
VCG

Lord

ad hoc

CHAPTER 12

Signi�cance

\ , make me to know my end,

And what is the measure of my days,

That I may know how frail I am."

| Psalm 39:4

In this chapter we will re
ect and explore the signi�cance of this work, and

the possibility of its usefulness in the future.

The most novel part of this work is the development of a new methodology for

proving the termination of programs with mutually recursive procedures. This

includes new speci�cations to include in the headers of procedures, an algorithm

for analyzing the procedure call graph to produce veri�cation conditions, and

logics for proving the termination of procedures from those veri�cation conditions.

We feel the approach is easier and simpler to use than previous proposals, while

being more general in the sense of providing natural proofs of termination related

to the program's original purpose. It also regularizes the proofs, making each

example's proof less , and structuring the proof according to the program

logics. Furthermore, this methodology can be automated by a , as we have

done and exhibited in Chapter 8. This methodology should in general translate

291



VCG

VCG

HOL

VCG

HOL

to other programming languages, and we see this as a valuable technology for

proving the termination of programs with procedures.

The most central thing we have learned from this work has been that the

general approach we used was feasible. It was powerful, in that we could prove

meta-theorems about all Sunrise programs, and it was e�ective, in that those

proofs were accomplished once and would not need to be repeated for each ap-

plication of the . It was also quite di�cult, in that there was considerable

e�ort and skill required to accomplish the veri�cation of the .

In addition, the approach is quite solidly sound. Everything was established

from the ground up, without claiming any new axioms, and only extending the

theory by new de�nitions. Because we constructed a deep embedding of the

programming and assertion languages within , the types used to represent

the abstract syntax trees were new types, without connections to or dependencies

on previous parts of the theory. We established the semantics of the syntax trees

ourselves by de�ning the operational semantics of the programming language

and the denotational semantics of the assertion language. These semantics are

simple and easily examined by the community, with their implications more easily

understood than if we had taken an axiomatic semantics as the foundational

de�nition. Then the axioms and rules of the axiomatic semantics were proven as

theorems from the underlying foundational semantics, ensuring their soundness.

Based on these sound axioms and rules, the functions were veri�ed and

proven to be sound, which is our primary result.

The de�nitions and proofs are even more solidly secured by having created

them within the theorem proving environment, which ensures the soundness

292



HOL

HOL

VCG

HOL

VCG

VCG

of any theorems proven using its tools. For a user who is able to �nd the path to

the goal of proving a theorem, presents a powerful con�rmation that that

proof is in fact valid. is generally understood to be weak in automating the

search for a proof, say as compared with the Boyer-Moore theorem prover. Never-

theless, it was powerful and e�ective enough for our purposes here. Therefore, we

can claim with assurance that this proof of soundness of this has no logical

errors. We have great con�dence that the -implemented proof is completely

sound and trustworthy, and by extension, that the proofs of any programs proved

using the are likewise completely sound and trustworthy.

The idea of using a veri�cation condition generator seems a useful and prac-

tical one, but this idea will need to be veri�ed by actual experimentation and

experience. The we de�ned for total correctness seems quite satisfactory

when it comes to the traditional analysis of the syntax of the program; there is

room for improvement in the analysis of the call graph structure, as is discussed

in Chapter 14.

The programming and assertion languages considered were quite small and

not suitable for actual programming. This is because our goal was the exploration

of the ideas behind certain program constructs, principally recursive procedures,

and we included features that supported that goal. Nevertheless, it is not di�cult

to see how the languages could be extended with a more complete assortment of

operators. This will be explored more in the next chapter.

The handling of expressions with side e�ects by the use of translation func-

tions was elegant and surprisingly easy, once we had decided to use simultaneous

substitutions to represent changes to the state. This part of the work has been

293



VCG

VCG

quite successful in handling our simple expressions. Future work will explore the

applicability of this approach to more complex side e�ects.

The entrance and termination logics arose naturally during our work, and

became the most convenient way to establish the veri�cation of programs and the

itself. These are restricted versions of temporal logic, but powerful enough

to accomplish the proofs of the recursiveness properties and the termination of

procedures. It was important for us to develop some constraints on temporal logic,

else it would not have been feasible to write a simple to prove hypotheses

written in such an expressive language.

Several realizations arose during the course of this work, and we present them

here as understandings we have developed. These concern the separation of the

programming and assertion languages, the need for well-formedness predicates,

and the signi�cant gap between partial and total correctness.

We believe that it is important to keep the ideas of the programming and

assertion languages separate, and not confuse them, even if one's language does

not include expressions with side e�ects. These two languages have di�erent

qualities and purposes, as was explored at the end of Section 5.5. One should not

be beguiled by their overlap in appearance into assumming they are the same in

essence.

Despite the relative lack of attention paid to date to well-formedness, we found

this to be an area requiring a signi�cant portion of the total e�ort. Perhaps the

goal of complete formal veri�cation of this system in every detail forced us to

look at issues that previously were easy to dismiss. Just because an issue is

obvious and part of common sense, does not mean that its formal veri�cation

294



VCG

pre post

calls with recurses with

is inconsequential, either in e�ort required or in signi�cance of the results. It

appears to us that well-formedness will need to be a part of any practical

constructed in the future.

Finally, we feel that this work explores in a thorough way the di�erence be-

tween partial and total correctness of programs with mutually recursive proce-

dures. The speci�cations required of the user for each procedure di�ered for

specifying their partial correctness claims, using \ " and \ ", and their

termination claims, using \ . . . " and \ ". A respectable

fraction of the total structure of the proof was principally concerned with prov-

ing total correctness; three out of the �ve program logics used were principally

devoted to proving either termination or total correctness. Also, the structure of

the proofs of partial and total correctness di�ered markedly. The proof of par-

tial correctness worked by stages, proceeding by normal mathematical induction

on the depth of recursive call to prove the entire environment well-formed for

partial correctness. In contrast, the proof of total correctness involved an explo-

ration of the procedure call graph to identify procedure call cycles and produce

veri�cation conditions which established the progress achieved around each cycle.

Termination then followed based on a well-foundedness argument about in�nitely

decreasing sequences.

Clearly our tool would not be suitable for proving programs correct in an

industrial setting. Rather, this has been a theoretical exploration of ideas in

building a solid foundation for program proofs. In the future, these ideas may be

of use to other researchers in building practical veri�cation condition generators

to help prove real programs.

295



296


