

In the midst of all the land."

| Isaiah 10:23

The proof of the termination of programs, and hence their total correctness,

is presented in this chapter. We start with the assumptions of partial correct-

ness, precondition maintenance, conditional termination, and most importantly,

recursiveness, and prove the termination of every call of every procedure declared

in the mutually recursive procedure environment. This leads to an environment

which has been veri�ed to be well-formed for total correctness, and thus to be

fully well-formed. The total correctness of the environment becomes the last es-

sential element in the proof of the ultimate theorem of this work, Theorem 7.12,

as presented in Chapter 7, that the veri�cation condition generator has been
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veri�ed for total correctness.

Total Correctness has two aspects, partial correctness and termination. In the

past these have sometimes been proven apart from each other, and sometimes

together, often using the same overall proof structure. But there has begun

to appear evidence that there is a more substantial di�erence between partial

correctness and termination than had originally been thought, when recursive

procedures are present. In 1990, America and de Boer reported [AdB90]

. . .we may conclude that reasoning about total correctness di�ers

from partial correctness in a substantial way which has not been rec-

ognized til now.

In the course of this work, this di�erence has been exposed and explored.

It became evident during the construction of the veri�cation of the that

partial correctness was a necessary precursor to even beginning the attack on

total correctness. Many of the rules presented in Chapter 6 in the entrance

logic and in the termination logic contained partial correctness speci�cations as

necessary antecedents. Moreover, to prove the environment was well-formed for

recursion, it was necessary �rst to have the entire environment established to

be well-formed for partial correctness and for calls progress. In a similar way,

we will add the assumption that the environment is well-formed for conditional

termination, and prove from these that the environment is well-formed for total

correctness.

We have already seen a substantial argument was in order to prove the full

recursiveness property for procedures, how it was necessary to introduce the en-

trance logic in order to verify the progress claimed in the progress expressions
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11.1 Reprise

f g ! f g

f g !

f g !

f g ! f g
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11.1.1 Entrance Logic

pre

a c p a =�

a c =�

a c calls =�

a p ps p a =�

a p - a =�

in the headers of procedures, and how it was necessary to introduce the analysis

of the call graph structure to verify that the progress claimed in the recursion

expressions were supported by the progress of the progress expressions. We

also saw it was necessary to introduce the termination logic in order to verify the

conditional termination of commands. Now all of these elements come together

as necessary precursors to the proof of termination of every procedure. This

extended proof, with these layers and stages of development, demonstrates the

depth of reasoning that is necessary to prove termination. The good part of this

is that once done, it need not be repeated when the is applied. The veri�-

cation of the allows it to be used without repeating the intricate arguments

expressed and proven at the meta level here.

We will begin by summarizing the substance of the argument up to this point.

In Section 6.3, we presented an Entrance Logic, including correctness speci�ca-

tions of the forms

entrance speci�cation

precondition entrance speci�cation

calls entrance speci�cation

| path entrance speci�cation

recursive entrance speci�cation

We then presented the rules of the Entrance Logic which supported proofs of
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11.1.2 Termination Logic

11.1.3 Recursiveness

these correctness speci�cations for speci�c program fragments. Later we saw how

these rules supported the veri�cation of parts of the , that the truth of the

veri�cation conditions produced by the syntax-directed analysis of a procedure's

body su�ced to guarantee the partial correctness of the body with respect to

the given precondition and postcondition, to guarantee the progress claimed by

the speci�cations, and to guarantee the achievement of the preconditions of

every called procedure at their entrance.

In Section 6.4, we presented a Termination Logic, including correctness speci�-

cations of the forms

[ ] command conditional termination speci�cation

procedure conditional termination speci�cation

[ ] termination speci�cation

We then presented the rules of the Termination Logic which supported proofs

of these correctness speci�cations for speci�c program fragments. Later we saw

how these rules supported the veri�cation of parts of the , that the truth of

the veri�cation conditions produced by the syntax-directed analysis of a proce-

dure's body su�ced to guarantee the conditional termination of that body, given

the termination of every procedure called immediately from that body.

Given the properties proven about the environment of all de�ned procedures,

that it was well-formed for partial correctness, precondition maintenance, calls
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terminates Depth calls

terminates

Depth calls

progress, and conditional termination, we showed in Section 7.1.3 a series of

functions de�ned as part of the that analyzed the procedure call graph and

produced a list of veri�cation conditions, whose proof, along with the progress

claimed by the speci�cations previously shown, was su�cient to prove the full

recursiveness property, that every recursive call evidenced the progress claimed

in the recursion expression for that procedure.

That progress expressed in the form , that the value of the expression

strictly decreased from the initial call to the recursive call. This was an example

of an expression whose value was a member of a well-founded set, in this case

the nonnegative integers. Well-founded sets have the property that there are no

in�nitely decreasing sequences of values from the set. This lays the foundation for

the argument for termination, that if there were a procedure call that exhibited

in�nite recursive descent, then taking the sequence of values of at each recursive

entrance of the procedure would exhibit such an in�nitely decreasing sequence.

Since that is excluded by the de�nition of well-founded sets, there cannot be such

a nonterminating procedure call.

We will now present the main points of our proof of the termination of mutually

recursive procedures. We begin by de�ning two more semantic relations.

These semantic relations, and , are de�ned in Tables

11.1 and 11.2. These are related to the semantic relations de�ned in Chapter

5. First, expresses the condition that a particular procedure's body

terminates when started in a given state. Then connects a procedure
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11.2.1 Sketch of Proof

Depth calls

Depth calls

terminates p s �

vars; vals; glbs; pre; post; calls; rec; c � p

s : C c � s s

terminates

Depth calls p s p s �

p p s s

Depth calls n p s p s �

p s : M calls p s p s �

Depth calls n p s p s �

Depth calls

name and a state to another procedure name and a state, where there is an

execution sequence between the �rst state at the entrance of the �rst procedure

through nested calls to the second state at the entrance of the second procedure.

Of particular interest is that speci�es the length of the chain of calls

as a particular integer. Thus provides a way to describe calls which

are nested a particular number of calls deep from the original point where the

execution began.

=

=

( )

Table 11.1: Termination Semantic Relation .

0 =

= =

( + 1) =

[ ]

Table 11.2: Termination Semantic Relation .

We will �rst give an sketch of our proof of termination, and then develop that

sketch in detail.
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Every command terminates if all of its immediate calls terminate. Hence, it

follows that every procedure body terminates if for any , all of the body's calls

at depth or less terminate. Thus, to show a procedure body terminates, it

su�ces to show there is an such that all of the body's calls of depth or less

terminate.

Assume the opposite, that for some procedure body and initial state, that for

all n, there is some call at depth or less which does not terminate. Then there

is some call at depth which does not terminate, for all . This implies there

exists an in�nite sequence of nested procedure calls issuing from the original

procedure body and state which do not terminate. Consider this sequence of

procedures which are called and the states at their entrances. There must be

some procedure which occurs an in�nite number of times in this sequence, or else

the sequence could not itself be in�nite, since there is only a �nite number of

declared procedures. Let be such a procedure that occurs an in�nite number

of times, and let be its recursion expression. Form the in�nite sequence of

the values of in the states at every occurrence of in the �rst sequence. By

the recursiveness property, we have that every pair of values in this sequence is

strictly decreasing, and hence this sequence is strictly decreasing. This is then an

in�nite sequence of decreasing values. But since the set of nonnegative integers

is a well-founded set, no such in�nite decreasing sequence can exist. Hence our

original assumption was wrong, and we may conclude the opposite, that for some

, all of the original procedure's body's calls at depth or less terminate. As

we have shown above, this then implies that the procedure body terminates,
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11.2.2 Termination of Deep Calls

unconditionally.

The termination of procedure bodies, combined with the termination of com-

mands based on their immediate calls terminating, gives us that all commands

terminate unconditionally. Combining this with the partial correctness of com-

mands gives us the total correctness of commands. The total correctness of com-

mands implies the total correctness of procedure bodies, and hence the entire

environment is proved to be fully well-formed.

We will now elaborate the sketch.

First, we have already shown that every command terminates if all of its imme-

diate calls terminate. That is, consider a command begun execution in a state

. Let be any possible state which is reachable from by being the state

at the entrance of a procedure called immediately from . If for all such , the

body of that procedure when begun in terminates, then must terminate.

This last statement is guaranteed by the de�nition of , which is ver-

i�ed to hold based on the syntax-directed part of the and the veri�cation

conditions it produces, by the theorem , given in Table 7.3. It is the

primary starting point for the rest of this argument.

Since every command terminates if all of its immediate calls terminate, this

also applies to the commands which are the bodies of procedures. Therefore

every procedure body terminates if all of its immediate calls terminate. But

then consider those immediate calls. Each one of those causes the execution
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env term env pre

1 1 2 2

1 1

1 1 2 2
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n n

n

n n n

n m p s p s �:

WF � WF �

A FST SND SND SND � p s

Depth calls n p s p s �

m n

p s :Depth calls m p s p s �

of a procedure body, whose termination is implied by the termination of

immediate calls. We may then restate this, that the original procedure body

would be guaranteed of terminating if all of the procedure calls at the second

level down terminate. More generally, if the original body terminates if all calls

at the th level terminate, then since each one of those calls at the th level

terminates if all their immediate calls terminate, we may say that the original

body terminates if all calls at the ( + 1)th level terminate. Then by induction

on , we say that for any , if the calls at depth terminate, then the original

body terminates.

In Table 11.3, we have proven that a call at one depth implies that there exist

calls at all lesser (more shallow) depths.

(( ) ( ))

( )

Table 11.3: Theorem of existence of shallower calls.

We have as a theorem in Table 11.4 that if all the calls at one depth or less

terminate, then the original procedure call terminates. Since the termination of

all the calls at one depth implies the termination of all the calls at one less depth,

then by induction we can prove the termination of all calls at shallower depth.

Contrariwise, in Table 11.5 we have proven that if a call at one depth from

the original call does not terminate, then for all greater depths, there is a call at

that depth from the original call. This is valuable, but it does not yet give us the
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let in

11.2.3 Existence of an In�nite Sequence

�: WF � WF �

n p s : m p s : m n Depth calls m p s p s �

terminates p s �

vars; vals; glbs; pre; post; calls; rec; c � p

A pre s

terminates p s �

m n p s p s �:

WF � WF �

A FST SND SND SND � p s

Depth calls n p s p s �

terminates p s �

p s :Depth calls n m p s p s � terminates p s �

n n n

n

( (

)

( =

)

Table 11.4: Theorem of termination of shallower calls.

existence of an in�nite chain of calls, because it does not include the condition

that every procedure and state in the chain actually arose from a call from the

previous procedure and state.

(( ) ( ))

( )

( ( + ) ( ))

Table 11.5: Theorem of existence of all deeper calls.

In the termination proof sketch, at one point we assume that there does not exists

any such that all calls of depth or less terminate. Then for all there must

be some call at depth or less which does not terminate. This then should imply

the existence of an in�nite sequence of deeper and deeper calls.
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h i
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^
�

` 8
^ ^
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^ �

mk sequence

p; s

p ; s

mk sequence � p s p; s

mk sequence i � p s

p ; s p ; s : M calls p s p s �

terminates p s �

mk sequence i � p s

mk sequence

i p s �:

WF � WF �

A FST SND SND SND � p s

terminates p s �

p ; s mk sequence i � p s

Depth calls i p s p s � terminates p s �

mk sequence

We will prove the existence of such an in�nite sequence by actually construct-

ing and exhibiting one. First, we de�ne the function in Table 11.6

as a generator function to take a pair of a procedure name and a state, and

return the next of the in�nite sequence.

0 =

( + 1) =

( ) = @ ( ) [ ]

( )

Table 11.6: Sequence Generator Function .

Here @ is the Hilbert choice operator, which returns some element of its range

type which satis�es the given condition, if any elements do satisfy it. If none do,

then @ still chooses some arbitrary element. This is a total function, so it always

returns the same choice, but all that is known about the element chosen is the

property speci�ed, and that only if there exists such an element.

Given this de�nition, we can prove that it is well-de�ned, in the sense that

every pair of the sequence satis�es the de�nition property, as in Table 11.7.

(( ) ( ))

( )

( ) =

( ( ))

Table 11.7: De�nitional property satis�ed by .
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1 1

1 1
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3 3 1 1
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mk sequence

i p s �:

WF � WF �

A FST SND SND SND � p s

terminates p s �

p ; s mk sequence i � p s

p ; s mk sequence i � p s

M calls p s p s �

mk sequence

mk sequence

sequence ps sts ns �

i: M calls ps i sts i ps i sts i �

i: ns i vars; vals; glbs; pre; post; calls; rec; c � ps i

induct start num sts i rec

sequence

ps

Depth calls ps

The most important property we prove about is that the se-

quence it generates is chained together by each consecutive pair being related by

one level of procedure call, as expressed in Table 11.8.

(( ) ( ))

( )

( ) =

( ) = ( + 1)

[ ]

Table 11.8: Chain of calls induced by .

Given this generator function , it is possible to prove that the

sequence of procedure names and states it generates satis�es the properties in

Table 11.9 to be called an in�nite recursive descent sequence.

=

( ( ) ( ) [ ] ( ( + 1)) ( ( + 1)) )

( = ( = ( )

( ) ))

Table 11.9: In�nite Recursive Descent Sequence Predicate .

In this de�nition, is an in�nite sequence of procedure names, represented as

a function from to . The number used as the index is the depth number

from . contains the in�nite sequence of names of procedures called

in the hypothesized in�nite recursive descent; it is the path downward.

280



false

sts

ps

ns

ps

sts

ns

induct start num

induct start num s

induct start num s v < x V v s

induct start num

n n

mk sequence

Likewise, is the corresponding in�nite sequence of states, each one the

state reached in the corresponding procedure in in the process of the in�nite

recursive descent.

Finally, is the corresponding in�nite sequence of the values of the recursion

expressions of each procedure in , evaluated in the corresponding state given

in . Several procedures may be represented in this list; we shall see that

for the subsequences of this sequence for any particular procedure, each such

subsequence will be strictly decreasing. The values in are generated by the

function , de�ned in Table 11.10.

= 0

( ) =

Table 11.10: Recursion Expression Value Function .

This gives the de�nition of an in�nite recursive descent sequence. Such a

sequence is implied by the assumption stated earlier, that there does not exist

any such that all calls of depth or less terminate. We can now prove this

as the theorem listed in Table 11.11, using to create an explicit

witness.
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11.2.4 Consequences of an In�nite Sequence

p s �:

WF � WF �

A FST SND SND SND � p s

n: m p s : m n Depth calls m p s p s �

terminates p s �

ps sts ns: sequence ps sts ns � ps p sts s

M calls

� ps sts ns i j:

sequence ps sts ns � i < j

ps : M calls ps i sts i ps ps j sts j �

M calls

i � ps sts ns:

WF �

sequence ps sts ns �

A FST SND SND SND � ps sts

A FST SND SND SND � ps i sts i

(( ) ( ))

(

)

( ( 0 = ) ( 0 = ))

Table 11.11: Existence of In�nite Recursive Descent Sequence.

One consequence of the de�nition of an in�nite recursive descent sequence is that

any two points in the sequence are related by ; this is displayed in Table

11.12.

( ( ) ( ) ( ) ( ) )

Table 11.12: Sequence calls related by .

Preconditions are maintained across points in the sequence, as in Table 11.13.

(( ) ( ( 0))) ( 0)

(( ) ( ( ))) ( )

Table 11.13: Sequence Precondition Maintenance.
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11.2.5 Strictly Decreasing Sequences

env rec env rec

env syntax

env pre

env rec

WF WF

ns

� ps sts ns p i j vars vals glbs pre post calls rec c:

WF �

WF �

WF �

sequence ps sts ns �

A FST SND SND SND � ps sts

� p vars; vals; glbs; pre; post; calls; rec; c

ps i p

ps j p

i < j

ns j < ns i

p

Perhaps the most important consequence of an in�nite recursive descent sequence

results from combining it with the knowledge contained in the recursiveness prop-

erty, . says that every recursive call of a procedure exhibits

the strict decrease of the value of its recursion expression. For sequences, this

gives us the ability to prove the theorem in Table 11.14. This says that for any

two points in the in�nite sequence which refer to the procedure, the value

of the recursion expression as stored in strictly decreases.

(( ) ( ( 0))) ( 0)

( = )

( = )

( = )

( )

Table 11.14: Sequence Decreasing Values.

To make use of this strictly decreasing property, we choose a minor variation

on the proof sketch described earlier. Instead of claiming that there must be

some procedure which has an in�nite number of occurrences in the sequence,

we take the approach of proving that every procedure has only a �nite number

of occurrences in the sequence. We �rst prove that given any occurrence of

a procedure in the sequence, there is a maximum limit on the index of the
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env syntax

env pre

env rec

env syntax

env pre

env rec

p

n i p � ps sts ns vars vals glbs pre post calls rec c:

WF �

WF �

WF �

sequence ps sts ns �

A FST SND SND SND � ps sts

� p vars; vals; glbs; pre; post; calls; rec; c

ps i p

ns i n

m: j: m < j ps j p

n

i

p � ps sts ns:

WF �

WF �

WF �

sequence ps sts ns �

A FST SND SND SND � ps sts

m: j: m < j ps j p

elements beyond which none of the elements refer to that same procedure , as

shown in Table 11.15.

(( ) ( ( 0))) ( 0)

( = )

( = )

( = )

( = )

Table 11.15: Sequence Occurrence Implies Limit on Occurrences.

This is proven by well-founded induction on , the value of the recursion

expression at the th procedure in the sequence, making use of the fact that the

values of the recursion expression are members of a well-founded set.

From this we are able to prove that for every procedure, there is a maximum

limit on the index of the elements which refer to it, as shown in Table 11.16.

(( ) ( ( 0))) ( 0)

( = )

Table 11.16: Each Procedure Has Limit on Occurrences.

Next we need to establish that every procedure in the sequence is a member
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all ps

all ps � ps sts ns:

WF �

p: p SL all ps � p � p

sequence ps sts ns �

A FST SND SND SND � ps sts

i: ps i SL all ps

all ps

ps

m

all ps

all ps � ps sts ns:

WF �

WF �

WF �

sequence ps sts ns �

A FST SND SND SND � ps sts

m: p: p SL all ps j: m < j ps j p

all ps

of the �nite list of de�ned procedures, , as described in Table 11.17.

( = )

(( ) ( ( 0))) ( 0)

( )

Table 11.17: Each Procedure in Sequence is in .

We can now prove that since for each procedure there is a maximum limit on

its occurrences in , and since there is only a �nite number of procedures, there

must be a maxiumum limit on the sequence as a whole. This means there exists

a single limit which bounds the indices of the occurrences of the procedures

listed in , as in Table 11.18.

(( ) ( ( 0))) ( 0)

( ( = ))

Table 11.18: Limit on All Occurrences in .

This then contradicts the assumption of the in�nite sequence, since there are

many elements beyond the maximum limit, and they must belong to de�ned

procedure. This contradiction is expressed in Table 11.19.

Given this contradiction, implied by the assumption that there did not exist
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env syntax

env pre

env rec

env syntax

env pre

env rec

env term

� all ps ps sts ns:

WF �

WF �

WF �

p: p SL all ps � p � p

A FST SND SND SND � ps sts

sequence ps sts ns �

n n

n

� all ps p s vars vals glbs pre post calls rec c:

WF �

WF �

WF �

WF �

p: p SL all ps � p � p

� p vars; vals; glbs; pre; post; calls; rec; c

A pre s

terminates p s �

( = )

(( ) ( ( 0))) ( 0)

( )

Table 11.19: Sequence Contradiction.

any such that all calls of depth or less terminated, we can conclude that such

an must exist, and hence by the theorem in Table 11.4, we can prove that every

procedure terminates, as shown in Table 11.20.

( = )

( = )

Table 11.20: Procedure Termination.
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d �:

� mkenv d �

WF �

WF �

WF �

WF �

WF �

env syntax

env pre

env rec

env term

env total

Finally, given the termination of each procedure when called, we can prove

the total correctness of the entire environment of procedures, as in Table 11.21.

=

Table 11.21: Total Correctness of Procedure Environment.

This completes our proof of termination for the Sunrise language.
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