
if

CHAPTER 6

Program Logics

\And you shall teach them the statutes and the laws, and show them

the way in which they must walk and the work they must do."

| Exodus 18:20

\Prove all things; hold fast that which is good."

| 1 Thessalonians 5:21, King James Version

Floyd's and Hoare's seminal papers ([Flo67], [Hoa69]) set forth the idea that

one could reason about all executions of a program using the axioms and rules

of inference of a logic. The axioms and rules of this logic describe valid patterns

of deduction, and involve both phrases of the programming language, and as-

sertions describing conditions at points in the execution. A key element of this

reasoning process is that it involves only syntactic manipulations of the program

and assertion language phrases involved. This is inherently much simpler than

following the same structure of reasoning by tracing the sequence of states that

the computation passes through according to the operational semantics. We dis-

tinguish these two kinds of reasoning as \syntactic" versus \semantic" reasoning.

Essentially, syntactic reasoning involves much simpler operations, which is a great

advantage, the syntactic reasoning is semantically valid. Then the syntactic

91

ad hoc

call

call

call

q B r

q i p r q i B r

i : q i p r

q

q i p r q i B r :

f g f g
f g f g ` f g f g

f9 � g f g

f g f g ` f g f g

reasoning step embodies and stands for a level of semantic reasoning, which only

need be veri�ed once. This then saves one from repeating the same patterns of

semantic reasoning every time the syntactic manipulation applies.

In this chapter we will describe �ve program logics, which together constitute

an axiomatic semantics for total correctness for the Sunrise programming lan-

guage. These logics and their rules are the \laws" referred to in the introductory

quote. Unlike previously proposed axiomatic semantics, every rule in every logic

presented in this chapter is not simply asserted or proposed, but in fact has been

mechanically proven correct as a theorem from the underlying structural opera-

tional semantics. Much of the content of these logics concerns proving the total

correctness of mutually recursive procedures.

In the past, axiomatic semantics for total correctness for procedures has in-

volved a rule for procedure call similar to the following rule by Soko lowski [Sok77]:

(0)
() (+ 1)

0 ()

The argument to is a recursion depth counter, which must decrease by

exactly one for each procedure call. Soko lowski described the need to �nd an

appropriate meaning for the phrase

() (+ 1)

He then gave an interpretation which involved an in�nite chain of predicate trans-

formers.

In the various papers which have proposed rules similar to this one, the ex-

ample proofs presented appeared to us to have an quality, where the proof

92

ad hoc

at least

depended greatly on the speci�c example, and not as much on the veri�cation

mechanism. Thus the proofs of the examples seemed somewhat irregular in shape,

although entirely valid.

In our investigation, we have created a new approach to the proof of total

correctness of procedures not deriving from the above style of rule for procedure

call. The approach we give has considerably more mechanism than the single

rule above; but we �nd that the additional mechanism give a structure to the

proof which largely removes the quality, and in fact regularizes the pro-

cess enough that it can be successfully mechanized in a veri�cation condition

generator. In addition, that veri�cation condition generator then removes from

the user's view all of the new mechanism, leaving only a set of relatively simple

veri�cation conditions which do not themselves involve any recursion.

This additional mechanism is an aid, in that it moves much of the proof e�ort

out of the arena which is particular for each individual program to be proved,

into the area which is regularized and structured, with established patterns of

reasoning. It also helps the user in that it breaks a large problem into smaller

pieces, and allows a more incremental, stepwise, \line upon line" construction of

a proof.

In addition, our system appears to be more general than the previous pro-

posals. These generally asked the user to supply a recursion depth counter that

decreased by exactly one for each call. Instead of this, we ask the user to supply

a recursion expression which must decrease by one every time a nested

recursive call is made to the same procedure. This might be an immediately

recursive call, as in the factorial procedure; or it might be an eventual recursive

93

all

recurses with

call, as in a top-down recursive descent parser that may have many intermediate

calls between a call of a particular procedure and a recursive entry of the same

procedure. This is a looser condition than previously proposed, and thus will

support proofs of total correctness for a larger class of programs. We do not

claim that our system can support proofs of total correctness for programs

which in fact terminate; there may be some exotic examples which cannot be

veri�ed within this structure that we propose. Nevertheless, seems to us at this

point that our system may be expressive enough to cover most of the programs

that would be written in actual practice.

This claim of generality must be quali�ed, however. In general, it may be

possible to �nd a recursion depth counter that decreases by exactly one for each

call for any example program which could be proven by our system. However,

we agree with Pandya and Joseph [PJ86] that this can be di�cult in practice be-

cause it leads to the use of predicates which are often complex and non-intuitive,

even for simple programs. Pandya and Joseph make the excellent point that it

is important for a program proof to make a proper use of abstraction, to remove

unnecessary details from the burden imposed on the user, and to be structured

in a natural, intuitive way. We wholly agree, and have constructed the system

contained in this dissertation to reect this concern for proper abstraction, natu-

ral and intuitive steps, and structuring the proof to reect the structure present

in the program itself. Our claim of generality should then be understood in the

sense of this more intuitive and natural approach.

The core of our system's approach to proving the termination of recursive

procedure calls uses an expression, supplied by the user in the

94

1 2f g f ga c a =�

calls

with

calls with

calls with

recursion expres-

sion

entrance

part of the speci�cation of a procedure, which we will call the

of that procedure. This part of the speci�cation is a claim that the recursion

expression's value decreases by at least one between recursive calls of that pro-

cedure. If this is true, then for any value that the expression may have the �rst

time that procedure is called, it can only decrease a �nite number of times, and

thus must eventually come to a place where it does not call itself recursively any

more. This guarantees that the procedure terminates.

To verify that the recursion expression's value decreases by at least one be-

tween recursive calls of the procedure requires that we compare the value of this

expression at two di�erent times, which may be widely separated with a chain

of many nested calls in between. We break this chain down into the individ-

ual steps achieved between each procedure call in this chain and the next. The

progress achieved in each individual procedure call is described in the . . .

part of the speci�cation of the procedure. Then the progress achieved be-

tween recursive procedure calls is the accumulation of the progress achieved in

each step.

This then requires that we verify the progress claimed in the . . .

part of the speci�cation of the procedure. This progress speci�cation describes

the change in state between two points in time, one at the head of the procedure's

body, which we call the of the procedure, and the other at the entrance

of the procedure named in the . . . speci�cation. We can de�ne this

progress by a new form of program logic, described in detail below.

This new form of program logic may seem strange at �rst glance. The tradi-

tional Hoare logic partial correctness speci�cation has the form ,

95

c

p p
body of p body of p

a1

s1

a2

s2

Diagram of {a1} c {a2} /ρ:

If a1 is true in state s1, then a2 is true in state s2.

Diagram of {a1} c → p {a2} /ρ:

If a1 is true in state s1, then a2 is true in states s2 and s3.
Nothing is claimed about state s4.

c

p p
body of p body of p

a1

s1

a2

s3

a2

s2

?

s4

Figure 6.1: Comparison of Partial Correctness and Entrance Speci�cations.

96

1 2f g ! f g

within

diagonal

c �

a c p a =�

p c

c

c

c

c

c

c

calls with

recurses with

describing the relationship between the states before and after executing the com-

mand , given the procedure environment . One of the new correctness speci�-

cations we propose has the form , describing the relationship

between the states (1) before executing c and (2) just after entering the procedure

as a result of a call which issued from within the command . Whereas the

traditional correctness speci�cation relates two points in the computation which

are at the same level of procedure call, the new correctness speci�cation relates

two points which are at two di�erent levels of procedure call. Further, where the

traditional correctness speci�cation gives a postcondition describing the state at

the end of executing the command , the new correctness speci�cation does not

in any way describe the state at the end of , but rather the states at particular

points the execution of . This is diagrammed in Figure 6.1. The tradi-

tional correctness speci�cation is diagrammed as a horizontal dashed arrow to

the right, denoting the progress of computation between the beginning of and

its end. The new correctness speci�cation is diagrammed as a arrow,

pointing down and to the right, denoting the progress of computation between

the beginning of and the points of entry of a procedure called directly from

within .

The purpose of this new correctness speci�cation is to be able to express

the progress achieved from the beginning of the entire body of a procedure to

the points of entry of procedures called from within the body. This is used to

verify the . . . speci�cations, which are then used in turn to verify the

speci�cations. These are then used to prove the termination of

procedures, an essential element in proving the total correctness of programs.

97

b b

b

b

b

b b

b

b

b

9 � ^ ^

�

�

9 � ^ ^

�

�

odd a n

b: n b a a < n n

odd n < n

even n < n

n < n

n a

n even a n

odd a n

even a n

b: n b a a < n n

even n < n

odd n < n

n < n

n a

n odd a n

even a n

odd a

a

(;);

;
(= 2 +) 2 = ;

;
;

;

= 0 := 0

= 1 (; 1)
(; 2)

;

(;);

;
(+ 1 = 2 +) 2 = ;

;
;
;

= 0 := 1

= 1 (; 1)
(; 2)

;

(; 5)

[= 1]

Table 6.1: Odd/Even Example Program.

98

program

procedure var val

pre true

post

calls with

calls with

recurses with

if then

else if then

else

�

�

end procedure

procedure var val

pre true

post

calls with

calls with

recurses with

if then

else if then

else

�

�

end procedure

end program

odd even

n

ae pre

aes pre ab pre

6.1 Total Correctness of Expressions

To make these ideas more concrete, let us take as a speci�c example the pro-

gram in Table 6.1. This is the odd/even program. It has two mutually recursive

procedures, and , each of which calls itself and the other. The procedures

actually could have been written with far less recursion; this version was created

to exhibit as much recursion as possible. The procedure call progress expressions

all declare that the value of the variable decreases for each call, and this is the

progress declared by the recursion expressions as well. This odd/even program

will serve as a running example throughout this chapter to illustrate several of

the correctness speci�cations that we describe.

In Table 6.2, we present a Hoare logic for the total correctness of numeric

and boolean expressions in the Sunrise programming language. This is the �rst

of three newly invented logics of this dissertation. It is based on three new

correctness speci�cations, for numeric expressions, lists of numeric expressions,

and boolean expressions. Generally speaking, this is a modest expression logic.

We have added side e�ects in only one operator, the increment operator, and none

of the operators are either nondeterministic or nonterminating. In the future, we

intend to explore these other possibilities. This logic is intended to show a robust

structure capable of growth.

The key rules are the ones for expression preconditions. The functions ,

, and calculate appropriate preconditions which guarantee that the

given postcondtion is true after executing the expression. The precondition is

not simply the same as the postcondition, because the programming language

99

false

false

false

f) g

f) g

f) g

f) g

f) g

f) g

p a

a e q

p e q

p a

a es q

p es q

p a

a b q

p b q

e q

es q

b q

p e a

a q

p e q

p es a

a q

p es q

p b a

a q

p b q

ae pre e q e q

aes pre es q es q

ab pre b q b q

[] []
[] []

[] []
[] []

[] []
[] []

[] []

[] []

[] []

[] []

[] []

[] []

[] []

[] []

[] []

[] []

[] []

[] []

Table 6.2: General Rules for Total Correctness of Expressions.

100

Precondition Strengthening:

False Precondition:

Postcondition Weakening:

Numeric Expression Precondition:

Expression List Precondition:

Boolean Expression Precondition:

f g

f g 8

f g f g f g f g

ae pre aes pre ab pre

a

a

a s: A a s

a

a

p c q =� p q

c

6.1.1 Closure Speci�cation

6.1.1.1 Semantics of Closure Speci�cation

we are considering allows expressions to have side e�ects, and this change of

state requires a change in the expression that describes the state. For a complete

de�nition of the functions , , and , see the Section 10.3 on

Translations.

In Tables 6.3, 6.4, and 6.5, we have the rules of inference for individual expres-

sions in the Sunrise programming language. All of these in fact are subsumed by

the three rules in Table 6.2 for expression preconditions, but are presented here

for completeness.

: assertion language condition

= ()

Assertion language boolean expression is true in every state, and thus is

equivalent to the universal closure of . These expressions are deterministic,

have no side e�ects, and always terminate.

These should not be confused with partial correctness speci�cations, for ex-

ample . The and in the partial correctness speci�cations

do not refer to closure speci�cations, but to conditions about two di�erent states

at the beginning and end of executions of the command . In contrast, closure

speci�cations are single assertions which evaluate to true in every single state.

101

�

�

8 ^) ^

8) 9

1

2

1 2

1

2

1 2

1

2

1 2

1 2

1

2

1 2 1 2 1 1 1 2 2 2

1 1 1 2 1 2

Number:

Variable:

Increment:

Addition:

Subtraction:

Multiplication:

q n q

q x q

q < x =x x q

p e r

r e q

p e e q

p e r

r e q

p e e q

p e r

r e q

p e e q

a e a

a

e

a

a e a s n s : A a s E e s n s A a s

s : A a s n s : E e s n s

6.1.2 Numeric Expression Speci�cation

6.1.2.1 Semantics of Numeric Expression Speci�cation

[] []

[] []

[[(+ 1)]] ++ []

[] []
[] []

[] + []

[] []
[] []

[] []

[] []
[] []

[] []

Table 6.3: Total Correctness of Numeric Expressions.

These are used to express side conditions of rules, some of which will eventually

become veri�cation conditions.

[] []

: precondition
: numeric expression

: postcondition

[] [] = ()
(())

102

h i

1

2

1

1 2

1

2

Null list: Cons:

6.1.3 Expression List Speci�cation

q q
p e r

r es q

p CONS e es q

e a

a

V E

e v

v a

e

a es a

a

es

a

[] []
[] []
[] []

[] []

Table 6.4: Total Correctness of Expression Lists.

If the numeric expression is executed, beginning in a state satisfying , then

the execution terminates in a state satisfying . For this language, expressions

are deterministic and always terminate.

Table 6.3 presents the rules of inference for individual constructors of numeric

expressions in the Sunrise programming language. These are subsumed by the

single rule in Table 6.2 for numeric expression preconditions, but are presented

here for completeness.

The translation function maps a programming language numeric expres-

sion into a corresponding assertion language numeric expression , such that

the value of in the prior state, where is true, is the same as the value yielded

by the execution of .

[] []

: precondition

: list of numeric expressions
: postcondition

103

8 ^) ^

8) 9

h i

8 ^) ^

8) 9

1 2 1 2 1 1 1 2 2 2

1 1 1 2 1 2

1 2

1

1 2

1

2

1 2 1 2 1 1 1 2 2 2

1 1 1 2 1 2

a es a s ns s : A a s ES es s ns s A a s

s : A a s ns s : ES es s ns s

es

a a

CONS

V ES

es

vs vs a

es

a b a

a

b

a

a b a s t s : A a s B b s t s A a s

s : A a s t s : B b s t s

6.1.3.1 Semantics of Expression List Speci�cation

6.1.4 Boolean Expression Speci�cation

6.1.4.1 Semantics of Boolean Expression Speci�cation

[] [] = ()

(())

If the list of numeric expressions is executed, beginning in a state satisfying

, then the execution terminates in a state satisfying . For this language,

expression lists are deterministic and always terminate.

Table 6.4 presents the rules of inference for individual constructors of lists

of expressions in the Sunrise programming language. In this language, lists are

delimited by angle brackets (so is the empty list), and a new element is added

at the head of a list by . These are subsumed by the single rule in Table

6.2 for expression list preconditions, but are presented here for completeness.

The translation function maps a programming language list of numeric

expressions into a corresponding assertion language list of numeric expressions

, such that the value of in the prior state, where is true, is the same as

the value yielded by the execution of .

[] []

: precondition

: boolean expression

: postcondition

[] [] = ()
(())

104

�

^

_

�

1

2

1 2

1

2

1 2

1

2

1 2

1

2

1 2

1

2

1 2

p e r

r e q

p e e q

p e r

r e q

p e < e q

p es r

r es q

p es es q

p b r

r b q

p b b q

p b r

r b q

p b b q

p b q

p b q

Numeric Equals:

Less Than:

Lexicographic Less Than:

Conjunction:

Disjunction:

Negation:

[] []
[] []

[] = []

[] []
[] []

[] []

[] []
[] []

[] []

[] []
[] []

[] []

[] []
[] []

[] []

[] []
[] []

Table 6.5: Total Correctness of Boolean Expressions.

105

f g f g

f g f g 8 ^)

1

2

1

1 2

1

2

1 2 1 2 1 1 1 2 2 2

6.2 Hoare Logic for Partial Correctness

b a

a

AB

b a

a a

b

a c a =�

a

c

a

�

a c a =� s s : A a s C c � s s A a s

6.2.1 Partial Correctness Speci�cation

6.2.1.1 Semantics of Partial Correctness Speci�cation

If the boolean expression is executed, beginning in a state satisfying ,

then the execution terminates in a state satisfying . For this language, boolean

expressions are deterministic and always terminate.

Table 6.5 presents the rules of inference for individual constructors of boolean

expressions in the Sunrise programming language. These are subsumed by the

single rule in Table 6.2 for boolean expression preconditions, but are presented

here for completeness.

The translation function maps a programming language boolean expres-

sion into a corresponding assertion language numeric expression , such that

the value of in the prior state, where is true, is the same as the value yielded

by the execution of .

In this section we present a Hoare logic for the partial correctness of commands.

: precondition
: command
: postcondition

: procedure environment

= ()

106

0

0 0

0

0 0

0

0 0 0

1 2

1 2

1 1

2 2

1 2

1 2

0 0 0

0

0

0 0 0

0 0 0 0

0 0 0

env syntax

c

env syntax c xs

a

c a a

envp c

a

a

skip

abort

if then else �

assert with

while do od

assert with

while do od

call

call

f g f g

f g f g

f g f g

f g f g f g f g
f g f g

f g f g
f g f g

f j g
f g

f g f ^ g

f ^ ^) g
f ^ �) g

f g
f g

� � � [
f ^ g f g

f ^ 8) g f g

h i
[

f ^ 8) g
f g

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Rule of Adaptation:

Procedure Call:

[:=] :=

;

=

(
)

()
() (=)

()

= = ()
()

=
((([])) [])

((;))

=
= ((&)) = & &

= & = & = & &
= = = ()

([] ((([])) [])) [:=]
(;)

Table 6.6: Hoare Logic for Partial Correctness.

107

q q =�

a q =�

q < x e x e q =�

p c r =�; r c q =�

p c c q =�

r c q =�

r c q =�

AB b > ab pre b r ab pre b r

b c c q =�

WF �

WF a v < x

b c g �

p c a v < x =�

a AB b v x ab pre b p

a AB b ab pre b q

a a v < x

b c q =�

WF �; WF c g �; WF x; DL x

x logicals x; x variants x FV q

FV c � x; FV pre x; FV post x x

x x pre c post =�

pre x: post < x =x q < x=x c q =�

WF �; WF p xs es g �

� p vars; vals; glbs; pre; post; calls; rec; c

vals variants vals FV q SL xs glbs ; y vars vals glbs

u xs vals ; v vars vals; x xs vals glbs

x logicals x; y logicals y; x variants x FV q

pre < u=v x: post < u; x =v; y q < x=x < vals es

p xs es q =�

1

2

0

0

env partial

f) g
f g f g
f g f g

f g f g

f g f g
f) g
f g f g

8 h i

f ^ g f g

false

let in

let in

let in

6.2.2 Partial Correctness Rules

Precondition Strengthening:

False Precondition:

Postcondition Weakening:

well-formed for partial correct-

ness

p a

a c q =�

p c q =�

c q =�

p c a =�

a q

p c q =�

c a

a

�

p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

x logicals x

x x pre c post =�

=�

�

Table 6.7: General rules for Partial Correctness.

If the command is executed, beginning in a state satisfying , then if the

execution terminates, the �nal state satis�es . For this language, commands

are deterministic, but may not terminate.

The procedure environment is de�ned to be

if for every procedure , its body is partially correct with respect to the

given precondition and postcondition:

= =
= & &

=
=

Consider the Hoare logic in Tables 6.6 and 6.7 for partial correctness. This

is a traditional Hoare logic, except that we have added at the end of each

speci�cation to indicate the ubiquitous procedure environment. This must be

used to resolve the semantics of procedure call. However, the environment

108

with

f g f g
+

+

will

well-formedness�

env syntax

envp env syntax

envp

v < x

v < x v x

p c q =�

p c =�

p c q =�

p c =� c

WF �

WF �

� WF � WF �

WF �

never changes during the execution of the program, and hence could be deleted

from every speci�cation, being understood in context.

The rules describing the partial correctness of the commands of the Sunrise

programming language includes phrases that concern total correctness. For ex-

ample, the iteration command includes a phrase in the syntax, and

the iteration rule uses antecedents that include and = . This mechanism

applies to proofs of termination, not to proofs of partial correctness. Neverthe-

less, it is important to include this mechanism here because eventually we wish

to prove versions of these rules for total correctness, which need the extra

mechanism. These rules will be ultimately proven using the following rule:

[]
[] []

where [] denotes the termination of the command . For this rule to

apply, the shape of the partial and total correctness versions must agree.

The functions , for various , denote conditions, which

will be described later in Part III. In brief, these are generally simple syntactic

checks on variable names and limits on the free variables of program phrases,

checks that the signatures of procedure de�nitions and their calls match, and the

exclusion of aliasing. These checks could be performed once at compile time for

a program. checks that these well-formedness criteria are met by

each procedure de�nition in . includes the criteria of ,

but goes beyond in also requiring a semantic criterion, that the body of each

procedure is partially correct with respect to the precondition and postcondi-

tion speci�ed in the procedure header. We establish by what we call

109

�FV

SL

DL

6.3 Procedure Entrance Logic

semantic stages

entrance speci�cation precondition entrance speci�cation calls en-

trance speci�cation path entrance speci�cation recursion entrance

speci�cation

, which will be described later in Part III. In addition to the well-

formedness notation, we also use to denote the free variables of a construct,

ampersand (&) to append two lists together, and to convert a list into a set.

is a predicate on a list, which determines if all the elements of the list are

distinct.

Of particular interest are the Rule of Adaptation and the Procedure Call Rule.

All global variables and variable and value parameters are carefully and correctly

handled. These rules are completely sound and trustworthy, having been proved

as theorems.

The Procedure Entrance Logic is the second of the three newly invented logics

of this dissertation. It is based on �ve new correctness speci�cations, which are

the , the , the

, the , and the

. Each of these is a relation, de�ned using the other relations and

the underlying structural operational semantics relations. The common thread

linking all of these is the purpose of relating a state at the beginning of a com-

putation with a state reached at the entrance of a procedure called during the

computation. The style of these �ve speci�cations is similar to partial correct-

ness, in that there is no guarantee of reaching the entrance of any procedure, only

that if the appropriate entrance is reached, then the entrance condition speci�ed

is true. This is contrasted with the Termination Logic to be presented later,

which has more the style of total correctness.

110

f g ! f g

f g ! f g 8 ^)

1 2

1

2

1 2 1 2 1 1 1 2 2 2

1

2

a c p a =�

a

c

p

a

�

a c p a � s s : A a s C calls c � s p s A a s

c a

c p p

p a c

c p p

c c

c

c p

p c

p p

6.3.1 Entrance Speci�cation

6.3.1.1 Semantics of Entrance Speci�cation

All of the rules listed for this entrance logic have been mechanically proven

as theorems from the underlying structural operational semantics.

: precondition
: command

: procedure name
: entrance condition

: procedure environment

= ()

If command is executed, beginning in a state satisfying , then if at any

point within procedure is called, then at the entry of , (just before the body

of is executed,) is satis�ed. This refers only to the �rst level of calls from , to

those that issue directly from a syntactically contained procedure call command

within . It does not refer to calls of that may occur from the body of , or of

other procedures that may call indirectly during the execution of .

No statement is made here about conditions that may hold at the end of the

execution of .

Note that a particular command may contain several calls of , each of which

might be responsible for entering . Also, if contains a loop, even a single call of

may generate multiple states at the entrance of . Thus this is a relation, where

for a single command and starting state, there may be many entrance states for

111

0

0 0

env syntax

c

a

env syntax

c

0 1

1 2

0 2

1 2

2 3

1 3

1 2

1 3

1 2 3

1 1

1 1 2

2 2

1 1 2

1 1

2 2

1 2

1 2

0

0

0

1

1

:=

;

=

(
)

[() (=)] []

()

=
(;)

((;))
=

= ((&))
([& &]) [:=]

(;)

Table 6.8: Entrance Logic.

112

false

skip

abort

if then else �

assert with

while do od

assert with

while do od

call

call

call

f) g
f g ! f g
f g ! f g

f g ! f g
f) g

f g ! f g

f g ! f g
f g ! f g

f g ! f ^ g

f g ! f g

f g ! f g

f g ! f g

f g ! f g

f g ! f g

f g f g
f g ! f g
f g ! f g

f g ! f g
f g ! f g

f j g
! f g

62
^ ^

f g ! f g
f g f ^ g

f g
! f g

6
f g ! f g

h i

f g
! f g

Precondition Strengthening:

Entrance Condition Weakening:

Entrance Condition Conjunction:

False Precondition:

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Procedure Call:

a a

a c p a =�

a c p a =�

a c p a =�

a a

a c p a =�

a c p a =�

a c p a =�

a c p a a =�

c p q =�

a p q =�

a p q =�

a x e p q =�

a c p q =�

a c a =�

a c p q =�

a c c p q =�

a c p q =�

a c p q =�

AB b > ab pre b a ab pre b a

b c c p q =�

WF �

WF a v < x

b c g �

x FV q

a AB b v x b a

a c p q =�

a c a v < x =�

a a v < x

b c p q =�

p p

a p xs es p q =�

WF �

WF p xs es g �

� p vars; vals; glbs; pre; post; calls; rec; c

vals variants vals SL xs glbs

q < xs vals =vars vals < vals es

p xs es p q =�

b

b b

b b

b

�

f � g � ! f g

� �

�

axiomatic entrance semantics

6.3.1.2 Example of Entrance Speci�cation

calls with

call

odd

even

odd even n < n

n even n

odd

even a n

odd

n < n < a; n=a; n < n n even a n even n < n =�

n < n < a; n=a; n < n n n < n < n n

n < n

which the entrance condition is to hold.

Table 6.8 presents an for the Sunrise program-

ming languge.

As an example, consider the progress claimed for calls from procedure to

procedure in the odd/even program presented in Table 6.1. In the heading

for procedure , the phrase indicates that the value of

the argument to must be strictly less than the value of at the head of

the body of .

First, by the Procedure Call rule of Table 6.8 applied to the call (; 1)

within the body of procedure , we have

(() []) [:= 1] (; 1)

The substitutions evaluate as

(() []) [:= 1] = () [:= 1]

= (1)

113

b b

b

b

b

b

b

b

b

b

b

b

b

f � g � ! f g

f g � ! f g

f � j g

�

�

! f g

f g ! f g

f

j � j g

�

�

! f g

f)

j � j g

f g

�

�

! f g

true

true

if then

else

�

true

true

true

if then

else if then

else

�

�

true

true

if then

else if then

else

�

�

calls with

: n < n even a n even n < n =�

: odd a n even n < n =�

: n > n < n

n even a n

odd a n

even n < n =�

: a even n < n =�

: n >

n > n < n

n a

n even a n

odd a n

even n < n =�

: n n n >

n > n < n

: n n

n a

n even a n

odd a n

even n < n =�

odd n < n

odd

even

Then the call progress claim is proven as follows.

1 (1) (; 1) Procedure Call
Rule (2nd)

2 (; 2) Procedure Call
Rule (1st)

3 = 1 = (1)
= 1 (; 1)

(; 2)

1, 2, Conditional
Rule

4 := 0 Assignment Rule

5 = 0 =
(= 1 = (1))

= 0 := 0
= 1 (; 1)

(; 2)

4, 3, Conditional
Rule

6 = (= 0 =

(= 1 = (1)))

Tautology

7 =
= 0 := 0

= 1 (; 1)
(; 2)

6, 5, Precondition
Strengthening

A similar pattern of reasoning could be followed to prove the clause

in the heading for procedure , and the other such clauses in the heading for

.

114

0

env pre

f g !

f g ! 8 h i

f g ! f g

8 h i

f g !

well-formed for preconditions

6.3.2 Precondition Entrance Speci�cation

pre

6.3.2.1 Semantics of Precondition Entrance Speci�cation

pre let

in

let

in pre

a c =�

a

c

�

a c =� p: vars; vals; glbs; pre; post; calls; rec; c � p

a c p pre =�

c a

c p p

p

c

�

p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

pre c =�

: precondition

: command
: procedure environment

= =

If command is executed, beginning in a state satisfying , then if at any

point within a call is made to any procedure, say , then at the entry of , the

declared precondition of is satis�ed.

This speci�cation is used to prove that the preconditions which are declared

for each procedure in its header are achieved at the point of each call of those

procedures within the command . Eventually, this will be used to prove the

maintenance of preconditions, that for each procedure, if it is entered with its

precondition true, then for every procedure it calls, their preconditions are true

at their entry. This will then extend to the maintenance of preconditions over

deep chains of calls.

The procedure environment is de�ned to be if

for every procedure , its body maintains all procedures' preconditions:

= =

Proving that the environment is well-formed for preconditions is one of the

necessary steps to prove programs totally correct.

115

0

0

env calls

f g !

f g ! 8 f g ! f g

8 h i

f ^ g !

well-formed for calls progress

6.3.3 Calls Entrance Speci�cation

6.3.3.1 Semantics of Calls Entrance Speci�cation

calls with

calls with

let in

let in

let in

a c calls =�

a

c

calls

�

a c calls =� p: a c p calls p =�

calls

c a

c p p

calls p

c

�

p calls

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

x logicals x

x x pre c calls =�

: precondition

: command
: calls progress environment
: procedure environment

=

is a collection of progress expressions, as declared in the . . .

speci�cations for a procedure in its header. It is represented as a function, from

the names of procedures being called to the progress expression speci�ed.

If command is executed, beginning in a state satisfying , then if at any

point within a call is made to any procedure, say , then at the entry of ,

() is satis�ed.

This speci�cation is used to prove that the progress expressions which are

declared in the . . . speci�cations for each procedure in its header are

achieved at the point of each call of those procedures within the command .

The procedure environment is de�ned to be if

for every procedure , its body establishes the truth of its progress expres-

sions at the point of each call:

= =
= & &

=
=

116

env calls

f g ! f g

f g ! f g

8 ^)

1 1 2 2

1

1

2

2

1 1 2 2

1 2 1 1 1 1 2 2 2 2

1 1

1

WF �

a p ps p a =�

a

p

ps

p

a

�

a p ps p a �

s s : A a s M calls p s ps p s � A a s

p a

p

ps

recurses with

6.3.4 Path Entrance Speci�cation

6.3.4.1 Semantics of Path Entrance Speci�cation

Proving that the environment is well-formed for calls progress is one of the

necessary steps to prove programs totally correct.

Eventually, will be used to prove the speci�ca-

tions, that for each procedure, if it is entered with its recursion expression equal

to a certain value, then for every possible recursive entry of that procedure, the

value of the recursion expression is strictly less than before. This will then help

prove the termination of procedures.

Up to this point, the entrance speci�cations have been based on a command

over which the progress was measured. For the last two entrance speci�cations in

this Procedure Entrance Logic, they will be based on progress from one entrance

of a procedure to another.

|

: precondition
: starting procedure name
: path (list of procedure names)
: destination procedure name
: entrance condition

: procedure environment

| =

()

If execution begins at the entry of in a state satisfying , and if in the

execution of the body of , procedure calls are made successively deeper to the

procedures listed in the (possibly empty) path , and �nally a call is made to

117

env pre

0 0 0 0 0 0 0 0

0

1

1 2 2

1 1 2 2

1 1 1 2 2

2 2 2 3 3

1 1 1 2 2 3 3

2 2 2

1

2

1 2

Single Call (Empty Path):

Transitivity:

h i
f g ! f g

f g h i ! f g

f g ! f g
f g ! f g

f g ! f g

h i
h i
f g ! f g

� p vars; vals; glbs; pre; post; calls; rec; c

a c p a =�

a p p a =�

a p ps p a =�

a p ps p a =�

a p ps CONS p ps p a =�

p p a

�

WF �

� p vars; vals; glbs; pre; post; calls; rec; c

� p vars ; vals ; glbs ; pre ; post ; calls ; rec ; c

pre p ps p pre =�

=

|

|
|

| (& ())

Table 6.9: Path Entrance Logic.

the procedure , then at that entry of , is satis�ed.

The path entrance speci�cation is de�ned based on the underlying operational

semantics. However, it could have been de�ned by rule induction on the rules in

Table 6.9. Instead, these rules have been proven as theorems, as have those in

Table 6.10.

Once the environment is proven to be well-formed for preconditions, the

following rule, proven as a theorem, applies for proving the truth of preconditions

across procedure calls.

=
=

|

118

0 0 0 0 0 0 0 0

0 0 0

env syntax env calls

a

false

6.3.4.2 Call Progress Function

0 1

1 1 2 2

0 1 2 2

1 1 2 2

2 3

1 1 2 3

1 1 2 2

1 1 2 3

1 1 2 2 3

1 2

1

2

1 2 1 2

f) g
f g ! f g
f g ! f g

f g ! f g
f) g

f g ! f g

f g ! f g
f g ! f g

f g ! f ^ g

f g ! f g

h i
h i

�
f ^ g h i ! f g

Precondition Strengthening:

Entrance Condition Weakening:

Entrance Condition Conjunction:

False Precondition:

Call Progress Rule:

a a

a p ps p a =�

a p ps p a =�

a p ps p a =�

a a

a p ps p a =�

a p ps p a =�

a p ps p a =�

a p ps p a a =�

p ps p q =�

ab pre

call progress

�

call progress

WF �; WF �

� p vars; vals; glbs; pre; post; calls; rec; c

� p vars ; vals ; glbs ; pre ; post ; calls ; rec ; c

y vars vals glbs

FV q SL y logicals z

pre call progress p p q � p p q =�

|
|

|

|

|
|

|

|

Table 6.10: Additional Path Entrance Rules.

Just as the function can compute the appropriate precondition to es-

tablish a given postcondition as true after executing a boolean expression, the

function can compute the appropriate precondition when starting

execution from the entrance of one procedure to establish a given entrance con-

dition for another procedure as true. It is de�ned in Table 6.11.

Once the environment is proven to be well-formed for calls progress, the fol-

lowing rule, proven as a theorem, applies for proving the e�ect of the

function across a single procedure call.

=
=

= & &
(&)

|

119

a

0

0 0 0 0 0 0 0 0

0 0 0

0 0

b

b b

b

b b c b b b b c

c b b c

c b b c

b

h i

h i

j 8)

f ^ g h i ! f g

8)

8)

8)

8)

1 2

1

0

0 0

2

2

0 0 0

1 1

1 1

1 1 1 1 1 1

1 1 1 1

let in

let in

let in

let in

let in

let in

let in

false true

6.3.4.3 Example of Call Progress Speci�cation

calls with

true

call progress p p q �

vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

x logicals x

x variants x FV q

vars ; vals ; glbs ; pre ; post ; calls ; rec ; c � p

y vars vals glbs

a calls p

a >

y: a < x =x q < x=x

odd

even

odd even n <

n n even

n odd

call progress odd even n < n � odd even n < n =�

call progress

call progress odd even n < n �

a; n: n < n < a; n =a;n n < n < a; n=a; n

a; n: n < n n < n < a; n=a; n

a ; n : n < n n < n < a; n=a; n

a ; n : n < n n < n

=
=

= & &

=

= ()
=

= & &

=

(= =
(([])) [])

Table 6.11: Call Progress Function.

As an example, consider the progress of calls from procedure to procedure

in the odd/even program presented in Table 6.1. We previously proved the

correctness of the claim in the heading for procedure that

, that the value of the argument to must be strictly less than the value

of at the head of the body of .

Then by the Call Progress Rule given above, we have

() |

The invocation of evaluates as

()

= ((() []) ()) []

= (() ()) []

= (() ()) []

= () ()

120

and

b b

b

b

b

b

b

b

6.3.4.4 Call Path Progress Function

1 1 1 1

1 1 1 1

1 1 1 2 2 2 1 2

1 1 1 1

1 1 1 2 2 2 1 2

1 1 1 1

1 2

1 2

1 2

1 2

f8) g hi ! f g

f8) g

hi ! f g

f8) 8) g

hi ! f8) g

f8) 8) g

hi ! f8) g

h i

a ; n : n < n n < n odd even n < n =�

a ; n : n < n n < n

even even n < n =�

a ; n : n < n a ; n : n < n n < n

odd odd a ; n : n < n n < n =�

a ; n : n < n a ; n : n < n n < n

even odd a ; n : n < n n < n =�

call progress

call path progress

call path progress p p q �

call progress p p q �

call path progress p CONS p ps p q �

call progress p p call path progress p ps p q � �

�

call path progress

Thus we have proven

() () |

A similar pattern of reasoning could be followed to prove the following:

() ()
|

() (() ())
| () ()

() (() ())

| () ()

Just as the function can compute the appropriate precondition

across a single procedure call, the function can compute the

appropriate precondition when starting execution from the entrance of one pro-

cedure to establish a given entrance condition at the end of a path of procedure

calls. It is de�ned in Table 6.12.

=

() =

()

Table 6.12: Call Path Progress Function.

Once the environment is proven to be well-formed for preconditions for

calls progress, the following rule, proven as a theorem, applies for proving the

e�ect of the function across a path of procedure calls.

121

odd even

b

b

b

1

2

1 2 1 2

0 0 0 0 0 0 0 0

0 0 0

Call Path Progress Rule:

h i
h i

�
f ^ g ! f g

! !

f ^ h i g

h i ! f g

env syntax env pre env calls

a

6.3.4.5 Example of Call Path Progress Speci�cation

calls with

true

WF �; WF �; WF �

� p vars; vals; glbs; pre; post; calls; rec; c

� p vars ; vals ; glbs ; pre ; post ; calls ; rec ; c

y vars vals glbs

FV q SL y logicals z

pre call path progress p ps p q � p ps p q =�

even

even

odd odd even

call path progress odd odd even n < n �

odd odd even n < n =�

call progress odd even n < n �

=
=

= & &
(&)

|

Figure 6.2: Procedure Call Graph for Odd/Even Example.

As an example, consider the progress of paths of procedure calls that involve the

procedure in the odd/even program presented in Table 6.1. Examining the

procedure call graph in Figure 6.2, we can observe several cycles that include the

node. Let us assume the correctness of the call progress parts of the headers

of the procedures as declared, that is, that every . . . clause has been

veri�ed to be true.

Then consider the path . By the Call Path Progress Rule

given above, we have

()
|

We previously evaluated () as

122

b

b

b

b

b

b

b b c b b

b b c

c b b c

c b b c

b

b

b

b

b

b

b

6.3.5 Recursive Entrance Speci�cation

8)

h i

hi

8)

8)

8)

8) 8)

8) 8)

8) 8)

f8) 8) g

h i ! f g

f8) 8) g

h i ! f g

f8) g

hi ! f g

f g f g

1 1 1 1

1 1 1 1

1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 2 2 2 1 2 1

1 1 1 2 2 2 1 2

1 1 1 2 2 2 1 2

1 1 1 2 2 2 1 2

1 1 1 1

1 2

1

2

()

= () ()

Using this, we can evaluate the invocation of as

()

= (())

= (())

= (() ())

= ((() [])

(() ())) []

= (() (() ())) []

= (() (() ())) []

= () (() ())

Thus we have proven

() (() ())
|

Similar patterns of reasoning could be followed to prove the following:

() (() ())
|

() ()
|

: precondition
: procedure name

: recursive entrance condition
: procedure environment

123

call progress odd even n < n �

a ; n : n < n n < n

call path progress

call path progress odd odd even n < n �

call progress odd odd call path progress odd even n < n � �

call progress odd odd call progress odd even n < n � �

call progress odd odd a ; n : n < n n < n �

a; n: n < n < a; n =a; n

a ; n : n < n n < n < a; n=a; n

a; n: n < n a ; n : n < n n < n < a; n=a; n

a ; n : n < n a ; n : n < n n < n < a; n=a; n

a ; n : n < n a ; n : n < n n < n

a ; n : n < n a ; n : n < n n < n

odd odd even n < n =�

a ; n : n < n a ; n : n < n n < n

even odd even n < n =�

a ; n : n < n n < n

even even n < n =�

a p - a =�

a

p

a

�

env rec

1 2 1 2

1

2

f g f g 8 f g ! f g

8 h i

f ^ g f g

well-formed for recursion

6.3.5.1 Semantics of Recursive Entrance Speci�cation

false

false true

let

in

a p - a =� ps: a p ps p a =�

p a

p

p p a

v < x v

x v

v

induct pre

induct pre v < x v x

�

p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

pre induct pre rec p - rec =�

= |

If execution begins at the entry of in a state satisfying , and if in the

execution of the body of , a (possibly deeply nested) recursive call is made to

the procedure , then at that recursive entry of , is satis�ed.

This speci�cation is used to prove that procedures terminate, by a well-

founded induction on the value of the recursive expression of each procedure.

When a procedure is declared, the recursion expression which is speci�ed

may be of two forms. It may be simply , which signi�es that the procedure

is not recursive. Else, it may be of the form , where is a numeric

assertion language expression whose free variables consist only of the parameters

and globals of the procedure, and where is a logical variable. is the important

part here; such a recursion expression signi�es that strictly decreases between

recursive calls. This then is used to prove termination.

Based on these two cases, there are two initial expressions whose truth guar-

antees the achievement of the recursion expression:

=

() = (=)

The procedure environment is de�ned to be if for

every procedure , it establishes the truth of its recursion expression for every

recursive call:

= =

124

WF �env rec

6.4 Termination Logic

command conditional termination speci�cation procedure conditional termi-

nation speci�cation command termination speci�cation

Proving that the environment is well-formed for recursion is one of the neces-

sary steps to prove programs totally correct.

Eventually, will be used to prove the termination of each proce-

dure. This will then help prove the termination of all commands, and the total

correctness of all commands.

The Termination Logic is the third of the three newly invented logics of this

dissertation. It is based on three new correctness speci�cations, which are the

, the

, and the . Each of these

is a relation, de�ned using the other relations and the underlying structural op-

erational semantics relations. The style of these three speci�cations is similar

to total correctness, in that the speci�cation simply guarantees that the com-

putation terminates, without any claim about the terminal state itself. This is

contrasted with the Procedure Entrance Logic presented earlier, which has more

the style of partial correctness.

All of the rules listed for this termination logic have been mechanically proven

as theorems from the underlying structural operational semantics.

The two \conditional termination" speci�cations involve a conditional quality,

where the termination described is conditioned on the termination of all immedi-

ate calls issuing from the computation at the top level. In other words, if we are

given that all procedure calls terminate which are made at the top level of the

125

#a c =�

a

c

�

except

conditional termination

6.4.1 Command Conditional Termination Speci�cation

command or procedure body concerned, then the command or procedure body

itself terminates.

This is the important issue to consider at this point, because after verifying

the partial correctness axiomatic semantics given in section 6.2, it is then possible

to prove the termination, and hence the total correctness, of every command in

the Sunrise programming language for procedure calls. For example, given

the termination of every procedure call issuing from the body of a while loop, we

could prove without further mechanism the total correctness of the while loop.

The remaining kind of termination which is not yet covered is in�nite recursive

descent, where a cycle of procedures call each other in an ever descending sequence

of procedure calls, none of which ever return.

The purpose of the Procedure Entrance Logic given in section 6.3 is to provide

a means to prove the termination of procedure calls, by showing that a certain

kind of progress is achieved between recursive entrances of the same procedure.

The purpose of the Termination Logic of this section is to take that means, and

prove the termination of commands and procedures. But we begin by proving

, by which we mean a kind of conditional termination

depending on the termination of all immediate calls.

[]

: precondition

: command
: procedure environment

126

1 1 1 2 1 2# 8 ^) 9

8 h i

#
env term

env term

6.4.1.1 Semantics of Command Conditional Termination Speci�ca-

tion

let

in

axiomatic termination semantics

well-formed for conditional ter-

mination

a c =� s : A a s C calls terminate c � s s : C c � s s

c a

c c

c

c p

p c

c

c

�

p p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

pre c =�

WF �

[] = (())

If command is executed, beginning in a state satisfying , and if all calls

issuing immediately from terminate, then terminates. This refers only to

the �rst level of calls from , to those that issue directly from a syntactically

contained procedure call command within . It does not refer to calls of that

may occur from the body of , or of other procedures that may call indirectly

during the execution of .

No statement is made here about conditions that may hold at the end of the

execution of .

Table 6.13 presents an for the Sunrise pro-

gramming languge.

The procedure environment is de�ned to be

if for every procedure , the body of terminates given the termination

of all immediate calls from the body:

= =
[]

Proving that the environment is well-formed for conditional termination is

one of the necessary steps to prove programs totally correct.

Eventually, will be used to prove the termination of each proce-

dure, not conditionally on its immediate calls, but absolutely. This will then help

prove the termination of all commands, and the total correctness of all commands.

127

env syntax

c

env syntax

c

0 1

1

0

1 1

1 1 2

2 2

1 1 2

1 1

2 2

1 2

1 2

0

0

0

f) g
#
#

#

#

#

#

#
f g f g

#
#

#
#

j
#

^ ^

#
f g f ^ g

#

#

false

skip

false abort

if then else �

assert with
while do od

assert with
while do od

call

call

[]
[]

[]

[]

[]

[] :=

[]

[]
[] ;

[]
[]

[=]

(
)

[() (=)] []
[]

()
[]

((;))
[] (;)

Table 6.13: Command Conditional Termination Logic.

128

Precondition Strengthening:

False Precondition:

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Procedure Call:

a a

a c =�

a c =�

c =�

a =�

=�

a x e =�

a c =�

a c a =�

a c =�

a c c =�

a c =�

a c =�

AB b > ab pre b a ab pre b a

b c c =�

WF �

WF a v < x

b c g �

a AB b v x b a

a c =�

a c a v < x =�

a a v < x

b c =�

WF �

WF p xs es g �

a p xs es =�

env term

#

h i

#

h i
#

+

p =�

p

�

p =� vars; vals; glbs; pre; post; calls; rec; c � p

pre c =�

p p

p p

�

WF �

� p vars; vals; glbs; pre; post; calls; rec; c

p =�

a c =�

a

c

�

6.4.2 Procedure Conditional Termination Speci�cation

6.4.2.1 Semantics of Procedure Conditional Termination Speci�ca-

tion

let in

6.4.3 Command Termination Speci�cation

: procedure name
: procedure environment

= =

[]

If procedure is entered in a state which satis�es the precondition of , and

if all calls issuing immediately from the body of terminate, then terminates.

This speci�cation extends command conditional termination speci�cations to

the bodies of procedures, and �xes the precondition to be the declared precondi-

tion of the procedure involved.

Once the environment is proven to be well-formed for conditional termina-

tion, the following rule, proven as a theorem, says that all procedures condition-

ally terminate.

=

[]

: precondition
: command

: procedure environment

129

1 1 2 1 2

0

0

env total

f) g
+
+

+

+ 8) 9

8 h i

^ +

false

6.4.3.1 Semantics of Command Termination Speci�cation

let in

let in

let in

Precondition Strengthening: False Precondition:

axiomatic termination semantics

well-formed for termination

p q

q c =�

p c =�

c =�

a c =� s : A a s s : C c � s s

c a c

c

�

p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

x logicals x

x x pre c =�

[]
[]

[]

Table 6.14: General rules for Command Termination.

[] = (())

If command is executed, beginning in a state satisfying , then terminates.

No statement is made here about conditions that may hold at the end of the

execution of .

Tables 6.14 and 6.15 present an for the Sun-

rise programming languge.

The procedure environment is de�ned to be if

for every procedure , its body terminates with respect to the given precondition:

= =

= & &
=

[=]

130

0

0 0

0

0 0

0

0 0 0

1

1

2

1 2

1 1

2 2

1 2

1 2

0 0 0

0

0

0 0 0

0 0 0 0

0 0 0

env syntax

c

env syntax c xs

a

c a a

env c

a

a

+

+

+

+
f g f g

+
+

+
+
j

+

f g f ^ g
+

f ^ ^) g
f ^ �) g

+

� � � [
^ +

^ 8) +

h i
[

^ 8)
+

skip

false abort

if then else �

assert with
while do od

assert with

while do od

call

call

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Rule of Adaptation:

Procedure Call:

[]

[]

[] :=

[]

[]
[] ;

[]
[]

[=]

(
)

()
[]

() (=)
()

[]

= = ()
()

[=]
[((([])) [])]

((;))
=

= ((&)) = & &
= & = & = & &

= = = ()
[([] ((([])) [])) [:=]]

(;)

Table 6.15: Hoare Logic for Command Termination.

131

q =�

=�

a x e =�

p c =�

p c q =�

q c =�

p c c =�

r c =�

r c =�

AB b > ab pre b r ab pre b r

b c c =�

WF �

WF a v < x

b c g �

p c a v < x =�

p c =�

a AB b v x ab pre b p

a AB b ab pre b q

a a v < x

b c =�

WF �; WF c g �; WF x; DL x

x logicals x; x variants x FV q

FV c � x; FV pre x; FV post x x

x x pre c =�

pre x: post < x =x q < x=x c =�

WF �; WF p xs es g �

� p vars; vals; glbs; pre; post; calls; rec; c

vals variants vals FV q SL xs glbs ; y vars vals glbs

u xs vals ; v vars vals; x xs vals glbs

x logicals x; y logicals y; x variants x FV q

pre < u=v x: post < u; x =v; y q < x=x < vals es

p xs es =�

f) g
f) g

8 ^) ^

8) 9

1 2

1

2

1 2 1 2 1 1 1 2 2 2

1 1 1 2 1 2

1

2

6.5 Hoare Logic for Total Correctness

Precondition Strengthening:

False Precondition:

Postcondition Weakening:

p a

a c q =�

p c q =�

c q =�

p c a =�

a q

p c q =�

a c a =�

a

c

a

�

a c a =� s s : A a s C c � s s A a s

s : A a s s : C c � s s

c a

a

=�

false

6.5.1 Total Correctness Speci�cation

6.5.1.1 Semantics of Total Correctness Speci�cation

[] []
[] []

[] []

[] []

[] []

Table 6.16: General rules for Total Correctness.

[] []

: precondition
: command

: postcondition
: procedure environment

[] [] = ()

(())

If the command is executed, beginning in a state satisfying , then the

execution terminates in a state satisfying .

Consider the Hoare logic in Tables 6.16 and 6.17 for total correctness. This is

a traditional Hoare logic for total correctness, except that we have added at

the end of each speci�cation to indicate the ubiquitous procedure environment.

132

0

0 0

0

0 0

0

0 0 0

j

^

f ^ ^) g
f ^ �) g

� � � [
^

^ 8)

h i
[

^ 8)

1 2

1 2

1 1

2 2

1 2

1 2

0 0 0

0

0

0 0 0

0 0 0 0

0 0 0

env syntax

c

env syntax c xs

a

c a a

env c

a

a

skip

false abort

if then else �

assert with
while do od

assert with
while do od

call

call

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Rule of Adaptation:

Procedure Call:

[] []

[] []

[[:=]] := []

[] [] [] []
[] ; []

[] []
[] []

[=]
[]

(
)

[] [()]
() (=)

()
[]

[]

= = ()
()

[=] []
[((([])) [])] []

((;))
=

= ((&)) = & &
= & = & = & &

= = = ()
[([] ((([])) [])) [:=]]

(;)[]

Table 6.17: Hoare Logic for Total Correctness.

133

q q =�

q =�

q < x e x e q =�

p c r =�; r c q =�

p c c q =�

r c q =�

r c q =�

AB b > ab pre b r ab pre b r

b c c q =�

WF �

WF a v < x

b c g �

p c a v < x =�

a AB b v x ab pre b p

a AB b ab pre b q

a a v < x

b c q =�

WF �; WF c g �; WF x; DL x

x logicals x; x variants x FV q

FV c � x; FV pre x; FV post x x

x x pre c post =�

pre x: post < x =x q < x=x c q =�

WF �; WF p xs es g �

� p vars; vals; glbs; pre; post; calls; rec; c

vals variants vals FV q SL xs glbs ; y vars vals glbs

u xs vals ; v vars vals; x xs vals glbs

x logicals x; y logicals y; x variants x FV q

pre < u=v x: post < u; x =v; y q < x=x < vals es

p xs es q =�

0

0

f g f g
+

8 h i

^

^

let in

let in

let in

well-formed for correctness

env correct

env correct env partial env total

�

p c q =�

p c =�

p c q =�

�

p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

x logicals x

x x pre c post =�

�

WF � WF � WF �

This must be used to resolve the semantics of procedure call. However, the envi-

ronment never changes during the execution of the program, and hence could

be deleted from every speci�cation, being understood in context. Of particular

interest are the Rule of Adaptation and the Procedure Call Rule. Each rule has

been proved completely sound from the corresponding rules in Tables 6.6 and

6.15, using the following rule:

[]
[] []

The procedure environment is de�ned to be

if for every procedure , its body is totally correct with respect to the given

precondition and postcondition:

= =
= & &
=

[=] []

An environment is well-formed for correctness if and only if it is well-formed

for partial correctness and for termination.

=

134

