
CHAPTER 3

Survey of Previous Research

\Now if anyone builds on this foundation with gold, silver, precious

stones, wood, hay, straw, each one's work will become clear; for the

Day will declare it, because it will be revealed by �re; and the �re

will test each one's work, of what sort it is."

| 1 Corinthians 3:12{13

In this chapter we discuss the work that has been done by others that supports

proofs of program correctness for programs containing various language features.

The research discussed below include expressions with side e�ects, procedures

with variable and value parameters, including especially the total correctness

of mutually recursive procedures, veri�cation condition generators, embeddings,

and mechanically veri�ed axiomatic semantics. These areas have been developed

in varying degress, from fairly deep descriptions of the partial correctness of

procedures, to an apparent lack of development of expressions with side e�ects.

In all these areas we hope to give a perspective on the context in which our

research was conducted.
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3.1 Expressions with Side E�ects

Expressions have typically not been treated as a highlight in previous work on

veri�cation; there are some exceptions, notably Soko lowski [Sok84]. Even he does

not treat expressions with side e�ects. Side e�ects appear commonly in actual

programming languages, such as C or C++, with the operators ++ and get ch.

In addition, several interesting functions are naturally designed with a side e�ect;

an example is the standard method for calculating random numbers, based on a

seed which is updated each time the random number generator is run.

In general, expressions with side e�ects have been explicitly excluded, from

the original paper by Hoare [Hoa69], through Dijkstra's work [Dij76], and contin-

uing through that of Alagi�c and Arbib [AA78], de Bakker [dB80], Gries [Gri81],

Gordon [Gor88], Apt and Olderog [AO91], and Dahl [Dah92].

Since expressions did not have side e�ects, they were often considered to be

a sublanguage, common to both the programming language and the assertion

language. Thus one would commonly see expressions such as , where was

an assertion and was a boolean expression from the programming language.

One of the key realizations of this work was the need to carefully distinguish

these two languages, and not confuse their expression sublanguages. This then

requires us to programming language expressions into the assertion lan-

guage before the two may be combined as above. This is described in detail in

Section 10.3 on Translations.
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3.2 Procedures

proc x e x

e proc

proc y z c y

z

c

variable formal parameters

value formal

parameters

The treatment of procedures by di�erent authors has varied in the aspects ad-

dressed and in their depth. Some have dealt with parameters, some have not.

Some methods handle recursive procedures, but not mutual recursion, and others

do. Some treatments have been explicitly detailed, including such complexities

as the subtleties of proper substitution and the generation of new variable names;

other discussions have concentrated on providing a more intuitive, high-level view

of the proof process. Partial correctness has been generally well analyzed, but

termination has been treated by relatively few authors.

Hoare's original paper [Hoa69] did not cover procedures, but with foresight

described how the correct speci�cation and proof of the correctness of procedures

could be an essential building block in the proof of large programs, as well as

providing aid in documentation and in code modi�cation. Hoare saw that the

structure of the proof would mirror the structure of the procedures. In [Hoa71],

he gave an axiomatic approach to recursive procedures, and this has been the

style generally used since.

Current versions of Hoare's rules for the partial correctness of procedures

including parameters are presented by Francez [Fra92]. For illustration, and

leaving out several details, we have adapted his rules into our notation as follows.

We take the syntax of a procedure call to be ( ; ), where is a list of

variables and is a list of expressions. is the name of a procedure de�ned

as ( ; ); , where is a list of the ,

using call by value-result to pass the parameters, is a list of the

, using call by value, and is the body of the procedure, a command.
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f g f g ` f g f g

f g f g
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f g f g
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f ^ 8 ) g f g

f g f g ` f g f g

Rule of Recursion:

call
call

procedure

call

Rule of Adaptation:

call
call

call

pre proc y z post pre c post
pre proc y z post

proc y z c

FV pre y z FV post y

pre proc y z post

pre c post

proc c pre post

pre proc y z post
pre < e=z a: post < a=y q < a=x proc x e q

pre proc y z post pre c post

( ; )
( ; )

provided that the program contains the declaration ( ; ); ,

and ( ) , ( ) . This is actually a , which has

a \provability" claim as one of its assumptions. This provability claim is a side

proof, where one may use ( ; ) as an assumption in

proving . This rule is the veri�cation of the partial correctness

of the body of , , with respect to precondition and postcondition .

This rule is then adapted to particular calls by the following rule:

( ; )
( [ ]) ( ( [ ]) ( [ ])) ( ; )

with additional restrictions, such as non-aliasing.

This approach to proving the correctness of procedures has been generally

adopted, and every other treatment we have studied used some variation of these

rules. However, Soko lowski has remarked [Sok77] that it is not clear what mean-

ing is assigned to ( ; ) that appears in

the Rule of Recursion. Francez [Fra92] explains the Rule of Recursion as a meta-

rule, one of whose antecedents is not merely a correctness assertion, but instead

is a statement about the existence of a proof from an assumption, namely that if

one assumes the partial correctness speci�cation about the invocation command,

then the same speci�cation is provable about the body of the invoked procedure.

This is handled as a separate or side proof, which must be completed before

making the application of the Rule of Recursion.
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3.3 Total Correctness of Mutually Recursive Procedures

We found this approach to be di�cult to break down into a standard method

of solution, and therefore not easily adaptable for a . Instead, we handle the

problem of the order of proof of the body versus the call by a meta-level proof

done once to verify the .

The treatment of procedures has historically been fraught with unsoundness,

as noted by Francez [Fra92]:

Another indication of the intricacy of rules dealing with the language

constructs considered in this chapter [on procedures] is that several

wrong rules have been proposed, the errors in which were caught much

later. However, any serious methodological attempt at veri�cation of

actual software will have to deal with such mechanisms to be of any

practical use. Thus, awareness of complications and limitations is of

crucial importance when programs with procedures are concerned.

We believe that this history of unsoundness from capable researchers is a strong

indication of an inherent underlying degree of complexity which requires powerful

tools. The treatment of procedures is an area where the security of a mechanical

proof-checker has been of great value to us.

Proving the total correctness of mutually recursive procedures involves showing

that they terminate, in addition to their partial correctness. Mutually recursive

procedures may not terminate if a computation follows a cycle of procedures in

the procedure call graph, where the procedures repeatedly call each other in that
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3.3.1 Soko lowski

in�nite recursive descentcycle without ever returning. We call this situation .

The general strategy to prevent this in�nite recursive descent is to limit the

possible depth of calls that such a calling chain can descend. Any �nite limit is

su�cient to guarantee termination. A powerful and general technique to impose

such a limit is to track the procedures in the calling chain, attaching a value to

each procedure, where the values are all taken from a well-founded set, and where

the values strictly decrease along the chain. By the de�nition of a well-founded

set, there do not exist any in�nite descending sequences of values from the well-

founded set, and so the situation of such an in�nite chain of procedure calls can

not occur.

To specify this, one chooses an expression whose value is in the well-founded

set, and considers the value attached to each procedure to be the value of the

expression at the head of the procedure, when it is entered. In the past, most

reseachers have limited the choice of well-founded set to be the nonnegative in-

tegers. In addition, most researchers have chosen the ordering relation of the

well-founded set to be the successor relation, where the only pairs in the relation

were of the form ( + 1) for 0. These are useful choices for exploration,

but they can also occlude the fact that there is a great deal more power available

in the more general well-founded set.

For termination, the original work was done by Soko lowski [Sok77], where he

introduced a recursion depth counter. This depth counter was a measure of how

much more deeply the computation could issue calls. For each call, the depth
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3.3.2 Apt

f g f g

f g f g ` f g f g

f9 � g f g

pre c post
pre i proc post pre i c post

i : pre i proc post

pre

counter was decreased by one, with the invariant maintained that it remained

nonnegative. Since any number cannot be decreased inde�nitely without becom-

ing negative (an example of a well-foundedness argument), the procedure could

be proven to terminate. Soko lowski gave a rule of procedure recursion that sup-

ported a termination argument. His rule was based on Hoare's, and had the

following form, adapted to the style used above.

(0)
( ) ( + 1)

0 ( )

The recursion depth counter is represented by the argument to the precon-

dition . Soko lowski then extended this rule to systems of mutually recursive

procedures by reinterpreting the elements of the rule as vectors. He gave proofs

of soundness and completeness of the new rule.

Soko lowski spent some time discussing the fact that the provability claim in

the above rule did not concern programs, but the inference system for reasoning

about programs. He resolved this trouble by describing an in�nite sequence of

predicate transformers, and modi�ed the rule to depend on all the predicate

transformers.

This system did not deal with parameters.

In 1981, Apt [Apt81] proved that Soko lowski's rule did not have su�cient strength

to be able to prove all valid correctness speci�cations, i.e., that it was not com-

plete. Apt then added additional proof rules, still not including parameters, to

deal with the e�ects of procedure calls on variables not used in the procedure.
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3.3.3 America and de Boer

3.3.4 Pandya and Joseph

In 1990, America and de Boer [AdB90] noted that the augmented system pre-

sented by Apt was not sound, that one could derive from it correctness speci-

�cations which were not valid. An example of such a derivation was described

in their work. They then presented a modi�cation of Apt's proof system with

some restrictions added, and proved the resulting system was both sound and

complete. This paper was quite comprehensive and thorough in its treatment.

However, its scope was limited in several ways; the set of declared procedures

was restricted to a single procedure, parameters were not addressed, and contin-

uing the tradition set by Soko lowski, the recursion depth counter was required to

decrease by exactly one for every individual procedure call.

During this discussion of soundness and completeness, Pandya and Joseph [PJ86]

considered a new aspect of the problem of proving the total correctness of recur-

sive procedures, namely the simplicity and ease of applying the proof techniques.

They found that even for simple programs, that Soko lowski's rule could require

the use of complex predicates to encode information about the depth counter, to

ensure that it decreased by exactly one for each procedure call. This signi�cantly

added to the di�culty of practically proving such programs. Pandya and Joseph

noted that this requirement of decreasing by one did not consider the structure of

the program itself, and thus was as opposed to being .

They proposed a new rule, based on choosing a subset of the procedures called

the procedures. Every cycle in the procedure call graph was required to
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3.4 Veri�cation Condition Generators, Embeddings, and

Mechanically Veri�ed Axiomatic Semantics

contain at least one header procedure. Then the requirement of decreasing by

one was applied to only the header procedures, and not the rest. This enabled

much simpler descriptions of the recursion depth counter, making proofs more

natural. Pandya and Joseph's approach did require the programmer to select a

valid set of header procedures for a program, but they described algorithms to

help identify such a set. Still, this was an additional burden on the programmer,

and varied in its e�ectiveness based on the particular structure of the program

being proved. In the worst case, one would need to choose all procedures as being

header procedures, in which case their rule simpli�ed to Soko lowski's.

Veri�cation Condition Generators have a long and respectable history. They

�rst appeared in the early 1970's, of which Igarashi, London, and Luckham's

[ILL75] is a notable and characteristic example. In the beginning they were

hailed as an answer to the di�culty of proving programs correct. This hope

waned over time, however. First of all, it was discovered that for many simple

programming languages, the work done by the was mostly trivial and not

hard to do by hand. Then, even after the had done its work and reduced

the problem of proving the program to the problem of proving the veri�cation

conditions, that those veri�cation conditions were not always easy to prove, and

could contain the bulk of the necessary e�ort of the entire proof. An additional

feature that was not discussed as much was the fact that for the most part, these

veri�cation condition generators were not themselves veri�ed. This meant that
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any proof using and relying on these tools might not be sound, even if all

the veri�cation conditions were correctly proven. Ragland's work [Rag73] in 1973

is a notable exception to this, far ahead of its time.

Finally, a veri�cation condition generator is usually based on an axiomatic

semantics for the programming language. When these programming languages

were extended to include procedure calls (an obvious necessity), a disturbing

number of the rules proposed for procedure calls turned out to be unsound. It

became evident that the area of procedure calls was more complicated than had

originally appeared. Given these di�culties, interest declined in the use of s,

and research mostly turned to other subjects, such as discovering rules to handle

concurrency in various forms.

In recent years, there have been several shallow embeddings of programming

languages in the theorem proving environment, including the creation of

veri�cation condition generators. These have taken the form of tactics,

which in general reduce a current goal to be proved to a su�cient set of subgoals.

In contrast to the traditional s created as stand-alone programs, these

s had their soundness secured by the inherent security of the system

itself. This was a very signi�cant advantage. No veri�cation of the itself was

necessary, as every application of the tactic would prove all necessary subsidiary

theorems as part of the process. However, this also was a weakness of the

s, because it required that every proof be carried out at the semantic level,

instead of the syntactic manipulations that were simpler and that were the tra-

ditional work of s. Also, these semantic s required an additional degree

of annotation and speci�cation from the user beyond what had been required by
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3.4.1 Ragland

3.4.2 Igarashi, London, and Luckham

the syntactic s.

In addition, there have been forays into the areas of deep embeddings within

and into mechanical veri�cation of axiomatic semantics, including concur-

rency, proven from the underlying operational semantics. These technologies

have not usually been combined together with s, however, and generally the

veri�cation of s has not been targeted recently, until our work.

Ragland in 1973 veri�ed a veri�cation condition generator [Rag73]. It was written

in Nucleus, a language Ragland had invented to have the expressiveness to write

a , and also be veri�able itself. This was a remarkable piece of work, well

ahead of its time. The system consisted of 203 procedures, nearly all of

which were less than one page long. These gave rise to approximately 4000

veri�cation conditions. The proof of the used an unveri�ed written in

Snobol4. The 4000 veri�cation conditions it generated were proven by Ragland

by hand, not mechanically. In our opinion, this proof was a . This

proof substantially increased the degree of trustworthiness of Ragland's .

In 1975, Igarashi, London, and Luckham [ILL75] gave an axiomatic semantics for

a substantial subset of Pascal which included procedures, and described a

for partial correctness that they had written in MLISP2. The soundness of the

axiomatic semantics was veri�ed by hand proof, but the correctness of the

was not rigorously proven. The only mechanized part of this work was the
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3.4.3 Boyer and Moore

3.4.4 Gray

itself. This paper has become a classic reference on s.

In 1981, Boyer and Moore presented a veri�cation condition generator for a sub-

set of ANSI FORTRAN 66 and 77 [BM81]. This produced veri�cation conditions

as goals for the Boyer-Moore theorem prover. The was remarkable for sev-

eral reasons, including the substantial coverage of much of a \real" programming

language, the inclusion of a static check of the syntax to enforce a set of syn-

tactic restrictions (similar to our \well-formedness" constraints), the thorough

analysis of aliasing, and the generation of veri�cation conditions to prove ter-

mination. The approach to proving termination involved attaching \clocks" to

various statements, which were expressions yielding values in a well-founded set,

with the provision that every time control passed a clock, strictly less time was

left on the clock than on the previous clock encountered.

This was a substantial and powerful , with the advantage that the veri�-

cation conditions generated could then be proven with the aid of the Boyer-Moore

theorem prover. However, there was no formal axiomatic semantics presented to

justify the operation of the , and no veri�cation of the was considered.

In 1987, Gray presented a veri�cation condition generator he had created [Gra87]

to help teach axiomatic semantics to undergraduate students. The language con-

sidered resembled a subset of Pascal, and contained input and output commands,

as well as procedure calls with both value and variable parameters. This stand-
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alone was implemented by Gray and provided to his students. He wrote

that

In a teaching situation this allows the students to concentrate

on the tasks of specifying programs and proving lemmas, and relieves

them of the tedious symbol manipulation required to generate the

lemmas.

The veri�cation conditions produced were to be proven by hand by the students.

The issue of the veri�cation of the itself was not addressed by Gray, because

it was not central to his goal of undergraduate education.

Gordon in 1989 [Gor89] did the original work of constructing within a frame-

work for proving the correctness of programs. This was a seminal work, although

it did not cover procedures. Gordon created a shallow embedding of the pro-

gramming language considered, introducing new constants in the logic to

represent each program construct, de�ning them as functions directly denoting

the construct's semantic meaning. This work included de�ning veri�cation con-

dition generators for both partial and total correctness as tactics. This approach

yielded tools which could be used to soundly verify individual programs. How-

ever, the tactic he de�ned was not itself proven. Its soundness was ensured

by the security of itself. The chief strength of this work was the ability to

contain the entire proof of a program, from the original program correctness goal

to the proof of the individual veri�cation conditions, within a single mechanical

proof checker.
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3.4.6 Agerholm

while

while

3.4.7 Melham

3.4.8 Camilleri and Melham

In 1991 Agerholm [Age91] used a similar shallow embedding to de�ne the weak-

est preconditions of a small -loop language, including unbounded nondeter-

minism and blocks. The semantics was designed to avoid syntactic notions like

substitution. Similar to Gordon's work, Agerholm de�ned a veri�cation condition

generator for total correctness speci�cations as an tactic. This tactic needed

the user to supply additional information to handle sequences of commands and

the command.

In 1992, Melham [Mel92] created a embedding of the -calculus in sup-

porting meta-theoretic reasoning about the -calculus itself. Melham was careful

to explicitly de�ne all syntactic operations within the logic, including substitu-

tion, which previous authors had avoided. He used simultaneous substitutions,

and noted that this was one of the more complex de�nitions, due to the need to

change bound names. There were several points where the work was automated,

but no of the traditional style was presented.

Also in 1992, Camilleri and Melham [CM92] created a library for which

supported the de�nition and use of relations inductively de�ned by rules. In this

work, one of the examples presented was the de�nition of a structural operational

semantics for a small language. The command structure was based on a deep
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3.4.9 Zhang, Shaw, Olsson, Levitt,

3.4.10 Lin

embedding, although the authors did not use this term. From this de�nition, the

authors proved the soundness of a Floyd-Hoare partial correctness rule for the

command.

In 1993, Zhang, Shaw, Olsson, Levitt, Archer, Heckman, and Benson [ZSO 93]

described a shallow embedding within of the concurrent programming lan-

guage microSR, a derivative of SR. This language used a message-passing mech-

anism, with asynchronous send and synchronous receive statements. Concur-

rent parts of the program could only communicate through this message-passing

mechanism, with no shared globals. The Hoare logic for microSR was formally

proven to be sound within HOL, a valuable achievement in the subtle area of

concurrency. The work did not include a veri�cation condition generator. The

chief contribution of this paper was the substantial and important mechanical

veri�cation of the Hoare logic rules concerning concurrency.

Also in 1993, Lin [Lin93] presented a veri�cation tool called for value-

passing CCS, Milner's Calculus of Communicating Systems. This tool appears

similar to veri�cation condition generators. This was described in a paper by

Nesi [Nes93] as follows:

The veri�cation tool for value-passing is based on a proof

system which deals with data and boolean expressions .

This means that, when value-passing agents are analyzed, boolean
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3.4.11 Kaufmann

3.4.12 Homeier and Martin

while

and value expressions are not evaluated, and input variables are not

instantiated. In this way, reasoning about data is separated from

reasoning about agents, and is performed by extracting \proof obli-

gations" which can be veri�ed by another theorem prover later or

on-line with the main proof about the process behavior.

In 1994, Kaufmann used the Boyer-Moore Theorem Prover to produce a

similar in style and concept to the s produced for shallow embeddings in

[Kau94]. In this work, Kaufmann created a proof which was essentially a

proof at the semantic level, but it was guided and aided automatically by the

structure of the program by the . The acted as a heuristic guide to

form the proof, so the security of the proof rested not on the unveri�ed , but

on the security of the Boyer-Moore Theorem Prover.

In 1994, we presented an early version of some of the work of this dissertation

[HM94], for a standard -loop programming language without procedures

but containing expressions with side-e�ects. The rules of the Hoare logic pre-

sented were proven sound within from an underlying structural operational

semantics. As opposed to much previous work in this was based on a

embedding of the programming language in the logic. The veri�ed Hoare

logic then formed an axiomatic semantics for partial correctness which supported

the de�nition and proof of correctness for a veri�cation condition generator func-
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tion the logic. The theorem of the veri�cation of the stated that

for any program and its speci�cation, if all of the veri�cation conditions the

generated were true, then the program was partially correct with respect to its

speci�cation. This theorem then supported the application of the function

to prove individual programs correct.
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