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CHAPTER 7

Veri�cation Condition Generator

\You will not need to �ght in this battle. Position yourselves, stand

still and see the salvation of the , who is with you, O Judah and

Jerusalem!"

| 2 Chronicles 20:17

In this chapter we present a veri�cation condition generator for the Sunrise

programming language. This is a function that analyzes programs with speci�-

cations to produce an implicit proof of the program's correctness with respect to

its speci�cation, modulo a set of veri�cation conditions which need to be proven

by the programmer. This reduces the problem of proving the program correct to

the problem of proving the veri�cation conditions. This is a partial automation

of the program proving process, and signi�cantly eases the task.

The many di�erent correctness speci�cations and Hoare-style rules of the

last chapter all culminate here, and contribute to the correctness of the VCG

presented. All the rules condense into a remarkably small de�nition of the ver-

i�cation condition generator. The operations of the VCG are simple syntactic

manipulations, which may be easily and quickly executed.
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7.1.1 Veri�cation of Commands

The correctness that is proven by the VCG is total correctness, including the

termination of programs with mutually recursive procedures. Much of the content

of the previous chapter was aimed at establishing the termination of programs.

This is the part of the veri�cation condition generator which is most novel. The

partial correctness of programs is veri�ed by the VCG producing a fairly standard

set of veri�cation conditions, based on the structure of the syntax of bodies of

procedures and the main body of the program. Termination is veri�ed by the

VCG producing new kinds of veri�cation conditions arising from the structure of

the procedure call graph.

In this section, we de�ne the primary functions that make up the veri�cation

condition generator.

We begin with the analysis of the structure of commands. There are two VCG

functions that analyze commands. The main function is the function. Most

of the work of is done by a helper function, 1.

In the de�nitions of these functions, comma (,) makes a pair of two items,

square brackets ([ ]) delimit lists, semicolon (;) within a list separates elements,

and ampersand (&) appends two lists. In addition, the function is a de-

structor function, breaking an assertion language expression of the form

into a pair of its constituent subexpressions, and .
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Figure 7.1: De�nition of 1, helper VCG function for commands.
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7.1.2 Veri�cation of Declarations
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prog env aexp env aexp aexp list
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Figure 7.2: De�nition of , main VCG function for commands.

The 1 function is presented in Figure 7.1. This function has type

( ( ) ). 1 takes a command, a

calls progress environment, a postcondition, and a procedure environment, and

returns a precondition and a list of veri�cation conditions that must be proved

in order to verify that command with respect to the precondition, postcondition,

and environments. 1 is de�ned recursively, based on the structure of the

command argument. Note that the procedure call clause includes ; this

inclusion causes the veri�cation conditions generated to verify not only the partial

correctness of the command, but also the call progress claims present in .

The function is presented in Figure 7.2. This function has type

( ) . takes a precondition, a command,

a calls progress environment, a postcondition, and a procedure environment, and

returns a list of veri�cation conditions that must be proved in order to verify that

command with respect to the precondition, postcondition, and environments.

The veri�cation condition generator function to analyze declarations is .

The function is presented in Figure 7.3. This function has type

( ) . takes a declaration and a procedure environment, and

returns a list of veri�cation conditions that must be proved in order to verify that
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Figure 7.3: De�nition of , VCG function for declarations.

declaration with respect to the procedure environment.

The next several functions deal with the analysis of the structure of the procedure

call graph. We will begin with the lowest level functions, and build up to the

main VCG function for the procedure call graph, .

There are two mutually recursive functions at the core of the algorithm to an-

alyze the procedure call graph, and . They

are presented together in Figure 7.4. Each yields a list of veri�cation conditions

to verify progress across parts of the graph. In the de�nitions, converts a list

to a set, and adds an element to a list. applies a function to each

element of a list, and gathers the results of all the applications into a new list

which is the value yielded. takes a list of lists and appends them together,

to \atten" the structure into a single level, a list of elements from all the lists.

The purpose of the graph analysis is to verify that the progress speci�ed in the
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Figure 7.4: De�nition of and .

clause for each procedure is achieved for every possible recursive

call of the procedure. The general process is to begin at a particular node of

the call graph, and explore through the directed arcs of the graph.

We associate with that starting node the recursion expression for that procedure,

and this is the starting path expression. For each arc traversed backwards, the

current path expression is transformed using the function de�ned

in Table 6.11, and we associate the result yielded by with the new

node reached along the arc. At each point we keep track of the path of nodes

from the current node to the starting node. This backwards exploration continues

recursively, until we reach a \leaf" node. A leaf node is one which is a duplicate of

one already in the path of nodes to the starting node. This duplicate may match

the starting node itself, or it may match one of the other nodes encountered in
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the path of the exploration.

When a leaf node is reached, a veri�cation condition is generated. These

will be explained in more detail later; for now it su�ces to note that there are

two kinds of veri�cation conditions generated, depending on which node the leaf

node duplicated. If the leaf node matched the starting node, then we generate an

veri�cation condition. If the leaf node matched any other

node, then we generate a veri�cation condition.

performs the task of tracing backwards across a particular

arc of the procedure call graph. traces backwards across all

incoming arcs of a particular node in the graph. The arguments to these functions

have the following types and meanings:

: : current node (procedure name)

: ( ) : path (list of procedure names)

: : starting node (procedure name)

: : current path condition

: : prior path conditions

: : procedure environment

: ( ) : all declared procedures (list of names)

: : depth counter

: : source node of arc being explored

The depth counter was a necessary artifact to be able to de�ne these func-

tions in ; �rst was de�ned as a single primitive recursive

function on combining the functions of Figure 7.4. Then was

de�ned as a mutually recursive part of , and

resolved to the remainder. For calls of , should be equal to

the di�erence between the lengths of and . For calls of ,

should be equal to the di�erence between the lengths of and , minus

one.
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The de�nition of maps across all de�ned

procedures, as listed in . It is expected that practically speaking, most

programs will have relatively sparse call graphs, in that there will be many pro-

cedures in the program, but each individual procedure will only be called by

a small fraction of all de�ned. Therefore it is important for the application of

described above to terminate quickly for applications across an

arc which does not actually exist in the procedure call graph. The lack of an arc

is represented by the lack of a corresponding . . . clause in the header

of the procedure which would be the source of the arc. When assembing the

calls progress environment from the . . . clauses of a procedure,

each clause produces a binding onto an initial default calls progress environment.

This default calls progress environment is . Then all references to target

procedures speci�ed in the . . . clauses yield the default value of

this default calls progress environment, . This indicates that there is no

relationship at all possible between the values in the states before and after such

a call, and therefore signi�es that such calls cannot occur. As a side bene�t,

this ensures that any omission of a . . . clause from the header of a

procedure whose body does indeed contain a call to the target procedure will gen-

erate veri�cation conditions that require proving , and these will be quickly

identi�ed as untrue.

An invocation of will at its beginning call the

function. According to its de�nition in the last chapter, will evalu-

ate to extract the progress expression. For a nonexistent arc, this will be

, as described above. The de�nition of then tests whether the

progress expression is equal to . For such a nonexistent arc in the procedure
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graph vcs

call graph, it is, and then immediately terminates with value .

The invocation of then receives as the current path

condition. The next step of is to test whether the path condition

is equal to . Since it is, the de�nition of then immediately

terminates, yielding an empty list with no veri�cation conditions as its result.

In theory, these functions could have been designed more simply and homo-

geneously to yield equivalent results just using the parts of each de�nition which

handle the general case. However, this would not have been a practical solution.

All these functions are designed with particular attention to as quickly as pos-

sible dismiss all nonexistent arcs of the procedure call graph. This is critical in

practice, because of the potentially exponential growth of the time involved in

exploring a large graph. This rapid dismissal limits the exponential growth to a

factor depending more on the average number of incoming arcs for nodes in the

graph, than on the total number of declared procedures.

=

( ) =

[ ] ( ) ( )

Figure 7.5: De�nition of .

The function is called initially by the function .

is presented in Figure 7.5. It analyzes the procedure call graph, begin-

ning at a particular node, and generates veri�cation conditions for paths in the

graph to that node to verify its recursive progress, as designated in its recursion

expression declared in the procedure's header.
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7.1.3.1 Example of Veri�cation of Call Graph

vcgg all ps � FLAT MAP graph vcs all ps � all ps

graph vcs vcgg vcgg

all ps

even

even

even n < n even

even odd even

= ( ( ) )

Figure 7.6: De�nition of , the VCG function to analyze the call graph.

The function is called by the function . is presented in

Figure 7.6. It analyzes the entire procedure call graph, beginning at each node

in turn, and generates veri�cation conditions for paths in the graph, to verify the

recursive progress declared for each procedure in .

Figure 7.7: Procedure Call Graph for Odd/Even Example.

As an example of this graph traversal algorithm, consider the odd/even pro-

gram in Table 6.1. We repeat its procedure call graph in Figure 7.7. We wish to

explore this call graph, beginning at the node corresponding to procedure .

In this process, we will trace part of the structure of the procedure call tree

rooted at , which is given in Figure 7.8. We take the recursion expression of

, , and attach that to the node. This becomes the current path

expression. Examining the call graph, we see that there are two arcs coming into

the node, one from and one from itself, as a self-loop. These will

form two paths, which we will explore as two cases.
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Figure 7.8: Procedure Call Tree for Odd/Even Example.

Path .

The call graph arc goes from to . We push the current path expression

backwards across the arc from to , using the function . We

previously described that

( )

= ( ) ( )

We attach this path expression to the node. According to the de�nition of

, we then go through a series of tests. We �rst test to see if this

path expression is , which it clearly is not. If, however, there had been no

arc in the procedure call graph from to , then the function

would have returned , and would terminate, yielding an

empty list of veri�cation conditions for this path.
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The second test we encounter in the de�nition of is whether

the node just reached backwards across the arc is the same as the starting node.

In this case, the node just reached is and the starting node is , so this

test is not satis�ed.

The third test we encounter is whether the node just reached, , is a dupli-

cate of one of the nodes in the path to the starting node. In this case the path

only consists of the starting node itself, and is not a duplicate of any

member.

The choice �nally arrived at in the de�nition of is to continue

the graph exploration recursively, by calling . Considering the

node in the procedure call graph in Figure 7.7, we see there are two arcs of

the procedure call graph which enter the node , one from itself and one

from . These will form two paths, which we will explore as two cases.

Path .

We push the current path expression backwards across the arc from to

, using the function . We previously described that

( ( ) ( ))

= ( ) ( ( ) ( ))

This becomes the current path expression. We then go through the series of tests

in the de�nition of . We �rst test to see if this path expression

is , which it clearly is not.

The second test is whether the node just reached backwards across the arc is

the same as the starting node. In this case, the node just reached is and the
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starting node is , so this test is not satis�ed.

The third test is whether the node just reached, , is a duplicate of one of

the nodes in the path to the starting node. In this case this path is ,

so a duplicate, and this test succeeds.

According to the de�nition of , for satisfying this test, we

generate a veri�cation condition of the form , which in this case is

( ( ) ( ))

( ( ) ( ( ) ( )))

We call this kind of veri�cation condition a , which

we will describe more later.

This terminates this exploration of this path (Case 1.1) through the procedure

call graph.

Path .

We push the current path expression backwards across the arc from to

, using the function . We previously described that

( ( ) ( ))

= ( ) ( ( ) ( ))

This becomes the current path expression. We then go through the series of tests

in the de�nition of . We �rst test to see if this path expression

is , which it clearly is not.

The second test is whether the node just reached backwards across the arc is

the same as the starting node. In this case, the node just reached is and

the starting node is , so this test succeeds.
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According to the de�nition of , for satisfying this test, we

generate a veri�cation condition of the form

( ) =

[ ]

which in this case is

( = )

( ( ) ( ( ) ( )))

We call this kind of veri�cation condition an

, which we will describe more later.

This terminates this exploration of this path (Case 1.2) through the procedure

call graph. Since this is also the last case for expanding the path of Case 1, this

also terminates the exploration of that path.

Path .

The call graph arc goes from to . We push the current path expres-

sion backwards across the arc from to , using the function .

We previously described that

( )

= ( ) ( )

This becomes the current path expression. We then go through the series of tests

in the de�nition of . We �rst test to see if this path expression

is , which it clearly is not.

The second test is whether the node just reached backwards across the arc is

the same as the starting node. In this case, the node just reached is and

the starting node is , so this test succeeds.
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According to the de�nition of , for satisfying this test, we

generate a veri�cation condition of the form

( ) =

[ ]

which in this case is

( = )

( ( ) ( ))

This is another .

This terminates this exploration of this path (Case 2) through the procedure

call graph. Since this is also the last case, this also terminates the exploration of

the procedure call graph for paths rooted at .

This ends the example.

( ) =

[ ]

( ; ) = ( )

( ) =

Figure 7.9: De�nition of .

The function is presented in Figure 7.9. This function has type

. takes a declaration and an environment, and returns a

new environment containing all of the declarations of procedures present in the

declaration argument, overriding the declarations of those procedures already

present in the environment.
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Figure 7.10: De�nition of .

The function is presented in Figure 7.10. This function has type

( ) . takes a declaration, and returns the list of

procedure names that are declared in the declaration.

( ; ) =

=

=

= ( )

=

& &

Figure 7.11: De�nition of , the main VCG function.

is the main VCG function, presented in Figure 7.11. calls to

analyze the declarations, to analyze the call graph, and to analyze

the main body of the program. takes a program and a postcondition as

arguments, analyzes the entire program, and generates veri�cation conditions

whose proofs are su�cient to prove the program totally correct with respect to the

given postcondition. creates the procedure environment that corresponds

to a declaration using the empty procedure environment (with all procedures

undeclared), and is the \empty" call progress environment .
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Principle

7.2 Veri�cation Conditions

proof

and these solutions are �tted together in a speci�ed way

In the functions presented above, the essential task is constructing a proof of the

program, but this proof is implicit and not actually produced as a result. Rather,

the primary results are veri�cation conditions, whose proof veri�es the construct

analyzed.

In [Gri81], Gries gives an excellent presentation of a methodology for devel-

oping programs and proving them correct. He lists many principles to guide and

strengthen this process. The �rst and primary principle he lists is

: A program and its proof should be developed hand-in-

hand, with the usually leading the way.

In [AA78], Alagi�c and Arbib establish the following method of top-down de-

sign of an algorithm to solve a given problem:

: Decompose the overall problem into precisely speci�ed

subproblems, and prove that if each subproblem is solved correctly

then the orig-

inal problem will be solved correctly. Repeat the process of \decom-

pose and prove correctness of the decomposition" for the subproblems;

and keep repeating this process until reaching subproblems so simple

that their solution can be expressed in a few lines of a programming

language.

We would like to summarize these in our own principle:
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7.2.1 Program Structure Veri�cation Conditions

: The structure of the proof should match the structure of

the program.

In the past, veri�cation condition generators have concentrated exclusively on

the structure of the syntax of the program, decomposing commands into their

subcommands, and constructing the proof with the same structure based on the

syntax, so that the proof and the program mirror each other.

We continue that tradition in this work, but we also recognize that an addi-

tional kind of structure exists in programs with procedures, the structure of the

procedure call graph. This is a perfectly valid kind of structure, and it provides

an opportunity to structure part of the proof of a program's correctness. In par-

ticular, it is the essential structure we use to prove the recursive progress claims

of procedures.

In our opinion, wherever a natural and inherent kind of structure is recognized

in a class of programs, it is worth examining to see if it may be useful in struc-

turing proofs of properties about those programs. Such structuring regularizes

proofs and reduces their quality. In addition, it may provide opportunities

to prove general results about all programs with that kind of structure, moving

a part of the proof e�ort to the meta-level, so that it need not be repeated for

each individual program being proven.

The functions 1, , and are de�ned recursively, based on the recursive

syntactic structure of the program constructs involved. An examination of the

de�nitions of 1, , and (Figures 7.1, 7.2, 7.3) reveals several instances
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where veri�cation conditions are generated in this analysis of the syntactic struc-

ture. The thrust of the work done by 1 is to transform the postcondition

argument into an appropriate precondition, but it also generates two veri�ca-

tion conditions for the iteration command. takes the veri�cation conditions

generated by 1, and adds one new one, making sure the given precondition

implies the precondition computed by 1. invokes on the body of

each procedure declared, and collects the resulting veri�cation conditions into

a single list. All of these veri�cation conditions were generated at appropriate

places in the syntactic structure of the program.

Principally, the purpose of these veri�cation conditions is to establish the

partial correctness of the constructs involved, with respect to the preconditions

and postconditions present. In addition, however, a careful examination of the

procedure call clause in the de�nition of 1 in Figure 7.1 discloses that the

phrase occuring there ensures that both and must be

true upon entry to the procedure being called. Thus the preconditions generated

by 1, and incorporated by and , carry the strength of being able

to ensure both that the preconditions of any called procedures are ful�lled, and

that the call progress speci�ed in the argument is ful�lled. For , this

means that that the preconditions of declared procedures are ful�lled, and the call

progress claimed in the header of each procedure declared has been veri�ed. From

the partial correctness that they imply, it is then possible to prove for each of these

VCG functions that the command involved terminates if all of its immediate calls

terminate. Thus it is possible to reason simply from the veri�cation conditions

generated by this syntactic analysis and conclude four essential properties of the

procedure environment :
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7.2.2 Call Graph Structure Veri�cation Conditions

recurses with

false

is well-formed for partial correctness

is well-formed for preconditions

is well-formed for calls progress

is well-formed for conditional termination

In this dissertation, we have introduced functions as part of the veri�cation con-

dition generator to analyze the structure of the procedure call graph. The goal

of this graph analysis is to prove that every recursive call, reentering a proce-

dure that had been called before and has not yet �nished, demonstrates some

measurable degree of progress. This progress is quanti�ed in the

clause in the procedure declaration's header. The expression given in this clause

is either , signifying that no recursion is allowed, or , where is an

assertion language numeric expression, and where is a logical variable. The

exact choice of is not vital, merely that it serve as a name for the prior value of

at the �rst call of the procedure, so that it may be compared with the eventual

value of at the recursive call.

The progress described by is the decrease of an integer expression. In

the Sunrise language, this is restricted to nonnegative integer values. The non-

negative integers form a well-founded set with as its ordering. By the de�nition

of well-founded sets, there does not exist any in�nite decreasing sequence of val-

ues from a well-founded set. Hence there cannot be an in�nite number of times

that the expression decreases before it reaches 0, and thus we will eventually

be able to argue that any call of the procedure must terminate. However, at

this point we are only trying to establish the recursive progress between recursive

invocations of the procedure, that has strictly decreased.
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To prove this recursive progress, we need to consider every possible path of

procedure calls from the procedure to itself. Given the possible presence of cycles

in the procedure call graph, there may be an in�nite number of such paths, all

of which cannot be examined in �nite time. However, in our research, we have

discovered a small, �nite number of veri�cation conditions which together cover

every possible path, even if the paths are in�nite in number. These veri�ca-

tion conditions are of two kinds, which we call

and .

To understand the intent of these veri�cation conditions, as a �rst step con-

sider the possibility of exploring the procedure call graph to �nd paths that

correspond to recursive calls. Starting from a designated procedure and explor-

ing backwards across arcs in the graph yields an expanding tree of procedure

calls, where the root of the tree is the starting procedure. If cycles are present in

the graph, this tree will grow to be in�nite in extent. An example of such a tree

is presented in Figure 7.12.

Now examine this in�nite tree of procedure calls. Some of the nodes in the

tree duplicate the root node, that is, they refer to the same procedure. We call

these occurrences instances of . Of these duplicate nodes, consider the

paths from each node to the root. Some of these paths will themselves contain

internally another duplicate of the root, and some will not. Those that do not

contain another duplicate of the root we call instances of . The

other paths, that do contain additional duplicates of the root, we call instances

of . Observe that each instance of multiple recursion is a chain-

ing together of multiple instances of single recursion. In addition, if the progress
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Figure 7.12: Procedure Call Tree for Recursion for Odd/Even Example.

claimed by the recursion expression for the root procedure is achieved for each in-

stance of single recursion, then the progress achieved for each instance of multiple

recursion will be the accumulation of the progresses of each constituent instance

of single recursion, and thus should also satisfy the progress claim even more

easily.

So the problem of proving the recursive progress for all recursive paths simpli-

�es to proving it for all singly recursive paths. Now, there still may be an in�nite

number of singly recursive paths in the procedure call tree. For instance, in the

odd/even program example, if we consider all singly recursive paths with root at

, the presence of the self-loop at means that there are an in�nite number

of paths with di�erent numbers of times around that self-loop involved. This tree

is presented in Figure 7.13. Singly recursive paths traverse the call graph from
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to , then to via an inde�nite number of times around the self-loop,

and �nally to .

Figure 7.13: Procedure Call Tree for Single Recursion for Odd/Even Example.

Consider the procedure call tree as before but limited now in its expansion to

singly recursive paths, so that the only occurrences of the root node are at the

root and as leaves. None of the internal nodes of the tree duplicate the root node.

However, for any particular leaf node and the path from that leaf to the root,

there may be duplicates within that list, not involving the root node. If there are

duplicates, say two occurences of a procedure not the root, then we call this
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an instance of , and we call the part of the path between the

two occurrences of a . Intuitively this name suggests that the search

for recursive paths from the root procedure to itself became diverted from that

goal when the search reached . For a while the search followed the cycle from

to , and only when it returned to did it resume again to head for the root

procedure. In contrast, we call a path from a leaf to the root which does not have

any examples of diversion an instance of . These instances of

undiverted recursion would be the occasions of generating veri�cation conditions

to verify the recursion expression claim, except that the tree is still in�nite.

Now, given a diversion involving the procedure , we observe that the sub-

trees of the procedure call tree rooted at the two instances of are identical

in their branching structure. The only things that change are the path condi-

tions attached to the various nodes. Except for these, one could copy one of

the subtrees, move it so that it was superimposed on the other subtree, and the

two would look identical. This provides the motivation for the �nal simpli�ca-

tion here, the introduction of . We can implicitly

cover the in�nite expansion of the procedure call tree for single recursion by look-

ing for cases of diversion as we expand the tree, and then for each case,

the endpoint of the diversion farthest from the root around and it to

the near endpoint of the diversion. The connection we establish is the generation

of a veri�cation condition, that the path condition at the near endpoint implies

the path condition at the far endpoint. Compare Figures 7.13 and 7.14 to see an

example of this for the odd/even program.

At �rst, this may seem counter-intuitive, or even bizzare, and we confess this
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Figure 7.14: Diverted and Undiverted Veri�cation Conditions for Odd/Even.

was how the idea struck us initially. Since the far endpoint is previous in time to

the near endpoint, one would normally expect any implication to ow from the

prior to the later. However, in this case what the diversion veri�cation condition is

saying is that the changes to the path expressions imposed by moving around the

diversion cycle in the graph do not interfere with justifying the recursive progress

claim for the root procedure. In other words, we do not lose ground by going

around a diversion cycle, but instead the cycle either has no e�ect or a positive

e�ect. In terms of the procedure call tree, making this connection between the

endpoints of a diversion is tantamount to copying the entire subtree rooted at

the nearer endpoint and attaching the root of the copy at the farther endpoint.

Since the copied subtree includes the farther endpoint within it, this creates an

in�nite expansion, fully covering the in�nite singly recursive procedure call tree.

However, since there is only one veri�cation condition per diversion required

to achieve this, we have reduced the proof burden imposed on the programmer
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to a �nite number of veri�cation conditions, which now consist of a mixture

of undiverted recursion veri�cation conditions for leaves of the expansion which

match the root, and diversion veri�cation conditions for leaves of the expansion

which match another node along the path to the root.
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7.3 VCG Soundness Theorems

vcg1 0 THM vcg1 k THM

vcg1p THM

vcg1 PRE PROGRESS vcg1 BODY PROGRESS

vcg1 TERM

The veri�cation condition generator functions de�ned in the �rst section of this

chapter are simple syntactic manipulations of expressions as data. For this to

have any reliable use, we must establish the semantics of these syntactic manip-

ulations. We have done this in this dissertation by proving theorems within the

system that describe the relationship between the veri�cation conditions

produced by these functions and the correctness of the programs with respect to

their speci�cations. These theorems are proven at the meta-level, which means

that they hold for all programs that may be submitted to the VCG.

The VCG theorems that have been proven related to the 1 function are

listed in Table 7.1. There are seven theorems listed, which correspond to seven

ways that the results of the 1 function are used to prove various kinds of cor-

rectness about commands. and are the proof of

versions of the partial correctness of commands, necessary steps in proving the

full partial correctness. These stages and the process of proving the partial cor-

rectness of every procedure, , is described in Section 10.5 on Semantic

Stages. Given these two theorems, it is possible to prove , which veri-

�es that if the veri�cation conditions produced by 1 are true, then the partial

correctness of the command analyzed follows. Furthermore, it is possible to prove

and , which state that if the veri�cation

conditions are true, then the preconditions of all called procedures hold, and the

progress conditions contained in also hold. Beyond this, shows

that the command conditionally terminates if all immediate calls terminate. Fi-

nally, if the environment has been shown to be completely well formed, then
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env syntax c

envk c

envp c

envp c

envp calls

c

envp c

env c

8 ^ )

) f g f g

8 ^ )

) f g f g

8 ^ )

) f g f g

8 ^ )

) f g !

8 ^

^ )

) f g !

8 ^ )

) #

8 ^ )

)

vcg1 0 THM

vcg1 k THM

vcg1p THM

vcg1 PRE PROGRESS

vcg1 BODY PROGRESS

vcg1 TERM

vcg1 THM

let in

all el close

let in

all el close

let in

all el close

let in

all el close pre

let in

all el close

let in

all el close

let in

all el close

( ) = 1

( 0)

( ) = 1

( + 1)

( ) = 1

( )

( ) = 1

( )

( ) = 1

( )

( ) = 1

( [ ] )

( ) = 1

( [ ] [ ] )

Table 7.1: Theorems of veri�cation of commands using the 1 function.
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c calls q �: WF � WF c calls �

p; h vcg c calls q �

h p c q =�;

c calls q � k: WF � k WF c calls �

p; h vcg c calls q �

h p c q =�; k

c calls q �: WF � WF c calls �

p; h vcg c calls q �

h p c q =�

c calls q �: WF � WF c calls �

p; h vcg c calls q �

h p c =�

c calls q �: WF � WF calls �

WF c calls �

p; h vcg c calls q �

h p c calls =�

c calls q �: WF � WF c calls �

p; h vcg c calls q �

h p c =�

c calls q �: WF � WF c calls �

p; h vcg c calls q �

h p c q =�
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calls
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vcg1 THM

vcgc 0 THM vcgc k THM

vcgcp THM

vcgc PRE PROGRESS

vcgc BODY PROGRESS

vcgc TERM

vcgc THM

states that if all the veri�cation conditions are true, then the com-

mand is totally correct with respect to the computed precondition and the given

postcondition.

The VCG theorems that have been proven related to the function are

listed in Table 7.2. These are similar to the theorems proven for 1. There

are seven theorems listed, which correspond to seven ways that the results of the

function are used to prove various kinds of correctness about commands.

and are the proof of versions of the partial cor-

rectness of commands, necessary steps in proving the full partial correctness.

These stages and the process of proving the partial correctness of every proce-

dure, , is described in Section 10.5 on Semantic Stages. Given these two

theorems, it is possible to prove , which veri�es that if the veri�cation

conditions produced by are true, then the partial correctness of the com-

mand analyzed follows. Furthermore, it is possible to prove

and , which state that if the veri�cation conditions are true,

then the preconditions of all called procedures hold, and the progress conditions

contained in also hold. Beyond this, shows that the command

conditionally terminates if all immediate calls terminate. Finally, if the environ-

ment has been shown to be completely well formed, then states that

if all the veri�cation conditions are true, then the command is totally correct

with respect to the given precondition and postcondition.
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env syntax c
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envp c

envp c

envp c

env c
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8 ^ )

)

f g f g
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f g !
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)
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#

8 ^ )

)

vcgc 0 THM

vcgc k THM

vcgcp THM

vcgc PRE PROGRESS

vcgc BODY PROGRESS

vcgc TERM
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all el close

all el close

all el close

all el close

pre

all el close

all el close

all el close

( )

0

( )

+ 1

( )

( )

( )

( )

[ ]

( )

[ ] [ ]

Table 7.2: Theorems of veri�cation of commands using the function.
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c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c q =�;

c p calls q � k: WF � WF c calls �

vcgc p c calls q �

p c q =�; k

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c q =�

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c =�

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c calls =�

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c =�

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c q =�
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vcg vcgc
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WF �
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fan out graph vcs

fan out graph vcs

vcgd syntax THM

vcgd 0 THM vcgd k THM

vcgd THM

vcgd PRE PROGRESS

vcgd BODY PROGRESS

vcgd TERM

The VCG theorems that have been proven related to the function for

declarations are listed in Table 7.3. These are similar in purpose to the theorems

proven for 1 and . There are seven theorems listed, which correspond to

seven ways that the results of the function are used to prove various kinds

of correctness about declarations. shows that if a declaration

is well-formed syntactically and the veri�cation conditions returned by are

true, then the corresponding procedure environment is well-formed syntactically.

and are the proof of versions of the partial cor-

rectness of declarations, necessary steps in proving the full partial correctness.

These stages and the process of proving the partial correctness of every proce-

dure, , is described in Section 10.5 on Semantic Stages. Given these

two theorems, it is possible to prove , which veri�es that if the veri�-

cation conditions produced by are true, then the partial correctness of the

environment follows. Furthermore, it is possible to prove

and , which state that if the veri�cation conditions are true,

then the environment is well-formed for preconditions and for calls progress. Fi-

nally, shows that if all the veri�cation conditions are true, then every

procedure in the environment conditionally terminates if all immediate calls from

its body terminate.

The VCG theorems that have been proven related to the graph exploration

functions for the procedure call graph are given in the following tables. The the-

orem about is listed in Table 7.4. It essentially states that if

the veri�cation conditions returned by are true, then for every

possible extension of the current path to a leaf node, if it is a leaf corresponding

to an instance of undiverted recursion, then the undiverted recursion veri�ca-
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envk

d

envk
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envp
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env pre

d

env calls

d
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all el close

all el close

all el close

all el close

all el close

all el close

all el close

vcgd syntax THM

vcgd 0 THM

vcgd k THM

vcgd THM

vcgd PRE PROGRESS

vcgd BODY PROGRESS

vcgd TERM

=
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( )
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=
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=
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Table 7.3: Theorems of veri�cation of declarations using the function.
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fan out graph vcs

graph vcs

graph vcs

graph vcs

graph vcs

graph vcs

call path progress

ps

call path progress

induct pre rec

rec rec v < x

induct pre rec v x

tion condition is true, and if the leaf corresponds to an instance of diversion,

then the diversion veri�cation condition is true. In brief, this theorem says that

produces all the veri�cation conditions previously described

as arising from the current point on in the exploration of the call graph.

The theorem about the veri�cation of is listed in Table 7.5. It

essentially states that if the veri�cation conditions returned by are

true, then for every instance of undiverted recursion, the undiverted recursion

veri�cation condition is true, and for every instance of diversion, the diversion

veri�cation condition is true. In brief, this theorem says that produces

all the veri�cation conditions previously described as arising from a particular

starting node in the exploration of the call graph.

Given that collects the proper set of veri�cation conditions, we can

now prove that for all instances of single recursion, if the veri�cation conditions

returned by are true, then the initial value of the recursion expression

for a procedure implies the precondition computed by the

function (de�ned in Table 6.12), as shown in Table 7.6. The proof proceeds by

well-founded induction on the length of the path .

Now, in the previous chapter a rule was presented that

returned appropriate preconditions for path entrance speci�cations. We can now

prove path entrance speci�cations for all possible paths starting from a procedure

to a recursive call of the same procedure, where the precondition at the original

entrance of the procedure is , and the entrance condition at all the

eventual recursive entrances of the procedure is . If is of the form ,

then is = , and these path entrance speci�cations declare
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Table 7.4: Theorem of veri�cation condition collection by .
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n p ps p q pcs � all ps y z

vars vals glbs pre post calls rec c

vars vals glbs pre post calls rec c :

WF �

WF �

WF �

� p vars; vals; glbs; pre; post; calls; rec; c

p SL all ps

p : p SL all ps � p � p

LENGTH all ps LENGTH ps n

p SL CONS p ps

SL CONS p ps SL all ps

DL CONS p ps

� p vars ; vals ; glbs ; pre ; post ; calls ; rec ; c

y vars vals glbs

FV q SL y logicals z

ps q rec

ps : ps ps p

q call path progress p ps p rec �

p : p SL CONS p ps p p

ps ps : CONS p ps ps CONS p ps p

pcs p call path progress p ps p rec �

fan out graph vcs p ps p q pcs � all ps n

ps :

DL ps DISJOINT SL ps SL CONS p ps

pre induct pre rec

call path progress p ps p q �

p ps ps ps :

p p

DL ps

DISJOINT SL ps SL CONS p ps

ps CONS p ps ps CONS p ps p

call path progress p ps p rec �

call path progress p ps CONS p ps p rec �

fan out graph vcs
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Table 7.5: Theorem of veri�cation condition collection by .
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p � all ps vars vals glbs pre post calls rec c:

WF �

WF �

WF �

p : p SL all ps � p � p

p SL all ps

� p vars; vals; glbs; pre; post; calls; rec; c

graph vcs all ps � p

ps:

DL ps p

pre induct pre rec

call path progress p ps p rec �

p ps ps ps :

p p

DL ps

p SL ps

ps ps CONS p ps

call path progress p ps p rec �

call path progress p ps CONS p ps p rec �

graph vcs
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env syntax

env pre

env calls

n ps p � all ps vars vals glbs pre post calls rec c:

WF �

WF �

WF �

p : p SL all ps � p � p

LENGTH ps n

p SL all ps

p SL ps

� p vars; vals; glbs; pre; post; calls; rec; c

graph vcs all ps � p

pre induct pre rec

call path progress p ps p rec �

call path progress

v

<

ps

graph vcs

vcgg

vcgg
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=

( )

(

)

Table 7.6: Theorem of veri�cation of single recursion by .

that the recursive expression strictly decreases across every possible instance

of single recursion of that procedure. This theorem is shown in Table 7.7.

Using the transitivity of , we can now prove the veri�cation of all recursion,

single and multiple, by well-founded induction on the length of the path . This

theorem is shown in Table 7.8.

We can now describe the veri�cation of recursion given the veri�cation con-

ditions returned by , in Table 7.9.

This allows us to verify the recursion of all declared procedures by the main

call graph analysis function, , as described in Table 7.10.

Finally, this allows us to verify the main call graph analysis function, ,

as described in Table 7.11.

We will show later how the progress described in the recursive progress claims

enables the proof of the termination of procedures. This is a particularly inter-
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Table 7.7: Theorem of veri�cation of all single recursion.
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Table 7.8: Theorem of veri�cation of all recursion, single and multiple.
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ps p � all ps vars vals glbs pre post calls rec c:

WF �

WF �

WF �

p : p SL all ps � p � p

p SL all ps

p SL ps

� p vars; vals; glbs; pre; post; calls; rec; c

graph vcs all ps � p

pre induct pre rec p ps p rec =�

n ps p � all ps vars vals glbs pre post calls rec c:

WF �

WF �

WF �

p : p SL all ps � p � p

LENGTH ps n

p SL all ps

� p vars; vals; glbs; pre; post; calls; rec; c

graph vcs all ps � p

pre induct pre rec p ps p rec =�
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Table 7.9: Theorem of veri�cation of recursion by .
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Table 7.10: Theorem of veri�cation of recursion by .
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Table 7.11: Theorem of veri�cation of .
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p � all ps vars vals glbs pre post calls rec c:

WF �

WF �

WF �

p : p SL all ps � p � p

p SL all ps

� p vars; vals; glbs; pre; post; calls; rec; c

graph vcs all ps � p

pre induct pre rec p - rec =�

graph vcs

� all ps:

WF �

WF �

WF �

p : p SL all ps � p � p

vcgg all ps �

p: vars; vals; glbs; pre; post; calls; rec; c � p

pre induct pre rec p - rec =�

vcgg

d �:

� mkenv d �

WF �

WF �

WF �

vcgg proc names d �
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p

HOL

8 ^ )all el close

sound

complete

� q: WF � vcg � q � q

vcg

vcg

vcg

esting part of the veri�cation of the VCG, and possibly the deepest theoretically.

It is described in Section 11.2.

At last, we come to the main theorem of the correctness of the veri�cation

condition generator. This is our ultimate theorem and our primary result. It is

given in Table 7.12.

( ) [ ]

Table 7.12: Theorem of veri�cation of veri�cation condition generator.

This veri�es the veri�cation condition generator. It shows that the func-

tion is , that the correctness of the veri�cation conditions it produces su�ce

to establish the total correctness of the annotated program. This does not show

that the function is , namely that if a program is correct, then the

function will produce a set of veri�cation conditions su�cient to prove the

program correct from the axiomatic semantics. However, this soundness result

is quite useful, in that we may directly apply these theorems in order to prove

individual programs totally correct within , as seen in the next chapter.
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