
VCG

CHAPTER 2

Underlying Technologies

\According to the grace of God which was given to me, as a wise

master builder I have laid the foundation."

| 1 Corinthians 3:10

Every building has a foundation. The foundation of this dissertation is the

collection of technologies that underlie the work. This chapter will describe these

technologies, and give a sense of how these elements �t together to support the

goal of program veri�cation.

To make this more concrete, we will take as an example a small programming

language, similar to a subset of Pascal, with assignment statements, condition-

als, and while loops. Associated with this language is a language of assertions,

which describe conditions about states in the computer. For these languages, we

will de�ne their syntax and semantics, and give a Hoare logic as an axiomatic

semantics for partial correctness. Using this logic, we will de�ne a Veri�cation

Condition Generator for this programming language. Finally, we will discuss

embedding this programming language and its within Higher Order Logic.

This small programming language is not the language actually studied in

13

j

j

j

j

j

2.1 Syntax

cmd

exp bexp

1 2

1 2

1 2 1

2 1 2

1 2

c

x e

c c

b c c

a b c

c

e

b

x e e

x c c c

c b c c

b c c

a b c b

skip

abort

if then else �

assert while do od

skip

abort

if then else �

assert while do od

::=

:=

;

Table 2.1: Example programming language.

this dissertation, but in its simplicity serves as a clear illustration to discuss the

fundamental technologies and ideas present in this chapter.

Table 2.1 contains the syntax of a small programming language, de�ned using

Backus{Naur Form as a context{free grammar. We denote the type of commands

as , with typical member . We take as given a type of numeric expressions

with typical member , and a type of boolean expressions with typical

member . We will further assume that these expressions contain all of the normal

variables, constants, and operators.

These constructs are mostly standard. Informally, the command has

no e�ect on the state. causes an immediate abnormal termination of the

program. := evaluates the numeric expression and assigns the value to

the variable . ; executes command �rst, and if it terminates, then

executes . The conditional command �rst evaluates the

boolean expression ; if it is true, then is executed, otherwise is executed.

Finally, the iteration command evaluates ; if it is true,

14

j

assert

1 2 3

1 2 3 1

vexp

aexp

aexp

c

b a

a

a > a a

a a a a

v a p q

invariant

assertion language

then the body is executed, followed by executing the whole iteration command

again, until evaluates to false. The ` ' phrase of the iteration command

does not a�ect its execution; this is here as an annotation to aid the veri�cation

condition generator. The signi�cance of is to denote an , a condition

that is true every time control passes through the head of the loop.

Annotations are written in an that is a partner to this

programming language. The assertion language is used to expresses conditions

that are true at particular moments in a program's execution. Usually these

conditions are attached to speci�c points in the control structure, signifying that

whenever control passes through that point, then the attached assertion evaluates

to true. For this simple example, we will take the assertion language to be the

�rst-order predicate logic with operators for the normal numeric and boolean

operations. In particular, = is a conditional expression, which �rst

evaluates , and then yields the value of or depending on whether

was true or false, respectively. We also speci�cally include the universal and

existential quanti�ers, ranging over nonnegative integers. We denote the types of

numeric expressions and boolean expressions in the assertion language as

and , respectively, with typical members and . We will also use and

occasionally as typical members of .

We use the same operator symbols (like \+") in the programming and as-

sertion languages, overloading the operators and relying on the reader to disam-

biguate them by context.

15

(

!

6

HOL

1 2 1 2

2.2 Semantics

num bool var

state var num

:exp

:num

:bexp

:bool

x s s x

E

B

E e s n e s

n

B b s t b s

t

f e=x f

f e=x y
e y x;

f y y x

C c s s c s s

The execution of programs depends on the state of the computer's memory. In

this simple programming language, all variables have nonnegative integer values.

Following the notation of , we will denote the type of nonnegative integers by

and the type of truth values as . We take the type of variables to be ,

without specifying them completely at this time. Then we can represent states as

functions of type = , and we can refer to the value of a variable

in a state as , using simple juxtaposition to indicate the application of a

function to its argument.

Numeric and boolean expressions are evaluated by the curried functions and

, respectively. Because these expressions may contain variables, their evaluation

must refer to the current state.

= Numeric expression evaluated in state yields

numeric value .

= Boolean expression evaluated in state yields

truth value .

The notation [] indicates the function updated so that

([])() =
if = and

() if =

The operational semantics of the programming language is expressed by the

following relation:

Command executed in state yields resulting state .

16

vexp aexp

:vexp

:num

:aexp

:bool

1 1 2 2 2 3

1 2 1 3

1 1 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 1 2

2 3

1 3

1

1 1

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

skip

if then else �

if then else �

assert while do od
assert while do od

assert while do od

C s s

C x e s s E e s =x

C c s s ; C c s s
C c c s s

B b s ; C c s s
C b c c s s

B b s ; C c s s
C b c c s s

B b s ; C c s s
C a b c s s
C a b c s s

B b s
C a b c s s

C

V

A

V v s n v s

n

A a s t a s

t

(no rules)

(:=) [()]

(;)

= T
()

= F
()

= T
()
()

= F
()

Table 2.2: Example programming language structural operational semantics.

Table 2.2 gives the structural operational semantics of the programming lan-

guage, speci�ed by rules inductively de�ning the relation .

The semantics of the assertion language is given by recursive functions and

de�ned on the structure of and , in a directly denotational fashion.

Since the expressions may contain variables, their evaluation must refer to the

current state.

= Numeric expression evaluated in state yields

numeric value .

= Boolean expression evaluated in state yields

truth value .

This syntax and structural operational semantics is the foundational de�ni-

17

f g

2.3 Partial and Total Correctness

partial correctness total correctness Partial correctness

total correctness

and

Hoare triples

tion for this programming language and its meaning. It is complete, in that we

know the details of any prospective computation, given the initial state and the

program to be executed. However, it is not the easiest form with which to reason

about the correctness of programs. For that, we need to turn to a more abstract

representation of the semantics, such as Hoare-style program logics.

When talking about the correctness of a program, exactly what is meant? In

general, this describes the consistency of a program with its speci�cation. There

have developed two versions of the speci�c meaning of correctness, known as

and . signi�es that every

time you run the program, every answer that it gives you is consistent with what

is speci�ed. However, partial correctness admits the possibility of not giving you

any answer at all, by permitting the possibility of the program not terminating.

A program that does not terminate is still said to be partially correct. In contrast,

signi�es that every time you start the program, it will in fact

terminate, the answer it gives you will be consistent with what is speci�ed.

The partial and total correctness of commands may be expressed by logical

formulae called , each containing a precondition, a command, and a

postcondition. The precondition and postcondition are boolean expressions in the

assertion language. Traditionally, the precondition and postcondition are written

with curly braces () around them to signify partial correctness, and with square

braces ([]) to signify total correctness. For our example programming language

and its assertion language, we de�ne notations for partial and total correctness

18

close

close

universal closure

1 2 1 1 2 2

1 2 1 1 2 2

1 1 2 1 2

f g 8

f g f g 8 ^)

8 ^)

^ 8) 9

f g

a a s: A a s

p c q s s : A p s C c s s A q s

p c q s s : A p s C c s s A q s

s : A p s s : C c s s

a

a a

a

= =

=

[] [] = ()

(())

Table 2.3: Floyd/Hoare Partial and Total Correctness Semantics.

in Table 2.3.

As described in the table, we use to denote a boolean assertion expression

which is true in all states. This is the same as having all of the free variables of

universally quanti�ed, and so this is also known as the of .

denotes the same universal closure, but by means of a unary operator.

With these partial and total correctness notations, it now becomes possible

to express an axiomatic semantics for a programming language, as a Hoare-style

logic, which we will do in the next section.

In this dissertation, we will study a larger programming language that will

include procedures with parameters. Verifying these procedures will introduce

several new issues. It is an obvious but nevertheless signi�cant feature that a

procedure call has a semantics which depends on more than the syntactic com-

ponents of the call itself|it must refer to the declaration of the procedure, which

is external and part of the global context. This is unlike all of the constructs in

the small example programming language given above.

The parameters to a procedure will include both value parameters, which are

passed by value, and variable parameters, which are passed by name to simulate

call-by-reference. The passing of these parameters, and their interaction with

19

2.4 Hoare Logics

global variables, has historically been a delicate issue in properly de�ning Hoare-

style rules for the semantics of procedure call. The inclusion of parameters also

raises the need to verify that no aliasing has occurred between the actual vari-

ables presented in each call and the global variables which may be accessed from

the body of the procedure, as aliasing greatly complicates the semantics in an

intractable fashion.

To verify total correctness, it is necessary to prove that every command ter-

minates, including procedure calls. If the termination of all other commands is

established, a procedure call will terminate unless it initiates an in�nitely de-

scending sequence of procedure calls, which continue issuing new calls deeper

and deeper and never �nishing them. To prove termination, we must prove this

in�nite recursive descent does not occur. This will constitute a substantial por-

tion of this dissertation's work, as we describe a new method for proving the

termination of procedure calls which we believe to be simpler, more general, and

easier to use than previous proposals.

In [Hoa69], Hoare presented a way to represent the calculations of a program

by a series of manipulations of logical formulae, which were symbolic represen-

tations of sets of states. The logical formulae, known as \axioms" and \rules of

inference," gave a simple and beautiful way to express and relate the sets of pos-

sible program states at di�erent points within a program. In fact, under certain

conditions it was possible to completely replace a denotational or operational def-

inition of the semantics of a language with this \axiomatic" semantics. Instead

20

1 2

1 2

1

2

1 2

skip

false abort

if then else �

assert while do od

f g f g

f g f g

f g f g

f g f g f g f g
f g f g

f ^ g f g
f ^ � g f g

f g f g

f ^ g f g
f ^ �) g

f g f g

f) g
f g f g
f g f g

q q

q

q < e=x x e q

p c r ; r c q
p c c r

p b c q
p b c q

p b c c q

a b c a
a b q

a a b c q

p a
a c q
p c q

q < e=x <

e x q

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Precondition Strengthening:

[] :=

;

Table 2.4: Example programming language axiomatic semantics.

of involving states, these \rules" now dealt with symbolic formulae representing

sets of possible states. This had the bene�t of more closely paralleling the rea-

soning needed to actually prove a program correct, without being as concerned

with the details of actual operational semantics. To some, reasoning about states

seemed \lower level" and more representation-dependent than reasoning about

expressions denoting relationships among variables.

To illustrate these ideas, consider the Hoare logic in Table 2.4 for the simple

programming language we have developed so far.

In the rule for Assignment, the precondition is []. denotes the

operation of proper substitution; hence, this denotes the proper substitution of

the expression for the variable throughout the assertion . There is one small

21

f � ^ g f � ^ g

f � ^ g f � ^ g

f � ^ g f � ^ g

2.5 Soundness and Completeness

e q

e b

x y x y y r x x y r y y

x y r y y q x q y r y y :

x y x y y r x q x q y r y y :

problem with this, which is that the expressions and are really from two

di�erent, though related, languages. We will intentionally gloss over this issue

now, simply using as a member of both languages. This also applies to where

it appears in the Conditional and Iteration rules.

Given these rules, we may now compose them to prove theorems about struc-

tured commands. For example, from the Rule of Assignment, we have

0 = 0 0 + 0 = := 0 = 0 0 + 0 =

and

0 = 0 0 + 0 = := 0 0 = 0 + 0 =

From these and the Rule of Sequence, we have

0 = 0 0 + 0 = := ; := 0 0 = 0 + 0 =

For completeness, a Hoare logic will usually contain additional rules not based

on particular commands, such as precondition strengthening or postcondition

weakening. The Precondition Strengthening Rule in Table 2.4 is an example.

An axiomatic semantics for a programming language has the bene�t of better

supporting proofs of program correctness, without involving the detailed and

seemingly mechanical apparatus of operational semantics. However, with this

bene�t of abstraction comes a corresponding weakness. The very fact that the

new Hoare rules are more distant from the operational details means a greater

possibility that in fact they might not be logically consistent. This question

22

soundness completeness

Soundness

Completeness

of consistency has two aspects, which are called and .

is the quality that every rule in the axiomatic semantics is true for

every possible computation described by the foundational operational semantics.

A rule is sound if every computation that satis�es the antecedents of the rule also

satis�es its consequent. is the quality of the axiomatic semantics of

being expressive and powerful enough to be able to prove within the Hoare logic

theorems that represent every computation allowed by the operational semantics.

One could easily come up with a sound axiomatic semantics by having only

a few trivial rules; but then one would never be able to derive useful results

about interesting programs. Likewise, one could come up with powerful axiomatic

semantics with which many theorems about programs could be proven; but if any

one rule is not sound, the entire system is useless.

Of these two qualities, we have chosen for this dissertation to concentrate on

soundness. By this choice, we do not intend to minimize the role or importance

of completeness|it is simply a question of not being able to solve every problem

at once. Nevertheless, we do feel that of the two qualities, soundness is in some

sense the more vital one. A system that is sound but not complete may still be

useful for proving many programs correct. A system that is complete but not

sound will give you the ability to prove many seemingly powerful theorems about

programs which are in fact not true with respect to the operational semantics.

Also, researchers have occasionally proposed rules for axiomatic semantics

which were later found to be unsound. This problem has arisen, for example,

in describing the passing of parameters in procedure calls. This history shows a

need for some mechanism to more carefully establish the soundness of the rules

23

^ �)a b q

VCG

2.6 Veri�cation Condition Generators

of an axiomatic semantics, thereby establishing the rules as trustworthy, since all

further proof e�orts in that language depend on them.

Given a Hoare logic for a particular programming language, it may be possible

to partially automate the process of applying the rules of the logic to prove the

correctness of a program. Generally this process is guided by the structure of the

program, applying in each case the Hoare logic rule for the command which is

the major structure of the phrase under consideration.

A Veri�cation Condition Generator takes a suitably annotated program and

its speci�cation, and traces a proof of its correctness, according to the rules of

the language's axiomatic semantics. Each command has its own appropriate rule

which is applied when that command is the major structure of the current proof

goal. This replaces the current goal by the antecedents of the Hoare rule. These

antecedents then become the subgoals to be resolved by further applications of

the rules of the logic.

At certain points, the rules require that additional conditions be met; for

example, in the Iteration Rule in Table 2.4, there is the antecedent .

This is not a partial correctness formula, and so cannot be reduced further by

rules of the Hoare logic. The emits this as a veri�cation condition to be

proven by the user.

As an example, we present in Table 2.5 a Veri�cation Condition Generator for

the simple programming language discussed so far. It consists of two functions,

24

j

^)

^�)

)

1 2 2 2

1 1

1 2

1 2

1 1 1

2 2 2

1 2 1 2

skip

abort true

let in

let in

if then else �

let in

let in

assert while do od

let in

let in

1 () = []

1 () = []

1 (:=) = [] []

1 (;) = () = 1

() = 1

(&)

1 1 () =

() = 1

() = 1

(=) (&)

1 () =

() = 1

[;

] &

= () = 1 [] &

Table 2.5: Example Veri�cation Condition Generator.

25

vcg q q;

vcg q ;

vcg x e q q < e=x ;

vcg c c q r; h vcg c q

p; h vcg c r

p; h h

vcg vcg b c c q

r ; h vcg c q

r ; h vcg c q

b > r r ; h h

vcg a b c q

p; h vcg c a

a; a b p

a b q h

vcg vcg p c q r; h vcg c q p r h

! ! �

! ! !

VCG VCG

VCG

HOL

sound

complete

vcg vcg

vcg

vcg vcg

vcg

2.7 Higher Order Logic

cmd aexp aexp (aexp)list

aexp cmd aexp (aexp)list

the main function and a helper function 1. The square brackets [and

] enclose a list, for which semicolons (`;') separate list elements; the phrase []

denotes an empty list. Comma (`,') creates a pair, and ampersand (`&') appends

two lists together.

1 has type (). This function takes a com-

mand and a postcondition, and returns a precondition and a list of veri�cation

conditions that must be proved in order to verify that command with respect

to the precondition and postcondition. This function does most of the work of

calculating veri�cation conditions.

1 is called by the main veri�cation condition generator function, , with

type . takes a precondition, a command, and

a postcondition, and returns a list of the veri�cation conditions for that command.

Given such a Veri�cation Condition Generator, there are two interesting

things we might ask about it. First, does the truth of the veri�cation condi-

tions it generates in fact imply the correctness of the program? If so, then we

say the is . Second, if the program is in fact correct, does the

generate veri�cation conditions su�cient to prove the program correct from the

axiomatic semantics? We call such a . In this dissertation, we will

only focus on the �rst question, that of soundness.

Higher Order Logic () is a mechanical proof assistant that mechanizes higher

order logic, and provides an environment for de�ning systems and proving state-

26

�

!-order

HOL

HOL

HOL

HOL HOL

HOL HOL

HOL

2.7.1 Higher Order Logic as a Logic

ments about them. It is secure in that only true theorems may be proven, and

this security is ensured at each point that a theorem is constructed.

has been applied in many areas. The �rst and still most prevalent

use is in the area of hardware veri�cation, where it has been used to verify the

correctness of several microprocessors. In the area of software, has been

applied to Lamport's Temporal Logic of Actions (TLA), Chandy and Misra's

UNITY language, Hoare's CSP, and Milner's CCS and -calculus. is one

of the oldest and most mature mechanical proof assistants available, roughly

comparable in maturity and degree of use with the Boyer-Moore Theorem Prover

[BM88]. Many other proof assistants have been introduced more recently that in

some ways surpass , but has one of the largest user communities and

history of experience. We therefore considered it ideal for this work.

di�ers from the Boyer-Moore Theorem Prover in that does not

attempt to automatically prove theorems, but rather provides an environment

and supporting tools to the user to enable him to prove the theorems. Thus,

is better described as a mechanical proof assistant, recording the proof e�orts and

its products along the way, and maintaining the security of the system at each

point, but remaining essentially passive and directed by the user. It is, however,

powerfully programmable, and thus the user is free to construct programs which

automate whatever theorem-proving strategy he desires.

Higher Order Logic is a version of predicate calculus which allows quanti�cation

over predicate and function symbols of any order. It is therefore an

27

Q

Q

0

0

HOL

HOL

HOL

HOL

HOL

HOL

logic, �nite type theory,or according to Andrews [And86]. In such a type theory,

all variables are given types, and quanti�cation is over the values of a type.

Type theory di�ers from set theory in that functions, not sets, are taken as the

most elementary objects. Some researchers have commented that type theory

seems to more closely and naturally parallel the computations of a program than

set theory. A formulation of type theory was presented by Church in [Chu40].

Andrews presents a modern version in [And86] which he names . The logic

implemented in the Higher Order Logic system is very close to Andrews' . This

logic has the power of classical logic, with an intuitionistic style. The logic has

the ability to be extended by several means, including the de�nition of new types

and type constructors, the de�nition of new constants (including new functions

and predicates), and even the assertion of new axioms.

The logic is based on eight rules of inference and �ve axioms. These are

the core of the logical system. Each rule is sound, so one can only derive true

results from applying them to true theorems. As the system is built up, each

new inference rule consists of calls to previously de�ned inference rules, ultimately

devolving to sequences of these eight primitive inference rules. Therefore the

proof system is fundamentally sound, in that only true results can be proven.

provides the ability to assert new axioms; this is done at the user's dis-

cretion, and he then bears any responsibility for possible inconsistencies which

may be introduced. Since such inconsistencies may be hard to predict intuitively,

we have chosen in our use of the system to restrict ourselves to never using

the ability to assert new axioms. This style of using is called a \de�nitional"

or \conservative extension," because it is assured of never introducing any incon-

28

term thm

theories

Meta Language

Object Language

HOL

HOL

HOL

HOL

VCG

HOL

HOL

HOL

HOL

HOL

ML

HOL ML

ML

HOL

2.7.2 Higher Order Logic as a Mechanical Proof Assistant

sistencies. In a conservative extension, the security of is not compromised,

and hence the basic soundness of is maintained.

We will not describe in detail the theoretical foundation of the logic,

referring the interested reader to [GM93], because the purpose of this dissertation

is not the study of itself, but rather its application as a tool to support the

veri�cation of s. Hence we will concentrate on describing the useful aspects

of that apply to our work.

The system provides the user a logic that can easily be extended, by the

de�nition of new functions, relations, and types. These extensions are organized

into units called . Each theory is similar to a traditional theory of logic,

in that it contains de�nitions of new types and constants, and theorems which

follow from the de�nitions. It di�ers from a traditional theory in that a traditional

theory is considered to contain the in�nite set of all possible theorems which could

be proven from the de�nitions, whereas a theory in contains only the subset

which have been actually proven using the given rules of inference and other tools

of the system.

When the system it started, it presents to the user an interactive pro-

gramming environment using the programming language , or

of . The user types expressions in , which are then executed by the sys-

tem, performing any side e�ects and printing the value yielded. The language

contains the data types and , which represent terms and theorems in the

logic. These terms represent a second language, called the

29

thm

thm

OL HOL ML ML

OL

ML HOL

ML

HOL

HOL

ML

derived rules of inference

forward proof

backwards proof

tactic

tacticals

() of , embedded within . functions are provided to construct and

deconstruct terms of the language. Theorems, however, may not be so freely

manipulated. Of central importance is the fact that theorems, objects of type

, can only be constructed by means of the eight standard rules of inference.

Each rule is represented as a function. Thus the security of is maintained

by implementing as an abstract data type.

Additional rules, called , can be written as new

functions. A derived rule of inference could involve thousands of individual calls

to the eight standard rules of inference. Each rule typically takes a number of

theorems as arguments and produces a theorem as a result. This methodology

of producing new theorems by calling functions is called .

One of the strengths of is that in addition to supporting forward proof,

it also supports , where one establishes a goal to be proved, and

then breaks that goal into a number of subgoals, each of which is re�ned further,

until every subgoal is resolved, at which point the original goal is established as a

theorem. At each re�nement step, the operation that is applied is called in

a , which is a function of a particular type. The e�ect of applying a tactic

is to replace a current goal with a set of subgoals which if proven are su�cient

to prove the original goal. The e�ect of a tactic is essentially the inversion of an

inference rule. Tactics may be composed by functions called , allowing a

complex tactic to be built to prove a particular theorem.

Functions in are provided to create new types, make new de�nitions, prove

new theorems, and store the results into theories on disk. These may then be

used to support further extensions. In this incremental way a large system may

30

+

P E V

` 8

HOL

HOL

HOL

2.8 Embeddings

=

P E V: P;E; V ; V; E ; PSpec Truth Subst Assign Value Truth

be constructed.

Previous researchers have constructed representations of programming languages

within , of which the work of Gordon [Gor89] was seminal. He introduced

new constants in the logic to represent each program construct, de�ning

them as functions directly denoting the construct's semantic meaning. This is

known as a \shallow" embedding of the programming language in the logic,

using the terminology described in [BGG 92]. This approach yielded tools which

could be used to soundly verify individual programs. However, there were certain

fundamental limitations to the expressiveness of this approach, and to the theo-

rems which could be proven about all programs. This was recognized by Gordon

himself [Gor89]:

[] (substitution) is a meta notation and consequently the assign-

ment axiom can only be stated as a meta theorem. This elementary

point is nevertheless quite subtle. In order to prove the assignment

axiom as a theorem within higher order logic it would be necessary

to have types in the logic corresponding to formulae, variables and

terms. One could then prove something like:

((()) ())

It is clear that working out the details of this would be a lot of work.

This dissertation explores the alternative approach described but not investi-

gated by Gordon. It yields great expressiveness and control in stating and prov-

31

` 8 f g f g

as

within

q x e: q < x e x e q

q < x e q

HOL

HOL

HOL

HOL

HOL

HOL

ing as theorems within concepts which previously were only describable as

meta-theorems outside . For example, we have proven the assignment axiom

described above:

[:=] :=

where [:=] is a substituted version of , described later.

To achieve this expressiveness, it is necessary to create a deeper foundation

than that used previously. Instead of using an extension of the Object Lan-

guage as the programming language, we create an entirely new set of datatypes

within the Object Language to represent constructs of the programming language

and the associated assertion language. This is known as a \deep" embedding,

as opposed to the shallow embedding developed by Gordon. This allows a sig-

ni�cant di�erence in the way that the semantics of the programming language is

de�ned. Instead of de�ning a construct its semantics meaning, we de�ne the

construct as simply a syntactic constructor of phrases in the programming lan-

guage, and then separately de�ne the semantics of each construct in a structural

operational semantics. This separation means that we can now decompose and

analyze syntactic program phrases at the Object Language level, and thus

reason within about the semantics of purely syntactic manipulations, such

as substitution or veri�cation condition generation, since they exist the

logic.

This has de�nite advantages because syntactic manipulations, when seman-

tically correct, are simpler and easier to calculate. They encapsulate a level of

detailed semantic reasoning that then only needs to be proven once, instead of

having to be repeatedly proven for every occurrence of that manipulation. This

32

HOL

will be a recurring pattern in this dissertation, where repeatedly a syntactic ma-

nipulation is de�ned, and then its semantics is described, and proved correct

within .

33

34

