
VCG

VCG

VCG

CHAPTER 13

Ease of Use

13.1 Burden of Annotation

\For My yoke is easy and My burden is light."

| Matthew 11:30

In this chapter we consider the ease of use of the Sunrise system for proving

programs correct. This includes the burdens of the annotations required for while

loops and procedures, and the burdens of proving the veri�cation conditions

created. We also discuss the areas of the proof that the supports.

To prepare a program for submission to the , the Sunrise system requires

the user to attach a number of annotations to the program which have no direct

impact on the program's execution, and serve only to help the and the

proof of the program's correctness. It is reasonable to ask how burdensome these

required annotations are, how much is asked of the user, and how a user might

be expected to generate such annotations in practice.

Most of these questions are similar to the ones raised in the debate over loop

invariants, whether or not the user should be expected to contribute the loop

297



calls

invariants, and the apparent di�culty of such a task. It has been argued that

requiring the user to provide such invariants forces the user to think more clearly

about why they should be true, and that they also provide a very useful form of

documentation. We consider the question of the propriety of requiring invariants,

and other annotations, to be a decision beyond the purview of this work. In this

work, requiring invariants and other annotations is a pragmatic necessity. We

now examine the di�culty of arriving at such annotations, considering each one

in turn.

For while loops, two annotations are generally required, a loop invariant and a

loop progress expression containing an expression whose value strictly decreases

for each iteration of the loop. The invariant is used to prove the partial correctness

of the loop, and the progress expression is used to prove its termination. Gries

has studied the problem of generating loop invariants [Gri81] and arrived at a

number of principles to guide this task. He has also described how to generate

a progress expression (which he calls a bound function) so that each iteration

makes progress towards termination.

For procedure declarations, we require several annotations:

1. Global variables

2. Precondition

3. Postcondition

4. For each procedure called in the body, a progress expression

5. If the procedure recurses, a recursion progress expression.

298



calls

The burden of generating a complete list of global variables is not hard, but

it is not as simple as scanning the body of the procedure. Instead, this should

include all globals accessed from within procedures called from within the body

of this procedure, either directly or indirectly, any number of levels deep. Thus,

the globals list should be a list of all globals that can be read or written during

the execution of the procedure body. If procedures are written in a bottom-up

fashion, then this would be the union of the globals lists of all procedures called

by the body, together with the globals actually used in the body itself.

The speci�cations of the precondition and postcondition are well-discussed in

the literature, and will not be described further here.

The new speci�cation of the progress expressions expresses a connection

between two states, in some ways analogous to the connection expressed by post-

conditions. Here, however, we need to take care to refer to the correct variables

in the two contexts. The choice of these progress expressions is crucial to the

proof of termination, for these are used to generate the path conditions while

traversing the procedure call graph, and in creating the call graph veri�cation

conditions. These may be created by asking the question, \What sort of progress

do I expect to achieve between the entrance of this procedure and the entrance of

another called by this one?" We suggest �rst drawing the procedure call graph

and examining it for cycles, to manually focus one's attention on the need to pro-

vide meaningful progress towards termination around each cycle. This progress is

then expressed in the recursion expression of the procedure. The progress around

each cycle then needs to be broken down into smaller steps of progress, which

are distributed onto the various arcs of the graph. These smaller steps may in

299



calls

fact individually show no progress, or even backwards movement as long as it is

limited, as may be convenient. The requirement is that the accumulation of the

progress of all the arcs around a cycle must show the forward progress of the re-

cursive progress expression. Thus the choice of the recursive progress expression

should precede the choice of the progress expressions.

The need to specify these calls progress expressions and the recursion ex-

pression in each procedure's header is welcome, for it compels the programmer to

think seriously about the issues of termination for his program. For every possible

path of recursion, there must be progress towards termination that can be identi-

�ed and quanti�ed. Usually this progress will be nascent within the programmer,

as part of his design of the program, but the annotation requirements will force

him to make these ideas concrete, and to examine them critically. In cases of

great interaction among procedures, where the procedure call graph has many

interlocking cycles, the expectation of having to prove termination may draw the

programmer toward simpli�ed designs with fewer well-chosen interactions.

This annotation structure was chosen as a compromise between the simple

rigidity of Sokolowski's recursion depth counter, and the extreme exibility of

specifying the expected progress individually for each call, at the point of call.

We chose to require every call issuing from one particular procedure to another

to satisfy the same progress condition. This allowed us to partition the proof

of recursion into two stages, where in the �rst stage the calls progress claims

were veri�ed by syntactic analysis of each procedure's body, and in the second

stage, the recursion progress claims were veri�ed from the calls progress claims

by analyzing the structure of the call graph. This followed the compositional

300



VCG

13.2 Burden of Proof

paradigm, where the proof of each individual procedure was accomplished in

relative isolation, and then the results of these proofs were brought together to

verify the entire collection of procedures.

We feel this is a reasonable annotation structure, because if the programmer

wished to prove termination, inherently he would have to describe how to prevent

in�nite recursive descent, and this leads immediately to a consideration of cycles

in the procedure call graph. Each such cycle must be shown to terminate, proba-

bly by some form of a well-founded argument. Inevitably the programmer would

have to supply information similar to what we have asked for in these annota-

tions, and not having considered the issue beforehand, might choose a simple but

overly restrictive system like recursion depth counters. Requiring our annotations

at the beginning brings the programmer's attention to termination issues early,

and clari�es the expectations of progress between procedures. Therefore this an-

notation structure would be a welcome element in good software engineering and

modular design for implementation by a team.

The veri�cation conditions presented by the part of the that deals with

analyzing the syntactic structure of the program appears to be quite satisfac-

tory. However, the production of veri�cation conditions su�cient to establish

termination, created by analyzing the structure of the call graph, may allow for

substantial reduction in the number of veri�cation conditions generated. One

such improvement is discussed in Chapter 14. This may be the subject of a

future upgrade of Sunrise.

301



calls

VCG

VCG

13.3 Areas of VCG Support

To briey mention the concepts proven automatically by the without user

involvement, the user need not be concerned with proving

1. well-formedness

2. proof by stages of partial correctness

3. precondition maintenance

4. progress

5. recursive progress

6. termination

7. total correctness

All of these follow from simply proving the veri�cation conditions. We do

not mean to imply that the proof of the veri�cation conditions is trivial or easy.

They may well contain the bulk of the weight of the proof. However, the above

concepts are not themselves trivial, and we contend that this as presented

does accomplish a signi�cant task in reducing the di�culty of proving programs

totally correct.

302


