
55

Part II

Results

56

while

CHAPTER 5

Sunrise

\They will speak with new tongues."

| Mark 16:17

\A wholesome tongue is a tree of life,

But perverseness in it breaks the spirit."

| Proverbs 15:4

In this chapter we describe the Sunrise programming language and its as-

sociated assertion language, which is the language studied in this work. This

is a representative member of the family of imperative programming languages,

and its constructs will be generally familiar to programmers. We have carefully

chosen the constructs included to have natural, straightforward, and simple se-

mantics, which will support proofs of correctness. To this end, we have extended

the normal notation for some constructs, notably loops and procedure

declarations, to include annotations used in constructing the proof of a Sunrise

program's correctness. These annotations are required, but have no e�ect on the

actual operational semantics of the constructs involved. They could therefore

be considered comments, except that they are used by the veri�cation condition

57

generator in order to produce an appropriate set of veri�cation conditions to

complete the proof.

In the past, there has been considerable debate over the need for the pro-

grammer to provide, say, a loop invariant. Some have claimed that this is an

unreasonable burden on the programmer, who should have to provide only a

program and an input/output speci�cation. Others have replied that the re-

quirement to provide a loop invariant forces clear thinking and documentation

that should have been done in any case.

We would like to take the pragmatic position that the provision of loop in-

variants is necessary for the simple de�nition of veri�cation condition generators,

which are not complex functions. The same principle holds for the more complex

annotations we require for procedures, that the provision of these annotations are

necessary for simple and clean de�nitions of the program logic rules which serve

as an axiomatic semantics for procedures. If one wishes to transfer the burden of

coming up with the loop invariant from the human to the automatic computer,

one incurs a great increase in the degree of di�culty of constructing the veri-

�cation condition generator, including the need for automatic theorem provers,

multiple decision procedures, and search strategies which have exponential time

complexity. We wish to attempt something rather more tractable, and to per-

form only part of the task, in particular that part which seems most amenable to

automatic analysis. This desire has guided the construction of the language here

de�ned.

58

pr

n m

n m

k

pre

post

j j

rec

j j j j � j �

h i j

j j � j ^ j _ j �

j

j

j

j

j

j

j

j

1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2

1 2

1 1

1 1

1

1 1

1 2

exp:

(exp)list:

bexp:

cmd:

decl:

prog:

e n x x e e e e e e

es CONS e es

b e e e < e es es b b b b b

c

x e

c c

b c c

a a b c

p x ; ; x e ; ; e

d p x ; ; x y ; ; y

z ; ; z

a

a

p a

p a

a

c

d d

� d c

::= ++ +

::=

::= =

::=

:=

;

(. . . ; . . .)

::= (. . . ; . . .);

. . . ;

;

;

;
...

;

;

;

::= ;

Table 5.1: Sunrise programming language.

59

skip

abort

if then else �

assert with while do od

procedure var val

global

pre

post

calls with

calls with

recurses with

end procedure

empty

program end program

a priori HOL

HOL

VCG

e

es

b

c

d

�

n

x y

5.1 Programming Language Syntax

exp

(exp)list

bexp

cmd

decl

prog

num

var

^

Table 5.1 contains the concrete syntax of the Sunrise programming language,

de�ned using Backus-Naur Form as a context-free grammar.

We de�ne six types of phrases in this programming language (Table 5.2):

Type Description Typical Member

numeric expressions

lists of numeric expressions

boolean expressions

commands

declarations

programs

Table 5.2: Sunrise programming language types of phrases.

The lexical elements of the syntax expressed in Table 5.1 are numbers and

variables. Numbers (denoted by) are simple unsigned decimal integers, includ-

ing zero, with no limit on size, to match the type . They cannot

be negative, either as written or as the result of calculations.

Variables (denoted with or , etc.) are a new concrete datatype consist-

ing of two components, a string and a number. In a character string may be

of any length from zero or more. The name of a variable is typically printed as

the string, followed immediately by the variant number, unless it is zero, when no

number is printed; the possibility exists for ambiguity of the result. The parser

we have constructed expects the name of the variable to consist of letters, digits,

and underscore (` '), except that the �rst character may also be a caret (` ').

However, the operations of the allow the string to contain any characters.

The meaning of the string is to be the base of the name of the variable, and the

60

HOL

^

y ^y

logical variable program variable

meaning of the number is to be the variant number of the variable. Hence there

might be several variables with the same string but di�ering in their number

attribute, and these are considered distinct variables. This structure is used for

variables to ease the construction of variants of variables, by simply changing

(increasing) the variant number of the variable.

Variables are divided into two classes, depending on the initial character (if

any) of the string. If the initial character is a caret (` '), then the variable is

a , otherwise it is a . Program and logical vari-

ables are completely disjoint; \ " and \ " are separate and distinct variables.

Both kinds are permitted in assertion language expressions, but only program

variables are permitted in programming language expressions. Since logical vari-

ables cannot appear in programming language expressions, they may never be

altered by program control, and thus retain their values unchanged throughout

a computation.

The syntax given in Table 5.1 uses standard notations for readability. The

actual data types (except for lists) are created in as new concrete recur-

sive datatypes, using Melham's type de�nition package [GM93]. The results of

this de�nition includes the creation of the constructor functions for the various

programming language syntactic phrases in Table 5.3. This forms the abstract

syntax of the Sunrise programming language.

All the internal computation of the veri�cation condition generator is based

on manipulating expressions which are trees of these constructor functions and

the corresponding ones for assertion language expressions. These trees are not

highly legible. However, we have provided parsers and pretty-printing functions

61

�

�

�

^

_
�

exp

bexp

cmd

decl

prog

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

skip

abort

if then else �

assert with while do od

proc

empty

program end program

:

++

+

: =

:

:=

;

(;)

:

;

: ;

Table 5.3: Sunrise programming language constructor functions.

62

NUM n n

PV AR x x

INC x x

PLUS e e e e

MINUS e e e e

MULT e e e e

EQ e e e e

LESS e e e < e

LLESS es es es es

AND b b b b

OR b b b b

NOT b b

SKIP

ABORT

ASSIGN x e x e

SEQ c c c c

IF b c c b c c

WHILE a pr b c a pr b c

CALL p xs es p xs es

PROC p vars vals glbs p vars vals glbs

pre post calls rec c pre post calls rec c

DSEQ d d d d

DEMPTY

PROG d c d c

�

�

n

x

x x

x y

x y

5.2.1 Numeric Expressions

5.2 Informal Semantics of Programming Language

to provide an interface that is more human-readable, so that the constructor trees

are not seen for most of the time.

The constructs in the Sunrise programming language, shown in Table 5.1, are

mostly standard. The full semantics of the Sunrise language will be given as

a structural operational semantics later in this chapter. But to familiarize the

reader with these constructs in a more natural and understandable way, we here

give informal descriptions of the semantics of the Sunrise language. This is in-

tended to give the reader the gist of the meaning of each operator and clause in

Table 5.1. We also describe the signi�cance of the system of annotations for both

partial and total correctness.

is an unsigned integer.

is a program variable. It may not here be a logical variable.

++ denotes the increment operation, where is a program variable as above.

The increment operation adds one to the variable, stores that new value into the

variable, and yields the new value as the result of the expression.

The addition, subtraction, and multiplication operators have their normal

meanings, except that subtraction is restricted to nonnegative values, so = 0

for . The two operands of a binary operator are evaluated in order from

left to right, and then their values are combined and the numeric result yielded.

63

h i

h i h i

�1 2

1

1 1

2

1 2

HOL

HOL

HOL

NIL CONS

NIL

es es

es

es es

es

es es

5.2.2 Lists of Numeric Expressions

5.2.3 Boolean Expressions

provides a polymorphic list type, and a set of list operators that function

on lists of any type. This list type has two constructors, and , with

the standard meanings. In both its meta language and object language,

typically displays lists using a more compact notation, using square brackets ([])

to delimit lists and semicolons (;) to separate list elements. Thus = [], and

[2;3;5;7] is the list of the �rst four primes. In this programming language we wish

to reserve square brackets to denote total correctness speci�cations, and so we

will use angle brackets () instead to denote lists within the Sunrise language,

for example 2; 3; 5; 7 or . When dealing with lists, however, the square

brackets will still be used.

The numeric expressions in a list are evaluated in order from left to right, and

their values are combined into a list of numbers which is the result yielded.

The operators provided here have their standard meaning, except for ,

which evaluates two lists of expressions and compares their values according to

their lexicographic ordering. Here the left-most elements of each list are compared

�rst, and if the element from is less, then the test is true; if the element from

is greater, then the test is false; and if the element from is the same as

(equal to) the element from , then these elements are discarded and the tails

of and are compared in the same way, recursively.

For every operator here, the operands are evaluated in order from left to right,

and their values combined and the boolean result yielded.

64

�

pr

pr

pr

pr

n m

m

1 2

1 2

1 2

1 2

1 1

1

invariant

progress expression

variant

x e e

x c c

c c

b c c b

c c

a a b c b

c

b a

a

a

a

v < x v x

v

v

a

vs xs

p x ; ; x e ; ; e

e ; ; e

5.2.4 Commands

skip abort

if then else �

assert with while do od

assert

with

The command has no e�ect on the state. causes an immediate

abnormal termination of the program. := evaluates the numeric expression

and assigns the value to the variable , which must be a program variable. ;

executes command �rst, and if it terminates, then executes . The conditional

command �rst evaluates the boolean expression ; if it is

true, then is executed, otherwise is executed.

The iteration command evaluates ; if it

is true, then the body is executed, followed by executing the whole iteration

command again, until evaluates to false, when the loop ends. The \ "

and \ " phrases of the iteration command do not a�ect its execution; these

are here as annotations to aid the veri�cation condition generator. denotes an

, a condition that is true every time control passes through the head of

the loop. This is used in proving the partial correctness of the loop.

In contrast, denotes a , which here must be of the form

, where is a assertion language numeric expression and is a logical

variable. may only contain program variables. Assertion language expressions

will be de�ned presently; here, serves as a , an expression whose value

strictly decreases every time control passes through the head of the loop. This

is used in proving the termination of the loop. In future versions of the Sunrise

programming language, we intend to broaden to other expressions, such as

, whose variants describe values of well-founded sets.

Finally, (. . . ; . . .) denotes a procedure call. This �rst

evaluates the actual value parameters . . . in order from left to right,

65

1

1

n

n

p

x ; ; x

p

x ; ; x

p p

and then calls procedure with the resulting values and the actual variable

parameters The value parameters are passed by value; the variable

parameters are passed by name, to simulate call-by-reference. The call must

match the declaration of in the number of both variable and value parameters.

Aliasing is forbidden, that is, the actual variable parameters . . . may

not contain any duplicates, and may not duplicate any global variables accessible

from . The body of has the actual variable parameters substituted for the

formal variable parameters. This substituted body is then executed on the state

where the values from the actual value parameters have been bound to the formal

value parameters. If the body terminates, then at the end the values of the formal

value parameters are restored to their values before the procedure was entered.

The e�ect of the procedure call is felt in the actual variable parameters and in

the globals a�ected.

66

!

1 1

1

1 1

1

1

1

1 1

progress environment prog env

prog env string aexp

n m

k

pre

post

j j

rec

n

m

k

pre

post

j j

rec

5.2.5 Declarations

procedure var val

global

pre

post

calls with

calls with

recurses with

end procedure

proc

false

calls with

p x ; ; x y ; ; y

z ; ; z

a

a

p a

p a

a

c

p vars vals glbs pre post calls rec c

p p

vars x ; ; x

vals y ; ; y

vars z ; ; z

pre a

post a

calls �p: a =p a =p

rec a

c c

calls

The main kind of declaration is the procedure declaration; the other forms sim-

ply serve to create lists of procedure declarations or empty declarations. The

procedure declaration has the concrete syntax

(. . . ; . . .);

. . . ;

;

;

;
...

;

;

This syntax is somewhat large and cumbersome to repeat; we will usually use

instead the lithe abstract syntax version

where it is to be understood that we mean

=

= . . .

= . . .

= . . .

=

=

= ()[] . . . []

=

=

Note that the parameter is now a of type ,

where = , a function from procedure names to progress

expressions, to serve as the collection of all the . . . phrases given.

67

n

m

k

1

1

1

�

�

�

�

�

�

var

val

global

p

vars

x ; ; x

vals

y ; ; y

glbs

z ; ; z

pre

post

post

The meaning of each one of these parameters is as follows:

is the name of the procedure, a simple string.

is the list of the formal variable parameters, a list of variables. If there

are no formal variable parameters, the entire \ . . . " phrase may

be omitted.

is the list of the formal value parameters, a list of variables. If there

are no formal value parameters, the entire \ . . . " phrase may

be omitted.

is the list of the global variables accessible from this procedure. This

includes not only those variables read or written within the body of this

procedure, but also those read or written by any procedure called immedi-

ately or eventually by the body of this procedure. Thus it is a list of all

globals which can possibly be read or written during the course of execu-

tion of the body once entered. If there are no globals accessible, the entire

\ . . . ;" phrase may be omitted.

is the precondition of this procedure. This is a boolean expression

in the assertion language, which denotes a requirement that must be true

whenever the procedure is entered. Only program variables may be used.

is the postcondition of this procedure. This is a boolean expression in

the assertion language, which denotes the relationship between the states

at the entrance and exit of this procedure. Two kinds of variables may be

used in , program variables and logical variables. The logical variables

68

�

�

i i

i

i i

i

i

i

calls with

calls with

progress expression

recursion expression

calls

p a

post

p

p

p p

p p

a post

a

p

p

rec

rec

p p

p

post

will denote the values of variables at the time of entrance, and the program

variables will denote the values of the variables at the time of exit. The

postcondition expresses the logical relationship between these two sets of

values, and thus describes the e�ect of calling the procedure.

is the progress environment, the collection of all the . . .

phrases given. Each \ " phrase expresses a relationship

between two states, similar to the expression but for di�erent states.

The �rst state is that at the time of entrance of this procedure . The

second state is that at any time that procedure is called directly from

the body of . That is, if while executing the body of there is a direct

call to , then the second state is that just after entering .

Expression is a . Similar to the expression, there

are two kinds of variables that may be used in , program variables and

logical variables. The logical variables will denote the values of variables at

the time of entrance of , and the program variables will denote the values

of the variables at the time of entrance of . The progress expression gives

the logical relationship between these two sets of values, and thus describes

the degree of progress achieved between these calls.

is the for this procedure. It is a progress expression,

similar to the progress expression of an iteration command, describing a

relationship between two states. For , the �rst state is that at the time

of entrance of , and the second state is any time of entrance of recursively

as part of executing the body of for the �rst call.

Similar to the expression, there are two kinds of variables that may be

69

rec

�

�

�

false false

recurses with

false

rec

p

p rec

rec rec v < x

v x

rec p

v < x v

v x rec

p

p v < x

vs xs

a rec

c

vars vals glbs

calls rec

used in , program variables and logical variables. The logical variables

will denote the values of variables at the time of original entrance of , and

the program variables will denote the values of the variables at the times

of recursive entrance of . The expression gives the logical relationship

between these two sets of values, and thus describes the degree of progress

achieved between recursive calls.

There are two permitted forms for . may be of the form , where

is an assertion language numeric expression and is a logical variable, or

may be . is appropriate when the procedure is not recursive

and cannot call itself. Otherwise, should be used. may only contain

program variables; it serves as a variant, an expression whose value strictly

decreases for each recursive call. Thus if was equal to at the time

was originally called, then at any recursive call to nested within that �rst

call to , we should have .

In the future we intend to broaden this to include other expressions, such

as , whose variants describe values in well-founded sets, and the

strict decrease described will be in terms of the relation used, e.g., .

If this procedure is not expected to ever call itself recursively, then the

phrase \ ;" may be omitted, in which case is taken

by default to be .

Command is the body of this procedure. It may only use variables ap-

pearing in , , or .

The actual signi�cance of the various annotations, especially and ,

will be explained in greater depth and illustrated with examples in later chapters.

70

HOL

h i

! � � �

� � � �

5.2.6 Programs

procedure environment

5.3 Assertion Language Syntax

�

� p vars; vals; glbs; pre; post; calls; rec; c :

:

env

env

env string var list var list var list

aexp aexp prog env aexp cmd

A program consists of a declaration of a set of procedures and a command as the

main body. The declarations are processed to create a

of type , collecting all of the information declared for each procedure into a

function from procedure names to tuples of the following form:

=

The de�nition of is

= (() () ()

)

This environment is the context used for executing the bodies of the proce-

dures themselves, and also for executing the main body of the program.

The program is considered to begin execution in a state where the value of

all variables is zero; however, this initial state is not included in the proof of

a program's correctness. A future version of the Sunrise program may have an

arbitrary initial state, and the same programs will prove correct.

Table 5.4 contains the syntax of the Sunrise assertion language, de�ned using

Backus-Naur Form as a context-free grammar.

We de�ne three types of phrases in this assertion language, in Table 5.5.

The above syntax uses standard notations for readability. The actual data

types are created in as new concrete recursive datatypes, using Melham's

71

true false

close

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 3

j j j � j �

h i j

j

j j j �

j ^ j _ j �

j) j j j

j j 8 j 9

vexp:

(vexp)list:

aexp:

vexp

(vexp)list

aexp

v n x v v v v v v

vs CONS v vs

a

v v v < v vs vs

a a a a a

a a a a a > a a

a x: a x: a

v

vs

a

::= +

::=

::=

=

= (=)

Table 5.4: Sunrise assertion language.

Type Description Typical Member

numeric expressions

lists of numeric expressions

boolean expressions

Table 5.5: Sunrise assertion language types of phrases.

72

vexp

aexp

�

�

�

^

_
�

)

j

8

9

true

false

close

5.4 Informal Semantics of Assertion Language

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 3 1 2 3

ANUM n n

AV AR x x

APLUS v v v v

AMINUS v v v v

AMULT v v v v

ATRUE

AFALSE

AEQ v v v v

ALESS v v v < v

ALLESS vs vs vs vs

AAND a a a a

AOR a a a a

ANOT a a

AIMP a a a a

AEQB a a a a

ACOND a a a a > a a

ACLOSE a a

AFORALL x a x: a

AEXISTS x a x: a

type de�nition package [GM93]. The results of this de�nition includes the cre-

ation of the constructor functions for the various assertion language syntactic

phrases in Table 5.6. This forms the abstract syntax of the Sunrise assertion

language.

:

+

:

=

=

=

Table 5.6: Sunrise assertion language constructor functions.

The constructs in the Sunrise assertion language, shown in Table 5.4, are mostly

standard. The full semantics of the Sunrise assertion language will be given as a

73

�

�

n

x

x y

x y

NIL

CONS

5.4.1 Numeric Expressions

5.4.2 Lists of Numeric Expressions

5.4.3 Boolean Expressions

true

denotational semantics later in this chapter. But to familiarize the reader with

these constructs in a more natural and understandable way, we here give informal

descriptions of the semantics of the Sunrise assertion language. This is intended

to give the reader the gist of the meaning of each operator and clause.

The evaluation of any expression in the assertion language cannot change the

state; hence it is immaterial in what order subexpressions are evaluated.

is an unsigned integer, as before for the programming language.

is a variable, which may be either a program variable or a logical variable.

The addition, subtraction, and multiplication operators have their normal

meanings, except that subtraction is restricted to nonnegative values, so = 0

for .

These are similar to the lists of numeric expressions described previously for

the programming language, except that the constituent expressions are assertion

language numeric expressions. This list type has two constructors, and

, with the standard meanings.

Most of the operators provided here have their standard meaning, and are similar

to their counterparts in the programming language, if one exists. and

74

HOL

^ _

�

j

1 2

1 2 3

1 2 3

1

false

close

<

vs vs

a > a a

a a a

a a

a a

are the logical constants. = and have the normal interpretation, and

so do the various boolean operators, such as conjunction () and disjunction ().

evaluates two lists of expressions and compares their values according

to their lexicographic ordering. (=) is a conditional expression, �rst

evaluating , and then yielding the value of or respectively, depending on

whether evaluated to T or F, which are the truth constants.

forms the universal closure of , which is true when is true for all possible

assignments to its free variables. We have speci�cally included the universal and

existential quanti�ers; all quanti�cation is over the nonnegative integers.

75

HOL

HOL

VCG

5.5 Formal Semantics

\There are, it may be, so many kinds of languages in the world, and

none of them is without signi�cance. Therefore, if I do not know the

meaning of the language, I shall be a foreigner to him who speaks,

and he who speaks will be a foreigner to me."

| 1 Corinthians 14:10, 11

We present in this section the structural operational semantics of the Sunrise

programming language, according to the style of Plotkin [Plo81] and Hennessey

[Hen90]. We also present the semantics of the Sunrise assertion language in a

denotational style.

The de�nitions in this section are the primary foundation for all succeeding

proof activity. In particular, it is from these de�nitions that the �ve program

logics described in Chapter 6 are proven sound, and from which the veri�cation

condition generator presented in Chapter 7 is proven sound. It is therefore also

the foundation for the example programs which are veri�ed in Chapter 8.

These extensions to the system are purely de�nitional. No new axioms

are asserted. This is therefore classi�ed as a \conservative extension" of ,

and there is no possibility of unsoundness entering the system. This security was

essential to our work. This choice ensured that we faced a very di�cult task

in proving the soundness of the logics of Chapter 6, and in fact this may have

consumed 65{70% of the e�ort of this project. These proofs culminated in the

soundness theorems, and once proven, the theorems are applied to example

76

HOL

HOL

HOL HOL

programs without needing to retrace the same proofs for each example.

This signi�cant expenditure of e�ort was necessary because of the history of

unsoundness in proposed axiomatic semantics, particularly in relation to proce-

dures. After constructing the necessary proofs, we are grateful for the unrelenting

vigilance of the system, which kept us from proving any incorrect theorems.

Apparently it is easier to formulate a correct structural operational semantics

than it is to formulate a sound axiomatic semantics. This agrees with our in-

tuition, that an axiomatic semantics is inherently higher-level than operational

semantics, and omits details covered at the lower level. We exhibit this structural

operational semantics as the critical foundation for our work, and present it for

the research community's appraisal.

As previously described, the programming language has six kinds of phrases,

and the assertion language has three. For each programming language phrase,

we de�ne a relation to denote the semantics of that phrase. The structural

operational semantics consists of a series of rules which together constitute an

inductive de�nition of the relation. This is implemented in using Melham's

excellent library [Mel91] for inductive rule de�nitions.

The semantics of the assertion language is de�ned in a denotational style. For

each assertion language phrase, we de�ne a function which yields the interpreta-

tion of that phrase into the Object Language. This is implemented in

using Melham's tool for de�ning recursive functions on concrete recursive types

[Mel89]. The types used here are the types of the assertion language phrases.

77

1 2 1

2

1 2 1

2

1 2 1

2

1 2

1 2

1 2 1

2

:exp

:num

:(exp)list

:(num)list

:bexp

:bool

:cmd

:decl

:prog

E e s n s e s

n s

ES es s ns s es s

ns s

B b s t s b s

t s

C c � s s c �

s s

D d � � d �

�

P � s � s

5.5.1 Programming Language Structural Operational Semantics

The structural operational semantics of the six kinds of Sunrise programming

language phrases is expressed by the six relations in Table 5.7.

numeric expression evaluated in state yields

numeric value and state

numeric expressions evaluated in state

yield numeric values and state

boolean expression evaluated in state yields

truth value and state

command evaluated in environment and

state yields state

declaration elaborated in environment yields

result environment

program executed yields state

Table 5.7: Sunrise programming language semantic relations.

78

HOL

� �

� �

h i

1 2

1 2

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 2 2 3

1 3

Number: Variable: Increment:

Addition: Subtraction:

Multiplication:

Nil: Cons:

E

E n s n s E x s s x s
E x s n s

E x s n s n =x

E e s n s

E e s n s

E e e s n n s

E e s n s

E e s n s

E e e s n n s

E e s n s

E e s n s

E e e s n n s

ES

ES

ES s s
E e s n s ES es s ns s

ES CONS e es s CONS n ns s

In Table 5.8, we present rules that inductively de�ne the numeric expres-

sion semantic relation . This is a structural operational semantics for numeric

expressions.

() () ()
()

(++) (+ 1) [(+ 1)]

(+) (+) () ()

() ()

Table 5.8: Numeric Expression Structural Operational Semantics.

In Table 5.9, we present rules that inductively de�ne the numeric expression

list semantic relation . This is a structural operational semantics for lists

of numeric expressions. The relation was actually de�ned in as a list

() [] () ()

Table 5.9: Numeric Expression List Structural Operational Semantics.

79

� �

^ ^

_ _

� �

Equality:

Less Than:

Lexicographic Less Than:

Conjunction:

Disjunction:

Negation:

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 2

1 2

NIL CONS

B

E e s n s

E e s n s

B e e s n n s

E e s n s

E e s n s

B e < e s n < n s

ES es s ns s

ES es s ns s

B es es s ns ns s

B b s t s

B b s t s

B b b s t t s

B b s t s

B b s t s

B b b s t t s

B b s t s

B b s t s

recursive function, with two cases for the de�nition based on or .

In Table 5.10, we present rules that inductively de�ne the boolean expres-

sion semantic relation . This is a structural operational semantics for boolean

expressions.

(=) (=)

() ()

() ()

() ()

() ()

() ()

Table 5.10: Boolean Expression Structural Operational Semantics.

80

h i
0

0 0

0 0

pr

pr

pr

1 2

1 2

1 1 2 2 2 3

1 2 1 3

1 2 1 2 3

1 2 1 3

1 2 2 2 3

1 2 1 3

1 2 2 3

3 4

1 4

1 2

1 2

1 2

2 3

1 3 2

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Call:

skip if then else �

if then else �

assert with

while do od

assert with

while do od

assert with

while do od

call map

C

C � s s

E e s n s

C x e � s s n=x

C c � s s ; C c � s s

C c c � s s

B b s s ; C c � s s

C b c c � s s

B b s s ; C c � s s

C b c c � s s

B b s s ; C c � s s

C a a

b c � s s

C a a

b c � s s

B b s s

C a a

b c � s s

ES es s ns s

� p vars; vals; glbs; pre; post; calls; rec; c

vals variants vals SL xs glbs

C c < xs vals =vars vals � s ns=vals s

C p xs es � s s s vals =vals

In Table 5.11, we present rules that inductively de�ne the command semantic

relation . This is a structural operational semantics for commands.

(no rules)

(:=) []

(;)

T
()

F
()

T
(

)

(
)

F
(

)

=

= ((&))
([& &]) []
((;)) [()]

Table 5.11: Command Structural Operational Semantics.

81

h i

h i

1 1 2 2 2 3

1 2 1 3

0

0

0 0

0 1 1 0 1

1

proc

empty

false true false false abort

program end program

Procedure Declaration:

Declaration Sequence: Empty Declaration:

Program:

D

D p vars vals glbs pre post calls rec c �

� vars; vals; glbs; pre; post; calls; rec; c =p

D d � � ; D d � �

D d d � �
D � �

P

�

� �p: ; ; ; ; ; �p: ; ; ;

s s �x:

D d � � ; C c � s s

P d c s

In Table 5.12, we present rules that inductively de�ne the declaration semantic

relation . This is a structural operational semantics for declarations.

()
[]

(;) ()

Table 5.12: Declaration Structural Operational Semantics.

In Table 5.13, we present rules that inductively de�ne the program semantic

relation . This is a structural operational semantics for programs. As used in

this de�nition, we de�ne as the empty environment

= [] [] [] ()

and as the initial state = 0.

(;)

Table 5.13: Program Structural Operational Semantics.

82

� �

� �

1 2 1 2

1 2 1 2

1 2 1 2

:vexp

num

:(vexp)list

(num)list

:aexp

bool

5.5.2 Assertion Language Denotational Semantics

V v s v s

V S vs s vs s

A a s a s

V

V n s n

V x s s x

V v v s V v s V v s

V v v s V v s V v s

V v v s V v s V v s

The denotational semantics of the three kinds of Sunrise assertion language

phrases is expressed by the three functions in Table 5.14.

numeric expression evaluated in state

yields numeric value in

list of numeric expressions evaluated in state

yields list of numeric values in

boolean expression evaluated in state

yields truth value in

Table 5.14: Sunrise assertion language semantic functions.

In Table 5.15, we present a denotational de�nition of the assertion language

semantic function for numeric expressions.

=

=

(+) = +

() =

() =

Table 5.15: Assertion Numeric Expression Denotational Semantics.

83

true

false

close

h i

� �

^ ^

_ _
� �

))

j j

8

8 8

9 9

�

�

�

�

� _ ^ �

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 3 1 2 3

1 1

1 1 2 2 1 2 1 2 1 2

V S

V S s

V S CONS v vs s CONS V v s V S vs s

A

A s

A s

A v v s V v s V v s

A v < v s V v s < V v s

A vs vs s V S vs s V S vs s

A a a s A a s A a s

A a a s A a s A a s

A a s A a s

A a a s A a s A a s

A a a s A a s A a s

A a > a a s A a s > A a s A a s

A a s s : A a s

A x: a s n: A a s n=x

A x: a s n: A a s n=x

CONS n ns

CONS n ns

CONS n ns CONS n ns n < n n n ns ns

In Table 5.16, we present a denotational de�nition of the assertion language

semantic function for lists of numeric expressions.

= []

() = () ()

Table 5.16: Assertion Numeric Expression List Denotational Semantics.

In Table 5.17, we present a denotational de�nition of the assertion language

semantic function for boolean expressions.

= T

= F

(=) = (=)

() = ()

() = ()

() = ()

() = ()

() = ()

() = ()

(=) = (=)

(=) = (=)

() = ()

() = ([])

() = ([])

Table 5.17: Assertion Boolean Expression Denotational Semantics.

The lexicographic ordering is de�ned as

[] [] = F

[] = T

[] = F

= (=)

This concludes the de�nition of the semantics of the assertion language.

84

and

The Sunrise language is properly thought of as consisting of both the program-

ming language the assertion language, even though the assertion language

is never executed, and only exists to express speci�cations and annotations, to

facilitate proofs of correctness. The two languages are di�erent in character; the

semantics of the programming language is very dependent on time; it both re-

sponds to and causes the constantly changing state of the memory. In contrast,

the assertion language has a timeless quality, where, for a given state, an ex-

pression will always evaluate to the same value irrespective of how many times

it is evaluated. The variables involved also re
ect this, where program variables

often change their values during execution, but logical variables never do. The

programming language is an active, involved participant in the execution as it

progresses; the assertion language takes the role of a passive, detached observer

of the process.

This di�erence carries over to how the languages are used. States and their

changes in time are the central focus of the operational semantics, whereas asser-

tions and their permanent logical interrelationships are the focus of the axiomatic

semantics. Programs in the programming language are executed, causing changes

to the state. Assertions in the assertion language are never executed or even

evaluated. Instead they are stepping stones supporting the proofs of correctness,

which also have a timeless quality. Done once for all possible executions of the

program, a proof replaces and exceeds any �nite number of tests.

85

:cmd1 2

1

2

1 1 2 2 1

1

2

2 2

5.6 Procedure Entrance Semantic Relations

C calls c � s p s c �

s p c

p s

M calls p s ps p s � p

� s

ps

p

p s

In addition to the traditional structural operational semantics of the Sunrise

programming language, we also de�ne two semantic relations that connect to

states reached at the entrances of procedures called from within a command.

These semantic relations are used to de�ne the correctness speci�cations for the

Entrance Logic.

The entrance structural operational semantics of commands and procedures

is expressed by the two relations described in Table 5.18.

Command , evaluated in environment

and state , calls procedure directly from ,

where the state just after entering is .

The body of procedure , evaluated in

environment and state , goes through

a path of successively nested calls, and

�nally calls , where the state just after

entering is .

Table 5.18: Sunrise programming language entrance semantic relations.

86

h i
0

0 0

pr

pr

pr

1 1 2

1 2 1 2

1 1 2

2 2 3

1 2 1 3

1 2

1 2 3

1 2 1 3

1 2

2 2 3

1 2 1 3

1 2

2 3

1 3

1 2 2 3

3 4

1 4

1 2

1 2

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Call:

if then else �

if then else �

assert with
while do od

assert with

while do od

assert with

while do od

call

In Table 5.19, we present rules that inductively de�ne the command semantic

relation .

(no rules)

(no rules)

(no rules)

(;)

(;)

T

()

F

()

T

(
)

T
(

)

(
)

=
= ((&))

((;)) (([]) [& &])

Table 5.19: Command Entrance Semantic Relation.

87

C calls

C calls c � s p s

C calls c c � s p s

C c � s s

C calls c � s p s

C calls c c � s p s

B b s s

C calls c � s p s

C calls b c c � s p s

B b s s

C calls c � s p s

C calls b c c � s p s

B b s s

C calls c � s p s

C calls a a

b c � s p s

B b s s ; C c � s s

C calls a a

b c � s p s

C calls a a

b c � s p s

ES es s ns s

� p vars; vals; glbs; pre; post; calls; rec; c

vals variants vals SL xs glbs

C calls p xs es � s p s ns=vals < xs vals =vars vals

h i

Single:

Multiple:

1

1 2 2

1 1 2 2

1 1 1 2 2

2 2 2 3 3

1 1 1 2 2 3 3

1

5.7 Termination Semantic Relations

M calls

� p vars; vals; glbs; pre; post; calls; rec; c

C calls c � s p s

M calls p s p s �

M calls p s ps p s �

M calls p s ps p s �

M calls p s ps CONS p ps p s �

c p

In Table 5.20, we present rules that inductively de�ne the procedure path

semantic relation .

=

[]

(& ())

Table 5.20: Path Entrance Semantic Relation.

In addition to the other structural operational semantics of the Sunrise program-

ming language, we also de�ne two semantic relations that describe the termina-

tion of executions begun in states reached at the entrances of procedures called

from within a command. These semantic relations are used to de�ne the correct-

ness speci�cations for the Termination Logic.

The termination semantics of commands and procedures is expressed by the

two relations in Table 5.21. These termination semantic relations are true when

all direct calls from or from the body of are known to terminate.

88

0

0

let in

let in

8)

9 h i

8)

9 h i

M calls terminate

1 2

1 2

2

1 1 2 2

1 1 2 2

2 2

1

2 1 2

3

2 3

1 1

2 2 1 1 2 2

3 2

2 3

C calls terminate c � s p s

C calls c � s p s

p s

M calls terminate p s � p s

M calls p s p s �

p s

C calls terminate

M calls terminate

C calls terminate c � s

p s : C calls c � s p s

s : vars; vals; glbs; pre; post; calls; rec; c � p

C c � s s

C calls terminate

M calls terminate p s �

p s : M calls p s p s �

s : vars; vals; glbs; pre; post; calls; rec; c � p

C c � s s

For every procedure and state such that

,

the body of executed in state terminates.

For every procedure and state such that

[] ,

the body of executed in state terminates.

Table 5.21: Sunrise programming language termination semantic relations.

In Tables 5.22 and 5.23, we present the de�nitions of the command termi-

nation semantic relation and the procedure path termination

semantic relation .

=

(=

)

Table 5.22: Command Termination Semantic Relation .

=

[]

(=

)

Table 5.23: Procedure Path Termination Semantic Relation .

89

VCG

The de�nitions of the relations presented in this chapter de�ne the semantics

of the Sunrise programming language, as a foundation for all later work. From

this point on, all descriptions of the meanings of program phrases will be proven

as theorems from this foundation, with the proofs mechanically checked. This will

ensure the soundness of the later axiomatic semantics, a necessary precondition

to a veri�ed .

90

