
Lord

CHAPTER 14

Future Research

\Thus says the ,

The Holy One of Israel, and his Maker:

`Ask Me of things to come concerning My sons;

And concerning the work of My hands, you command Me.' "

| Isaiah 45:11

\Whatever He hears He will speak; and He will show you things to

come."

| John 16:13

In this chapter we consider possible future developments of the ideas presented

in this work. These fall into four major areas: extensions to the programming

and assertion languages, improvements to the VCG, implementations and tools

to support the methodologies presented here, and proofs of completeness.

303



<

�

VCG

14.1 Language Extensions

There are many areas where we would like to extend the programming and as-

sertion languages described here.

Probably the most immediate need is the inclusion of arrays. It is di�cult

to arrive a general, useful examples without arrays. This topic has been studied

extensively before, so it should pose few theoretical di�culties. Some of the

issues involved concern the inclusion of array bound checks in the preconditions

computed by the , the extension of the concept of aliasing to forbid confusion

between array elements, and the passing of entire arrays as parameters.

The progress expressions currently permitted allow only the use of the op-

erator , implying the well-founded set of nonnegative integers. We expect to

extend this to include the operator , with the well-founded set of lists of non-

negative integers ordered lexicographically, and to include other well-founded sets

and ordering relations. There does not appear to be any fundamental di�culty

in adapting the proofs of recursiveness or termination to these additional forms.

They would provide the ability to prove the termination of a wider variety of pro-

grams in ways that are natural and appropriate to the subjects of the programs.

In order to prove programs that implement certain recursive functions such as

Ackerman's function, it will be necessary to extend the assertion language with

user-de�ned functions, de�ned solely within the assertion language in order to

abstract parts of the speci�cations. Even if no recursive functions are needed,

such user-de�ned functions will be very practically useful in clearly expressing

complex and layered speci�cations.

304



HOL

HOL

Many new operators can be added in a similar style to those already present.

For example, if we add operators to perform integer division and check whether

a number is odd or even, we can run Pandya and Joseph's example. In general,

this seems to be one of the simplest and easiest extensions to accomplish, needing

no theoretical additions. Nevertheless, we have not at this time expanded the

language unnecessarily because of the great time and space issues that arise when

de�ning new types in which have many cases to represent the syntax trees.

One area of particular interest is the area of typing. A �rst extension would

focus on adding valuable new base types, such as characters, strings, or bounded

integers, for which there already exists support in the logic. Further exten-

sions could explore the creation of structured types such as records and arrays.

Input and output are important in bringing these systems closer to reality.

We can model these as undetermined assignments to particular global variables,

with assertions to act as preconditions restricting the possible input sequences.

We would like to explore if the same translation techniques now used for the

increment operator will also support input as an undetermined assignment.

One of the greatest challenges facing program veri�cation is scaling up the

theory to handle large, or even medium-sized programs, say of several tens of

thousands of lines long. Possibly the only means will be through a form of

modularization, where some program construct like Ada packages or Modula-

2 modules will be used to encapsulate a section of the program with a well-

de�ned interface. In the past these interfaces have incorporated only a syntactic

speci�cation, of the arity of each procedure and the types of its parameters. In

the future we envision interfaces specifying the behavior and meaning of each

305



n

Modularity

module, just as preconditions and postconditions express that for procedures in

this work. The point of the encapsulation is to modularize the proof of correctness

of the program as well. Following the structure of the program, the proof should

be structured so that each module can be independently veri�ed apart from the

rest of the program, perhaps with some required context as a precondition. Then

the proofs of the veri�ed modules should be adaptable for completing proofs of

other parts of the program that use the modules. This situation is analogous on

a larger scale to the speci�cation and use of procedures in this work.

One of the most intriguing aspects of programming languages is nondetermin-

ism, where either the order of subexpressions or the value of the operator itself

may vary from one execution to the next. We would like to introduce an oper-

ator which nondeterministically selects an integer from 1 to , so as to explore

nondeterminism from the level of expressions up. Dijkstra's guarded conditional

and repetition commands would be included as well. Nondeterminism may be

handled by the same type of predicates for the operational semantics as are cur-

rently used; the �nal state will simply no longer be uniquely determined, but in

fact these predicates will become true relations.

Finally, we hope someday to investigate the theoretically di�cult area of

concurrency. Concurrency raises a host of new issues, ranging from the level

of structural operational semantics (\big-step" versus \small-step"), to dealing

with assertions describing temporal sequences of states instead of single states,

to issues of fairness. We believe that a proper treatment of concurrency will

exhibit qualities of modularity and compositionality. means that a

speci�cation for a process should state both (a) the assumptions under which it

306



VCG

Compositionality

14.2 VCG Improvements

14.3 Implementations

should operate, and (b) the task (or commitment) which it should meet, given

those assumptions. means that the speci�cation of a system

of processes should be veri�able in terms of the speci�cations of the individual

constituent processes.

We intend to continue to examine and improve the functions for greater

e�ciency and ease of use, for example to reduce the number of veri�cation condi-

tions generated, especially those created through the analysis of the procedure call

graph. One immediate improvement may be found by generating the veri�cation

conditions for each procedure in order. When the termination of a procedure was

thus established, it would be deleted from the procedure call graph along with

all incident arcs. This smaller call graph would then be the one used in generat-

ing veri�cation conditions for the next procedure in order. Since there would be

fewer arcs, there would be fewer cycles, and we anticipate far fewer veri�cation

conditions produced.

We envision the theory developed in this work and others being supported by a

variety of tools to ease the process of creating veri�ed software. Proving programs

correct is su�ciently di�cult and full of details that mechanizing the task is a

natural goal.

One tool would be a program editor, which would act as a structured editor

307



VCG

HOL

14.4 Completeness

relative completeness

for creating programs, but when a su�ciently substantial part was created (for

example, a procedure) it would then automatically invoke the on it. Then

the veri�cation conditions it produced would be collected and presented to the

user to solve. The system could enforce the constraint that until all veri�cation

conditions were proven by the user, the code would not be submitted to the

compiler, and thus could not be run.

In order to aid the user in proving these veri�cation conditions, substan-

tial theorem proving systems will have to be presented. We anticipate powerful

graphical user interfaces to pictorially diagram the user's search for the correct

proof. These would complement semi-automatic theorem provers running in the

background, which would search for proofs of simple veri�cation conditions or

simple subgoals of a larger proof. This would eliminate the lower branches of

the proof tree from the user's attention; and for most trees the lower branches

contain the bulk of the tree's structure.

Although we have not attempted any proof of completeness of this proof system,

that does not mean that we think that unimportant. In the future we hope to

create a proof of the system's , in the sense of Cook [Coo78].

To some degree this will induce modi�cations of this approach, for completeness

is a statement of what can be proven about a true program, and this would

require encapsulating a proof system inside .

308


