
VCG TAC

vcg

vcg

HOL

HOL

VCG

HOL

VCG

CHAPTER 8

Example Runs

\By their fruits you shall know them."

| Matthew 7:20

\Imitate those who through faith and patience inherit the promises."

| Hebrews 6:12

In this chapter we take the veri�cation condition generator for the Sunrise

programming language presented in the last chapter, and apply it to prove several

example programs. We prove these programs totally correct within the

theorem prover, and thus complete soundness is assured.

Given the function de�ned in the last chapter and its associated correct-

ness theorem, proofs of program correctness may now be partially automated with

security. This has been implemented as an tactic, called , which uses

the soundness theorem to transform a given program correctness goal to be

proved into a set of subgoals which are the veri�cation conditions returned by the

function. These subgoals are then proved within the theorem proving

system, using all the power and resources of that theorem prover, directed by the

user's ingenuity. The reliance on the soundness theorem is the \faith" re-

175

VCG TAC

HOL

VCG

VCG HOL

8.1 Quotient/Remainder

ferred to above, and the completion of the proofs within by the programmer

is the \patience." The \promise" is veri�ed programs.

The tactic has the ability to print a trace of its processing while

it works, which provides both a running commentary on its construction of the

implicit proof of the program's correctness, and also provides the expressions

which serve as the annotations between commands in a skeleton of the program's

proof. This trace may be turned on or o� at the user's will, by setting a global

ag. If it is turned o�, nothing is printed until the veri�cation condition subgoals

are displayed.

As a �rst example, we consider a program to compute the integer quotient and

remainder of a pair of numbers. We do not have division or remainder operators

present in the Sunrise programming language, so we will simulate them by an

algorithm of repeated subtraction. This example has no recursion; its purpose is

to demonstrate the syntactic analysis of the .

Here is an expression of the quotient/remainder procedure, o�ered as a goal

for the . The following is the actual text submitted to :

176

quotient_remainder

quotient_remainder

[[]]

HOL

HOL

quotient remainder

g [[program

procedure quotient_remainder (var q,r; val x,y);

pre 0 < y;

post ^x = q * ^y + r /\ r < ^y;

r := x;

q := 0;

assert ^x = q * ^y + r /\ 0 < y /\ ^y = y

with r < ^r

while ~(r < y) do

r := r - y;

q := ++q

od

end procedure;

quotient_remainder(q,r;7,3)

end program

[q = 2 /\ r = 1]

]];;

The double square brackets (\ " and \ ") enclose program text which is

parsed into an term containing the syntactic constructors that form the

program speci�cation. This parser was made using the parser library of .

Figure 8.1: Procedure Call Graph for Quotient/Remainder Program.

Figure 8.2: Procedure Call Tree for root procedure .

This program's call graph is very simple, consisting of one procedure with no

177

VCG TAC

quotient remaindercalls at all; it is shown in Figure 8.1. The call tree rooted at

is equally simple, shown in Figure 8.2.

Applying to the program correctness goal with the tracing turned on

produces the following.

178

#e(VCG_TAC);;

OK..

For procedure `quotient_remainder`,

By the "ASSIGN" rule, we have

[[{(^x = (q + 1) * ^y + r /\ 0 < y /\ ^y = y) /\ r < ^r}

q := ++q

{(^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ r < ^r}]]

By the "ASSIGN" rule, we have

[[{(^x = (q + 1) * ^y + (r - y) /\ 0 < y /\ ^y = y) /\ r - y < ^r}

r := r - y

{(^x = (q + 1) * ^y + r /\ 0 < y /\ ^y = y) /\ r < ^r}]]

By the "SEQ" rule, we have

[[{(^x = (q + 1) * ^y + (r - y) /\ 0 < y /\ ^y = y) /\ r - y < ^r}

r := r - y; q := ++q

{(^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ r < ^r}]]

By the "WHILE" rule, we have

[[{^x = q * ^y + r /\ 0 < y /\ ^y = y}

assert ^x = q * ^y + r /\ 0 < y /\ ^y = y

with r < ^r

while ~(r < y) do

r := r - y; q := ++q

od

{^x = q * ^y + r /\ r < ^y}]]

with verification conditions

"[[[{((^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ ~(r < y)) /\

r = ^r ==>

(^x = (q + 1) * ^y + (r - y) /\ 0 < y /\ ^y = y) /\

r - y < ^r}]];

[[{(^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ ~(~(r < y)) ==>

^x = q * ^y + r /\ r < ^y}]]]"

179

By the "ASSIGN" rule, we have

[[{^x = 0 * ^y + r /\ 0 < y /\ ^y = y}

q := 0

{^x = q * ^y + r /\ 0 < y /\ ^y = y}]]

By the "ASSIGN" rule, we have

[[{^x = 0 * ^y + x /\ 0 < y /\ ^y = y}

r := x

{^x = 0 * ^y + r /\ 0 < y /\ ^y = y}]]

By the "SEQ" rule, we have

[[{^x = 0 * ^y + x /\ 0 < y /\ ^y = y}

r := x; q := 0

{^x = q * ^y + r /\ 0 < y /\ ^y = y}]]

By the "SEQ" rule, we have

[[{^x = 0 * ^y + x /\ 0 < y /\ ^y = y}

r := x; q := 0; assert ^x = q * ^y + r /\ 0 < y /\ ^y = y

with r < ^r

while ~(r < y) do

r := r - y; q := ++q

od

{^x = q * ^y + r /\ r < ^y}]]

with verification conditions

"[[[{((^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ ~(r < y)) /\

r = ^r ==>

(^x = (q + 1) * ^y + (r - y) /\ 0 < y /\ ^y = y) /\

r - y < ^r}]];

[[{(^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ ~(~(r < y)) ==>

^x = q * ^y + r /\ r < ^y}]]]"

By precondition strengthening, we have

[[{(^q = q /\ ^r = r /\ ^x = x /\ ^y = y /\ true) /\ 0 < y}

r := x; q := 0; assert ^x = q * ^y + r /\ 0 < y /\ ^y = y

with r < ^r

while ~(r < y) do

r := r - y; q := ++q

od

{^x = q * ^y + r /\ r < ^y}]]

with additional verification condition

180

[[{(^q = q /\ ^r = r /\ ^x = x /\ ^y = y /\ true) /\ 0 < y ==>

^x = 0 * ^y + x /\ 0 < y /\ ^y = y}]]

Examining the structure of the procedure call graph:

Traversing the call graph back from the procedure quotient_remainder:

By the call graph progress from procedure quotient_remainder

to quotient_remainder, we have

[[{0 < y /\ true}

quotient_remainder-<>->quotient_remainder

{false}]]

For the main body,

By the "CALL" rule, we have

[[{(0 < 3 /\ true) /\

(!q r x1 y1. 7 = q * 3 + r /\ r < 3 ==> q = 2 /\ r = 1)}

quotient_remainder(q,r;7,3)

{q = 2 /\ r = 1}]]

By precondition strengthening, we have

[[{true} quotient_remainder(q,r;7,3) {q = 2 /\ r = 1}]]

with additional verification condition

[[{true ==> (0 < 3 /\ true) /\

(!q r x1 y1. 7 = q * 3 + r /\ r < 3 ==>

q = 2 /\ r = 1)}]]

4 subgoals

"0 < 3 /\

(!q r x1 y1. (7 = (q * 3) + r) /\ r < 3 ==> (q = 2) /\ (r = 1))"

"!^x q ^y r y.

((^x = (q * ^y) + r) /\ 0 < y /\ (^y = y)) /\ r < y ==>

(^x = (q * ^y) + r) /\ r < ^y"

"!^x q ^y r y ^r.

(((^x = (q * ^y) + r) /\ 0 < y /\ (^y = y)) /\

~r < y) /\ (r = ^r) ==>

((^x = ((q + 1) * ^y) + (r - y)) /\ 0 < y /\ (^y = y)) /\

(r - y) < ^r"

HOL

�

�

�

�

"!^q q ^r r ^x x ^y y.

((^q = q) /\ (^r = r) /\ (^x = x) /\ (^y = y)) /\ 0 < y ==>

(^x = (0 * ^y) + x) /\ 0 < y /\ (^y = y)"

() : void

|- [[program

procedure quotient_remainder(q,r;x,y);

global ;

pre 0 < y;

post ^x = q * ^y + r /\ r < ^y;

recurses with false;

r := x; q := 0;

assert ^x = q * ^y + r /\ 0 < y /\ ^y = y

with r < ^r

while ~(r < y) do

r := r - y; q := ++q

od

end procedure;

quotient_remainder(q,r;7,3)

end program

[q = 2 /\ r = 1]]]

These four subgoals, in this order, roughly correspond to the following claims:

The main body is partially correct.

The loop invariant is su�ciently powerful.

The loop invariant is maintained, and the progress expression decreases.

The procedure's body is partially correct.

Of these four subgoals, all are readily solved. This proof has been completed

in , yielding the following theorem. There are slight di�erences with the

original text, as this was prettyprinted according to a standard template.

181

� j

� j

�

VCG HOL

8.2 McCarthy's \91" Function

f

f �y: y > > y f f y :

f

f �y: y > > y ;

f y;

As a second example, we consider McCarthy's \91" function. The purpose of this

example is to introduce recursion in a single procedure which calls itself, and also

to show a nontrivial veri�cation condition.

We de�ne the function 91 as

91 = 100 = 10 91(91(+ 11))

We claim that the behavior of 91 is such that

91 = 100 = 10 91

which is not immediately obvious. Not only is this an interesting partial correct-

ness statement, but the termination of this function is also not easily transparent.

We claim that the behavior of 91 is such that the value of the expression 101

where subtraction is restricted to yielding nonnegative values, strictly decreases

for every (recursive) call, measured from the state at time of an entrance, to the

state at time of recursive entrance.

Here is an expression of the \91" function as a procedure, o�ered as a goal

for the . The following is the actual text submitted to :

182

p91 101 – y < 101 – ŷ

p

VCG TAC

g [[program

procedure p91(var x; val y);

pre true;

post 100 < ^y => x = ^y - 10 | x = 91;

calls p91 with 101 - y < 101 - ^y;

recurses with 101 - y < ^z;

if 100 < y then x := y - 10

else

p91(x; y + 11);

p91(x; x)

fi

end procedure;

p91(a; 77)

end program

[a = 91]

]];;

#e(VCG_TAC);;

OK..

For procedure `p91`,

Figure 8.3: Procedure Call Graph for McCarthy's \91" Program.

Now the procedure call graph is given in Figure 8.3. Applying the graph

traversal algorithm, beginning at the node 91, we generate the call tree in Figure

8.4, with the undiverted recursion veri�cation condition VC1.

Applying to the program correctness goal with the tracing turned on

produces the following.

183

p91

p91

101 – y < ẑ

∀x y1. (101 – y1 < 101 – y) ⇒ (101 – y1 < ẑ)

VC 1

pFigure 8.4: Procedure Call Tree for root procedure 91.

184

By the "ASSIGN" rule, we have

[[{(100 < ^y => y - 10 = ^y - 10 | y - 10 = 91)}

x := y - 10

{(100 < ^y => x = ^y - 10 | x = 91)}]]

By the "CALL" rule, we have

[[{(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91))}

p91(x;x)

{(100 < ^y => x = ^y - 10 | x = 91)}]]

By the "CALL" rule, we have

[[{(true /\ 101 - (y + 11) < 101 - ^y) /\

(!x y1. (100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>

(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91)))}

p91(x;y + 11)

{(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91))}]]

185

By the "SEQ" rule, we have

[[{(true /\ 101 - (y + 11) < 101 - ^y) /\

(!x y1. (100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>

(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91)))}

p91(x;y + 11); p91(x;x)

{(100 < ^y => x = ^y - 10 | x = 91)}]]

By the "IF" rule, we have

[[{(100 < y => (100 < ^y => y - 10 = ^y - 10 | y - 10 = 91)

| (true /\ 101 - (y + 11) < 101 - ^y) /\

(!x y1. (100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>

(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91))))}

if 100 < y then x := y - 10 else p91(x;y + 11); p91(x;x) fi

{(100 < ^y => x = ^y - 10 | x = 91)}]]

By precondition strengthening, we have

[[{(^x = x /\ ^y = y /\ true) /\ true}

if 100 < y then x := y - 10 else p91(x;y + 11); p91(x;x) fi

{(100 < ^y => x = ^y - 10 | x = 91)}]]

with additional verification condition

[[{(^x = x /\ ^y = y /\ true) /\ true ==>

(100 < y => (100 < ^y => y - 10 = ^y - 10 | y - 10 = 91)

| (true /\ 101 - (y + 11) < 101 - ^y) /\

(!x y1.

(100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>

(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91))))}]]

Examining the structure of the procedure call graph:

Traversing the call graph back from the procedure p91:

By the call graph progress from procedure p91 to p91, we have

[[{true /\ (!x y1. 101 - y1 < 101 - y ==> 101 - y1 < ^z)}

p91-<>->p91

{101 - y < ^z}]]

These three subgoals, in this order, roughly correspond to the following claims:

186

Generating the undiverted recursion verification condition

[[{true /\ 101 - y = ^z ==>

(!x y1. 101 - y1 < 101 - y ==> 101 - y1 < ^z)}]]

For the main body,

By the "CALL" rule, we have

[[{(true /\ true) /\

(!a y1. (100 < 77 => a = 77 - 10 | a = 91) ==> a = 91)}

p91(a;77)

{a = 91}]]

By precondition strengthening, we have

[[{true} p91(a;77) {a = 91}]]

with additional verification condition

[[{true ==> (true /\ true) /\

(!a y1. (100 < 77 => a = 77 - 10 | a = 91) ==>

a = 91)}]]

3 subgoals

"!a y1. (100 < 77 => (a = 77 - 10) | (a = 91)) ==> (a = 91)"

"!y ^z.

(101 - y = ^z) ==> (!x y1. (101 - y1) < (101 - y) ==>

(101 - y1) < ^z)"

"!^x x ^y y.

(^x = x) /\ (^y = y) ==>

(100 < y =>

(100 < ^y => (y - 10 = ^y - 10) | (y - 10 = 91)) |

((101 - (y + 11)) < (101 - ^y) /\

(!x' y1.

(100 < (y + 11) => (x' = (y + 11) - 10) | (x' = 91)) ==>

(101 - x') < (101 - ^y) /\

(!x1 y1'.

(100 < x' => (x1 = x' - 10) | (x1 = 91)) ==>

(100 < ^y => (x1 = ^y - 10) | (x1 = 91))))))"

() : void

�

�

�

�

VCG TAC

y < y < y

y > HOL

VCG

HOL

8.3 Odd/Even Mutual Recursion

|- [[program procedure p91(x;y);

global ;

pre true;

post (100 < ^y => x = ^y - 10 | x = 91);

calls p91 with 101 - y < 101 - ^y;

recurses with 101 - y < ^z;

if 100 < y

then x := y - 10

else p91(x;y + 11); p91(x;x)

fi

end procedure; p91(a;77) end program

[a = 91]]]

The main body is partially correct.

The value of the recursion expression of the procedure strictly decreases

across an undiverted recursion call (VC1).

The procedure's body is partially correct.

Of these three subgoals, the �rst two are readily solved. The last veri�cation

condition is proven by taking four cases: 90; 90 100, = 100, and

100. This proof has been completed in , yielding the following theorem:

As a third example, we consider the odd/even program presented originally in

Table 6.1. The purpose of this example is to demonstrate mutual recursion. We

have analyzed this program fairly extensively in the last two chapters in terms of

its procedure call graph. Now we will prove it totally correct using .

Here is the odd/even program as a goal for the . The following is the

actual text submitted to :

187

odd

Now the procedure call graph is given in Figure 8.5. Applying the graph

traversal algorithm, beginning at the node , we generate the call tree in Figure

8.6, with two undiverted recursion veri�cation conditions, VC1 and VC2, and one

diversion veri�cation condition, VC3.

188

g [[program

procedure odd(var a; val n);

pre true;

post (?b.^n = 2*b + a) /\ a < 2 /\ n = ^n;

calls odd with n < ^n;

calls even with n < ^n;

recurses with n < ^n;

if n = 0 then a:=0

else if n = 1 then even(a; n-1)

else odd (a; n-2)

fi

fi

end procedure;

procedure even(var a; val n);

pre true;

post (?b.^n + 1 = 2*b + a) /\ a < 2 /\ n = ^n;

calls even with n < ^n;

calls odd with n < ^n;

recurses with n < ^n;

if n = 0 then a:=1

else if n = 1 then odd (a; n-1)

else even(a; n-2)

fi

fi

end procedure;

odd(a; 5)

end program

[a = 1]

]];;

odd even n < n̂n < n̂

n < n̂

n < n̂

VC 3

odd

odd

even

n < n̂

∀n1. (n1 < n) ⇒ (n1 < n̂)

∀n1. (n1 < n) ⇒
 (∀n2. (n2 < n1) ⇒
 (n2 < n̂))

VC 2

∀n1. (n1 < n) ⇒ (∀n2. (n2 < n1) ⇒ (n2 < n̂))odd

evenVC 1

∀n1. (n1 < n) ⇒ (n1 < n̂)

odd

Figure 8.5: Procedure Call Graph for Odd/Even Program.

Figure 8.6: Procedure Call Tree for root procedure .

189

n < n̂

∀n1. (n1 < n) ⇒ (n1 < n̂)

∀n1. (n1 < n) ⇒
 (∀n2. (n2 < n1) ⇒ (n2 < n̂))

∀n1. (n1 < n) ⇒ (n1 < n̂)

even

VC 4

∀n1. (n1 < n) ⇒
 (∀n2. (n2 < n1) ⇒ (n2 < n̂))

VC 5

VC 6

even

even

odd

odd

evenFigure 8.7: Procedure Call Tree for root procedure .

190

even

VCG TAC

Examining the structure of the

procedure call graph:

#e(VCG_TAC);;

OK..

For procedure `odd`,

By the "ASSIGN" rule, we have

[[{(?b. ^n = 2 * b + 0) /\ 0 < 2 /\ n = ^n}

a := 0

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n}]]

By the "CALL" rule, we have

[[{(true /\ n - 1 < ^n) /\

(!a n2.

(?b. (n - 1) + 1 = 2 * b + a) /\ a < 2 /\ n2 = n - 1 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)}

even(a;n - 1)

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n}]]

By the "CALL" rule, we have

[[{(true /\ n - 2 < ^n) /\

(!a n2. (?b. n - 2 = 2 * b + a) /\ a < 2 /\ n2 = n - 2 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)}

odd(a;n - 2)

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n}]]

Applying the graph traversal algorithm, beginning at the node , we gen-

erate the call tree in Figure 8.7, with one diversion veri�cation condition, VC4,

and two undiverted recursion veri�cation conditions, VC5 and VC6.

Applying to the program correctness goal with the tracing turned on

produces the following output. In this example, we are primarily interested in

the proof of termination by analyzing the structure of the procedure call graph.

This section of the trace follows the line \

" in the following transcript.

191

192

By the "IF" rule, we have

[[{(n = 1

=> (true /\ n - 1 < ^n) /\

(!a n2.

(?b. (n - 1) + 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 1 ==> (?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2.

(?b. n - 2 = 2 * b + a) /\ a < 2 /\ n2 = n - 2 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n))}

if n = 1 then even(a;n - 1) else odd(a;n - 2) fi

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n}]]

By the "IF" rule, we have

[[{(n = 0 => (?b. ^n = 2 * b + 0) /\ 0 < 2 /\ n = ^n

| (n = 1 => (true /\ n - 1 < ^n) /\

(!a n2. (?b. (n - 1) + 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 1 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2. (?b. n - 2 = 2 * b + a) /\

a < 2 /\

n2 = n - 2 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)))}

if n = 0

then a := 0

else if n = 1 then even(a;n - 1) else odd(a;n - 2) fi

fi

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n}]]

By precondition strengthening, we have

[[{(^a = a /\ ^n = n /\ true) /\ true}

if n = 0

then a := 0

else if n = 1 then even(a;n - 1) else odd(a;n - 2) fi

fi

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n}]]

193

with additional verification condition

[[{(^a = a /\ ^n = n /\ true) /\ true ==>

(n = 0 => (?b. ^n = 2 * b + 0) /\ 0 < 2 /\ n = ^n

| (n = 1

=> (true /\ n - 1 < ^n) /\

(!a n2. (?b. (n - 1) + 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 1 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2. (?b. n - 2 = 2 * b + a) /\

a < 2 /\

n2 = n - 2 ==>

(?b. ^n = 2 * b + a) /\

a < 2 /\

n = ^n)))}]]

For procedure `even`,

By the "ASSIGN" rule, we have

[[{(?b. ^n + 1 = 2 * b + 1) /\ 1 < 2 /\ n = ^n}

a := 1

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n}]]

By the "CALL" rule, we have

[[{(true /\ n - 1 < ^n) /\

(!a n2. (?b. n - 1 = 2 * b + a) /\ a < 2 /\ n2 = n - 1 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)}

odd(a;n - 1)

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n}]]

By the "CALL" rule, we have

[[{(true /\ n - 2 < ^n) /\

(!a n2.

(?b. (n - 2) + 1 = 2 * b + a) /\ a < 2 /\ n2 = n - 2 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)}

even(a;n - 2)

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n}]]

194

By the "IF" rule, we have

[[{(n = 1 => (true /\ n - 1 < ^n) /\

(!a n2.

(?b. n - 1 = 2 * b + a) /\ a < 2 /\ n2 = n - 1 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2. (?b. (n - 2) + 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 2 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n))}

if n = 1 then odd(a;n - 1) else even(a;n - 2) fi

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n}]]

By the "IF" rule, we have

[[{(n = 0 => (?b. ^n + 1 = 2 * b + 1) /\ 1 < 2 /\ n = ^n

| (n = 1 => (true /\ n - 1 < ^n) /\

(!a n2.

(?b. n - 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 1 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2.

(?b. (n - 2) + 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 2 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)))}

if n = 0

then a := 1

else if n = 1 then odd(a;n - 1) else even(a;n - 2) fi

fi

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n}]]

By precondition strengthening, we have

[[{(^a = a /\ ^n = n /\ true) /\ true}

if n = 0

then a := 1

else if n = 1 then odd(a;n - 1) else even(a;n - 2) fi

fi

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n}]]

195

with additional verification condition

[[{(^a = a /\ ^n = n /\ true) /\ true ==>

(n = 0 => (?b. ^n + 1 = 2 * b + 1) /\ 1 < 2 /\ n = ^n

| (n = 1 => (true /\ n - 1 < ^n) /\

(!a n2.

(?b. n - 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 1 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2.

(?b. (n - 2) + 1 = 2 * b + a) /\

a < 2 /\ n2 = n - 2 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)))}]]

Examining the structure of the procedure call graph:

Traversing the call graph back from the procedure even:

By the call graph progress from procedure even to even, we have

[[{true /\ (!a n1. n1 < n ==> n1 < ^n)} even-<>->even {n < ^n}]]

Generating the undiverted recursion verification condition

[[{true /\ n = ^n ==> (!a n1. n1 < n ==> n1 < ^n)}]]

By the call graph progress from procedure odd to even, we have

[[{true /\ (!a n1. n1 < n ==> n1 < ^n)} odd-<>->even {n < ^n}]]

By the call graph progress from procedure even to odd, we have

[[{true /\ (!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}

even-<>->odd

{!a n1. n1 < n ==> n1 < ^n}]]

Generating the undiverted recursion verification condition

[[{true /\ n = ^n ==>

(!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}]]

By the call graph progress from procedure odd to odd, we have

[[{true /\ (!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}

odd-<>->odd

{!a n1. n1 < n ==> n1 < ^n}]]

196

Generating the diversion verification condition

[[{(!a n1. n1 < n ==> n1 < ^n) ==>

(!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}]]

Traversing the call graph back from the procedure odd:

By the call graph progress from procedure even to odd, we have

[[{true /\ (!a n1. n1 < n ==> n1 < ^n)} even-<>->odd {n < ^n}]]

By the call graph progress from procedure even to even, we have

[[{true /\ (!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}

even-<>->even

{!a n1. n1 < n ==> n1 < ^n}]]

Generating the diversion verification condition

[[{(!a n1. n1 < n ==> n1 < ^n) ==>

(!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}]]

By the call graph progress from procedure odd to even, we have

[[{true /\ (!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}

odd-<>->even

{!a n1. n1 < n ==> n1 < ^n}]]

Generating the undiverted recursion verification condition

[[{true /\ n = ^n ==>

(!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}]]

By the call graph progress from procedure odd to odd, we have

[[{true /\ (!a n1. n1 < n ==> n1 < ^n)} odd-<>->odd {n < ^n}]]

Generating the undiverted recursion verification condition

[[{true /\ n = ^n ==> (!a n1. n1 < n ==> n1 < ^n)}]]

For the main body,

By the "CALL" rule, we have

[[{(true /\ true) /\

(!a n1. (?b. 5 = 2 * b + a) /\ a < 2 /\ n1 = 5 ==> a = 1)}

odd(a;5)

{a = 1}]]

197

By precondition strengthening, we have

[[{true} odd(a;5) {a = 1}]]

with additional verification condition

[[{true ==>

(true /\ true) /\

(!a n1. (?b. 5 = 2 * b + a) /\ a < 2 /\ n1 = 5 ==> a = 1)}]]

9 subgoals

"!a n1. (?b. 5 = (2 * b) + a) /\ a < 2 /\ (n1 = 5) ==> (a = 1)"

"!n ^n. (n = ^n) ==> (!a n1. n1 < n ==> n1 < ^n)"

"!n ^n. (n = ^n) ==> (!a n1. n1 < n ==> (!a' n2. n2 < n1 ==> n2 < ^n))"

"!n ^n.

(!a n1. n1 < n ==> n1 < ^n) ==>

(!a n1. n1 < n ==> (!a' n2. n2 < n1 ==> n2 < ^n))"

"!n ^n.

(!a n1. n1 < n ==> n1 < ^n) ==>

(!a n1. n1 < n ==> (!a' n2. n2 < n1 ==> n2 < ^n))"

"!n ^n. (n = ^n) ==> (!a n1. n1 < n ==> (!a' n2. n2 < n1 ==> n2 < ^n))"

"!n ^n. (n = ^n) ==> (!a n1. n1 < n ==> n1 < ^n)"

"!^a a ^n n.

(^a = a) /\ (^n = n) ==>

((n = 0) =>

((?b. ^n + 1 = (2 * b) + 1) /\ 1 < 2 /\ (n = ^n)) |

((n = 1) =>

((n - 1) < ^n /\

(!a' n2.

(?b. n - 1 = (2 * b) + a') /\ a' < 2 /\ (n2 = n - 1) ==>

(?b. ^n + 1 = (2 * b) + a') /\ a' < 2 /\ (n = ^n))) |

((n - 2) < ^n /\

(!a' n2.

(?b. (n - 2) + 1 = (2 * b) + a') /\ a' < 2 /\ (n2 = n - 2) ==>

(?b. ^n + 1 = (2 * b) + a') /\ a' < 2 /\ (n = ^n)))))"

�

�

!

�

! !

� ! !

� ! !

�

! !

odd

odd odd

odd

odd even odd

even even even odd

odd

odd odd odd even

even

even

even odd even

"!^a a ^n n.

(^a = a) /\ (^n = n) ==>

((n = 0) =>

((?b. ^n = (2 * b) + 0) /\ 0 < 2 /\ (n = ^n)) |

((n = 1) =>

((n - 1) < ^n /\

(!a' n2.

(?b. (n - 1) + 1 = (2 * b) + a') /\ a' < 2 /\ (n2 = n - 1) ==>

(?b. ^n = (2 * b) + a') /\ a' < 2 /\ (n = ^n))) |

((n - 2) < ^n /\

(!a' n2.

(?b. n - 2 = (2 * b) + a') /\ a' < 2 /\ (n2 = n - 2) ==>

(?b. ^n = (2 * b) + a') /\ a' < 2 /\ (n = ^n)))))"

() : void

These nine subgoals, in this order, roughly correspond to the following claims:

The main body is partially correct.

The value of the recursion expression of the procedure strictly decreases

across the undiverted recursion path (VC1).

The value of the recursion expression of the procedure strictly decreases

across the undiverted recursion path (VC2).

The diversion of in does not interfere with the

recursive progress of the procedure (VC3).

The diversion of in does not interfere with the

recursive progress of the procedure (VC4).

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC5).

198

HOL

�

!

�

�

even

even even

even

odd

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC6).

The body of procedure is partially correct.

The body of procedure is partially correct.

Of these nine subgoals, three have to do with syntactic structure partial cor-

rectness, four have to do with undiverted recursion, and two have to do with

diversions.

All of these subgoals are readily solved. This proof has been completed in

, yielding the following theorem:

199

200

|- [[program

procedure odd(a;n);

global ;

pre true;

post (?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n;

calls odd with n < ^n;

calls even with n < ^n;

recurses with n < ^n;

if n = 0

then a := 0

else if n = 1

then even(a;n - 1)

else odd(a;n - 2)

fi

fi

end procedure;

procedure even(a;n);

global ;

pre true;

post (?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n;

calls even with n < ^n;

calls odd with n < ^n;

recurses with n < ^n;

if n = 0

then a := 1

else if n = 1

then odd(a;n - 1)

else even(a;n - 2)

fi

fi

end procedure;

odd(a;5)

end program

[a = 1]]]

every

8.4 Pandya and Joseph's Product Procedures

In 1986, Pandya and Joseph described a new rule for the total correctness of

procedure calls, improving on the earlier proposal of Soko lowski. Soko lowski used

a recursion depth counter to track the current depth of each call, and required

the counter to decrease by exactly one for every call of every procedure. This

supported the proof of the termination of procedures, because it did not allow

in�nite recursive descent. However, Pandya and Joseph showed how even for

simple programs, the use of Soko lowski's rule could lead to the use of predicates

which were complex and non-intuitive. They eased Soko lowski's requirement that

the recursion depth counter decrease by one for call, by choosing a subset

of the procedures as \header" procedures. Then the recursion depth counter was

required to decrease by one only for calls of header procedures, not the others.

Pandya and Joseph state that this leads to proofs which are simpler and more

intuitive, reducing the programmer's burden of encoding information about the

number of iterations into the recursion depth counter. This does not eliminate

the burden, however, but simply reduces the number of procedures whose calls

must be counted.

The new rule they proposed they classi�ed as syntax-directed, as opposed to

data-directed. A data-directed rule reasons about the full semantics of the state of

the program, and the values of all variables. A syntax-directed rule, on the other

hand, reasons about an object which is syntactically built of subcomponents

by assembling the proofs about the components. Syntax-directed reasoning is

signi�cantly simpler than data-directed reasoning, if it is semantically valid.

We have taken this idea further, and have introduced rules that deal with the

201

div

even odd

a b z

product y evenproduct oddproduct

oddproduct

y x z

structure of the procedure call graph, and not only the syntax of the program.

This provides even more structure to organize the proof of termination of the

procedures, and eliminates the need for recursion depth counters.

To illustrate their arguments, Pandya and Joseph have presented an algorithm

using three procedures to compute the product of two numbers. In this section,

we will present the program (see Figure 8.8) and their proof, and then show how

we would prove the program in our system with equal ease. Actually, the proof

they present is not complete, but takes the form of a proof skeleton, where the

program is shown annotated with assertions between commands that show the

conditions that are true at each point in the control structure. We will likewise

present such a proof skeleton. We had originally hoped to present an automated

proof like the other examples in this chapter, but the example program that

Pandya and Joseph present contains several operators, predicates and

and binary operator to compute integer division, which we have not yet

included in the Sunrise language. In the future we expect to add these, and

then run the example completely through. For now we o�er a proof skeleton

constructed by hand.

In Figure 8.8 we see the three procedures of this program. The purpose of this

program is to multiply two numbers and and leave the result in variable .

None of these procedures takes any parameters, but instead they communicate

through global variables, as Pandya and Joseph designed them. The procedure

tests to see if it is even or odd, and calls or

accordingly to perform the multiplication. reduces the problem to an

\even" situation by subtracting one from and simultaneously adding to ,

202

� �

�

� � ^

�

�

� � ^

�

�

(;);

;

+ = ;

= ;

() (;)

(;)

;

(;);

;

+ = ();

= ;

:= 1;

:= + ;

(;)

;

(;);

;

+ = ();

= ;

= 0

:= 2 ;

:= 2;

(;)

;

Figure 8.8: Pandya and Joseph's Product Procedures.

203

procedure

global

pre

post

if then

else

�

end procedure

procedure

global

pre

post

end procedure

procedure

global

pre

post

if then skip

else

div

�

end procedure

product

x; y; z; a; b

z x y a b

z a b

even y evenproduct

oddproduct

oddproduct

x; y; z; a; b

z x y a b odd y

z a b

y y

z z x

evenproduct

evenproduct

x; y; z; a; b

z x y a b even y

z a b

y

x x

y y

product

p

e

o

� � ^ �

�

� � ^ � ^

�

� � ^ � ^

�

procedure

global

pre

post

if then

else

�

end procedure

evenproduct evenproduct

y

y evenproduct

y x

evenproduct product

product

product

x; y; z; a; b

q i z x y a b y i

z a b

even y z x y a b y i even y q i

evenproduct

z a b

z x y a b y i odd y q i

oddproduct

z a b

product

and then calls to complete the multiplication. in turn

tests to see if it is zero; if it is, then the multiplication is complete and the

procedure terminates; otherwise, if is not zero, then reduces the

problem to a \lesser" situation by dividing by 2 and multiplying by 2, at

which point calls on the \lesser" situation.

Using one of the more traditional approaches such as Soko lowski's, Pandya

and Joseph have shown that one would need to encode the depth of recursion in

a predicate which was quite complex, even for this simple example. They could

only �nd a recursive form for it, and even that was only an approximate estimate

of the depth of recursion. They then presented their method of only requiring

the depth counter to decrease for header procedures. Taking in this example the

header procedures to consist solely of the procedure , they present the

proof skeleton given in Figures 8.9 and 8.10, with boxes enclosing assertions.

(;);

;

() : + = ;

= ;

() + = () . . . ()

(;)

=

+ = () . . . ()

(;)

=

;

Figure 8.9: Pandya and Joseph's Proof Skeleton for procedure .

204

o

e

e

p

� � ^ � ^

�

�

� � ^ � ^

�

� � ^ � ^

�

� � ^

�

� � ^ � ^

� � ^ � �

�

� � ^ � � �

�

procedure

global

pre

post

end procedure

procedure

global

pre

post

if

then

skip

else

div

div

�

end procedure

(;);

;

() : + = ();

= ;

:= 1;

:= + ;

+ = () . . . ()

(;)

=

;

(;);

;

() : + = ();

= ;

= 0

+ = = 0

=

+ = 0 ()

+ = (2) 1

:= 2 ;

:= 2;

+ = 1 . . . (1)

(;)

=

;

Figure 8.10: Pandya and Joseph's Proof Skeletons for procedures and

.

205

oddproduct

x; y; z; a; b

q i z x y a b y i odd y

z a b

y y

z z x

z x y a b y i even y q i

evenproduct

z a b

evenproduct

x; y; z; a; b

q i z x y a b y i even y

z a b

y

z x y a b y

z a b

z x y a b < y i even y

z x y a b y i

x x

y y

z x y a b y i q i

product

z a b

oddproduct

evenproduct

�

k

div

product y

y product

product y

product y

product

product

i

q i i

product

y i

i

i

To motivate this proof, Pandya and Joseph state

On each successive call to the procedure the value of be-

comes 2. Thus we can argue that the procedure ter-

minates because on each successive call to , the value of

decreases, and if a call to is made with = 0 then no further

recursive call to is made. It is possible to give a simple total

correctness proof based on the above argument using induction over

the number of calls to active at any instant.

Pandya and Joseph leave it to the reader to verify this annotated proof skeleton,

and we will do the same. They presented a proof of its termination, using a

mathematical induction argument based on the value of . Their rule depended

on the existence of predicates (), for which the variable is the recursion

depth counter, here only counting calls to the header procedure . Pandya

and Joseph's argument is that one can prove , which is far more natural

and a great improvement over the expression which would arise from making a

counter of all procedure calls. However, in our version we can eliminate the use

of entirely, and thus our system is even simpler and more natural, and at the

same time more general.

We present our annotated proof skeleton of this program in Figures 8.11 and

8.12. Since this is a hand proof, we have performed some obvious simpli�cations

to clarify the formulas.

206

b

b

b

b

b

b

b

b

b

b

b

� �

�

� � ^ ^

j � � ^ ^

� � ^ ^

�

� � ^ ^

�

� � ^

�

� � � ^ � ^ �

�

� � ^ ^

�

procedure

global

pre

post

calls with

calls with

recurses with

if then

else

�

end procedure

procedure

global

pre

post

calls with

recurses with

end procedure

(;);

;

+ = ;

= ;

= ;

= ;

;

() = + = () =

+ = () =

() + = () =

(;)

=

+ = () =

(;)

=

;

(;);

;

+ = ();

= ;

;

;

(+) + (1) = (1) 1

:= 1;

:= + ;

+ = ()

(;)

=

;

Figure 8.11: Sunrise Proof Skeletons for procedures and .

207

product

x; y; z; a; b

z x y a b

z a b

evenproduct y y

oddproduct y y

y < y

even y > z x y a b even y y y

z x y a b odd y y y

even y z x y a b even y y y

evenproduct

z a b

z x y a b odd y y y

oddproduct

z a b

oddproduct

x; y; z; a; b

z x y a b odd y

z a b

evenproduct y < y

y < y

z x x y a b even y y < y

y y

z z x

z x y a b even y y < y

evenproduct

z a b

product oddproduct

b

b

b

b

b

� � ^

�

�

j � � � ^

�

�

� � � ^

�

� � ^

�

procedure

global

pre

post

calls with

recurses with

div div

if

then

skip

else div div

div

�

end procedure

(;);

;

+ = ();

= ;

;

;

= 0 = =

+ (2) (2) = 2

= 0

=

=

+ (2) (2) = 2

:= 2 ;

:= 2;

+ =

(;)

=

;

Figure 8.12: Sunrise Proof Skeleton for procedure .

208

evenproduct

x; y; z; a; b

z x y a b even y

z a b

product y < y

y < y

y > z a b

z x y a b y < y

y

z a b

z a b

z x y a b y < y

x x

y y

z x y a b y < y

product

z a b

evenproduct

oddproduct evenproduct

product

y = ŷ
y = ŷ

y < ŷ

y < ŷ

div div

b

b

b

b

b

b

b

� � ^)

� � ^ ^

j � � ^ ^

� � ^ ^)

� � � ^ � ^ �

� � ^ ^)

�

j � � � ^

z x y a b y y

even y > z x y a b even y y y

z x y a b odd y y y

z x y a b odd y y y

z x x y a b even y y < y

z x y a b even y y y

y > z a b

z x y a b y < y

product oddproduct evenproduct

The analysis of the syntax of these three procedures generates three veri�-

cation conditions, for the partial correctness of each body. These veri�cation

conditions are

1. + = =

(() = + = () =

+ = () =)

2. + = () =

(+) + (1) = (1) 1

3. + = () =

(= 0 = =

+ (2) (2) = 2)

for the partial correctness of the bodies of , , and ,

respectively.

The procedure call graph for Pandya and Joseph's product program is given

in Figure 8.13.

Figure 8.13: Procedure Call Graph for Pandya and Joseph's Product Program.

209

product

evenproduct

product

oddproduct

product

y < ŷ

∀y1. (y1 < y) ⇒ (y1 < ŷ)

∀y1. (y1 < y) ⇒
 (∀y2. (y2 < y1) ⇒ (y2 < ŷ))

∀y1. (y1 = y) ⇒ (∀y2. (y2 < y1) ⇒ (y2 < ŷ))

∀y1. (y1 < y) ⇒ (∀y2. (y2 < y1) ⇒
 (∀y3. (y3 < y2) ⇒ (y3 < ŷ)))

VC 2VC 1

b

b

b

b

1 1 2 2 1 2

1 1 2 2 1 3 3 2 3

� � ^)

8) 8)

� � ^)

8) 8) 8)

product

product

z x y a b y y

y : y y y : y < y y < y

z x y a b y y

y : y y y : y < y y : y < y y < y

Applying the graph traversal algorithm, beginning at the node , we

generate the call tree in Figure 8.14, with the following two undiverted recursion

veri�cation conditions, VC1 and VC2.

Figure 8.14: Procedure Call Tree for root procedure .

VC1: + = =

(= ())

VC2: + = =

(= (()))

210

product

evenproduct

product

oddproduct

y < ŷ

∀y1. (y1 = y) ⇒ (y1 < ŷ)

∀y1. (y1 < y) ⇒ (∀y2. (y2 < y1) ⇒
 (∀y3. (y3 = y2) ⇒ (y3 < ŷ)))

oddproduct

∀y1. (y1 < y) ⇒ (∀y2. (y2 = y1) ⇒ (y2 < ŷ))

VC 3 VC 4

∀y1. (y1 = y) ⇒ (∀y2. (y2 < y1) ⇒ (∀y3. (y3 = y2) ⇒ (y3 < ŷ)))

b

b

b

b

8))

8) 8) 8)

� � ^ ^)

8) 8) 8)

1 1 1

1 1 2 2 1 3 3 2 3

1 1 2 2 1 3 3 2 3

oddproduct

oddproduct

y : y y y < y

y : y y y : y < y y : y y y < y

z x y a b odd y y y

y : y < y y : y < y y : y y y < y

Applying the graph traversal algorithm, beginning at the node ,

we generate the call tree in Figure 8.15, generating one diversion veri�cation

condition, VC3, and one undiverted recursion veri�cation condition, VC4:

Figure 8.15: Procedure Call Tree for root procedure .

VC3: (=)

(= ((=)))

VC4: + = () =

(((=)))

211

evenproduct

product

oddproduct

y < ŷ

∀y1. (y1 < y) ⇒ (y1 < ŷ)

∀y1. (y1 < y) ⇒ (∀y2. (y2 = y1) ⇒
 (∀y3. (y3 < y2) ⇒ (y3 < ŷ)))

∀y1. (y1 = y) ⇒
 (∀y2. (y2 < y1) ⇒ (y2 < ŷ))

VC 6VC 5

product

evenproduct

∀y1. (y1 = y) ⇒ (y1 < ŷ)

evenproduct ∀y1. (y1 < y) ⇒ (∀y2. (y2 = y1) ⇒ (y2 < ŷ))

b

b

b

b

1 1 2 2 1 2

1 1 2 2 1 3 3 2 3

� � ^ ^)

8) 8)

� � ^ ^)

8) 8) 8)

evenproduct

evenproduct

z x y a b even y y y

y : y < y y : y y y < y

z x y a b even y y y

y : y < y y : y y y : y < y y < y

Applying the graph traversal algorithm, beginning at the node ,

we generate the call tree in Figure 8.16, generating the following two undiverted

recursion veri�cation conditions, VC5 and VC6.

Figure 8.16: Procedure Call Tree for root procedure .

VC5: + = () =

((=)))

VC6: + = () =

((= ()))

All of these veri�cation conditions are readily proved. This completes our

proof of Pandya and Joseph's Product Procedures example.

212

1

1

8.5 Cycling Termination

We are grateful to Prof. D. Stott Parker for his recollection of such a damaged bicycle.

As a �fth example, we choose a program speci�cally to show the strengths of our

approach to proving programs correct. The program has two mutually recursive

procedures, like the odd/even program, but here there is a di�erence in the

measurable progress across the various arcs of the call graph. In particular,

across one of the arcs of the call graph, there is no progress at all, in that the

state does not change. This would pose di�culties for the other methods of

proving termination, because they expect that a recursion depth counter would

decrease for every call. Even Pandya and Joseph's system, which we believe to

be the strongest of the previous systems, would not help here, as there is no

identi�able set of header procedures as a proper subset of all procedures. In

Pandya and Joseph's system, we must then take all procedures as the header

procedures, and thus we would devolve essentially to Soko lowski's method.

We call this example \Cycling Termination," �rst because the only issue is

termination (no interesting result is computed), and second because the structure

of the call graph reminds us of a bicycle, with its two wheels and the chain that

transfers power from the pedals to the rear wheel. This is not an inappropriate

analogy for this program, if one might imagine a bicycle with one pedal damaged

so that it could not support any pressure. When pedaling such a bicycle, one

would need to thrust hard when the good pedal was moving downward, but then

would exert no force while it was moving upwards again, and in fact would coast

during this period, depending solely on the momentum generated by the other

phase to propel you to the goal. This corresponds to the progress we will see

213

VCG

attached to the various arcs of the procedure call graph for this program.

Here is the text of the Cycling Termination program as a goal for the .

214

g [[program

procedure pedal (;val n,m);

pre true;

post true;

calls pedal with n < ^n /\ m = ^m;

calls coast with n < ^n /\ m < ^m;

recurses with n < ^n;

if 0 < n then

if 0 < m then

coast(;n - 1,m - 1)

else skip

fi;

pedal(;n - 1,m)

else skip

fi

end procedure;

procedure coast (;val n,m);

pre true;

post true;

calls pedal with n = ^n /\ m = ^m;

calls coast with n = ^n /\ m < ^m;

recurses with m < ^m;

pedal(;n,m);

if 0 < m then

coast(;n,m - 1)

else skip

fi

end procedure;

pedal(;7,12)

end program

[true]

]];;

coast pedal

p

p coast p

pedal n m p

p

p

p

pedal

Like the odd/even program, the two procedures of this program call each

other and themselves recursively. However, unlike the odd/even program, the

progress across each of the four arcs of the graph is di�erent. In particular, the

progress across a call from to does not change any variables in the

program.

We do not mean to imply that this program could not be proven by prior

methods. We only suggest that our system can generate a more natural proof,

easier to create and understand. This program's termination can be proven using,

say, Soko lowski's method, by creating a new value parameter which is passed

in each call, where = 1 if the call is to , and where = 0 if the call is

to . Then the expression + + becomes a workable recursion depth

counter, and it reliably decreases by exactly one for every call. However, we

feel that this solution is not truly natural. The introduction of a new variable

unrelated to the program's purpose draws the user into a search for artifacts to

prove termination. This variable essentially serves as a kind of program counter,

determining which procedure we are in at any moment. This represents control

using data, an inherent confusion of concepts. Finally, the introduction of means

adding a quantity of new code to the program, concerned with maintaining the

proper value of . This code is unrelated to the original purpose of the program,

and obscures that purpose on surface reading of the code.

The procedure call graph is given in Figure 8.17. Applying the graph traversal

algorithm, beginning at the node , we generate the call tree in Figure 8.18,

with two undiverted recursion veri�cation conditions, VC1 and VC2, and one

diversion veri�cation condition, VC3.

215

pedal coast n = n̂ ∧ m < m̂n < n̂ ∧ m = m̂

n < n̂ ∧ m < m̂

n = n̂ ∧ m = m̂

VC 3

pedal

pedal

coast

n < n̂

∀n1 m1. (n1 = n ∧ m1 = m) ⇒ (n1 < n̂)

VC 2

∀n1 m1. (n1 < n ∧ m1 < m) ⇒
 (∀n2 m2. (n2 = n1 ∧ m2 = m1) ⇒ (n2 < n̂))

pedal

coastVC 1

∀n1 m1. (n1 < n ∧ m1 = m)
 ⇒ (n1 < n̂)

∀n1 m1. (n1 = n ∧ m1 < m) ⇒
 (∀n2 m2. (n2 = n1 ∧ m2 = m1) ⇒
 (n2 < n̂))

pedal

Figure 8.17: Procedure Call Graph for Cycling Termination Program.

Figure 8.18: Procedure Call Tree for root procedure .

216

m < m̂

∀n1 m1. (n1 = n ∧ m1 < m)
 ⇒ (m1 < m̂)

∀n1 m1. (n1 = n ∧ m1 = m) ⇒
 (∀n2 m2. (n2 < n1 ∧ m2 < m1)
 ⇒ (m2 < m̂))

∀n1 m1. (n1 < n ∧ m1 < m) ⇒ (m1 < m̂)

coast

VC 4

∀n1 m1. (n1 < n ∧ m1 = m) ⇒
 (∀n2 m2. (n2 < n1 ∧ m2 < m1)
 ⇒ (m2 < m̂))

VC 5

VC 6

coast

coast

pedal

pedal

coast

coast

VCG TAC

Examining the structure of the

procedure call graph:

Applying the graph traversal algorithm, beginning at the node , we gen-

erate the call tree in Figure 8.19, with one diversion veri�cation condition, VC4,

and two undiverted recursion veri�cation conditions, VC5 and VC6.

Figure 8.19: Procedure Call Tree for root procedure .

Applying to the program correctness goal with the tracing turned on

produces the following output. In this example, we are primarily interested in

the proof of termination by analyzing the structure of the procedure call graph.

This section of the trace follows the line \

" in the following transcript.

217

218

#e(VCG_TAC);;

OK..

For procedure `pedal`,

By the "CALL" rule, we have

[[{(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true)}

pedal(;n - 1,m)

{true}]]

By the "CALL" rule, we have

[[{(true /\ n - 1 < ^n /\ m - 1 < ^m) /\

(!n1 m1.

true ==>

(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true))}

coast(;n - 1,m - 1)

{(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true)}]]

By the "SKIP" rule, we have

[[{(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true)}

skip

{(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true)}]]

By the "IF" rule, we have

[[{(0 < m => (true /\ n - 1 < ^n /\ m - 1 < ^m) /\

(!n1 m1. true ==> (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true))

| (true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true))}

if 0 < m then coast(;n - 1,m - 1) else skip fi

{(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true)}]]

By the "SEQ" rule, we have

[[{(0 < m => (true /\ n - 1 < ^n /\ m - 1 < ^m) /\

(!n1 m1. true ==> (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true))

| (true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true))}

if 0 < m then coast(;n - 1,m - 1) else skip fi; pedal(;n - 1,m)

{true}]]

By the "SKIP" rule, we have

[[{true} skip {true}]]

219

By the "IF" rule, we have

[[{(0 < n

=> (0 < m

=> (true /\ n - 1 < ^n /\ m - 1 < ^m) /\

(!n1 m1. true ==> (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true))

| (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true)) | true)}

if 0 < n then if 0 < m then coast(;n - 1,m - 1) else skip fi;

pedal(;n - 1,m) else skip fi

{true}]]

By precondition strengthening, we have

[[{(^n = n /\ ^m = m /\ true) /\ true}

if 0 < n then if 0 < m then coast(;n - 1,m - 1) else skip fi;

pedal(;n - 1,m) else skip fi

{true}]]

with additional verification condition

[[{(^n = n /\ ^m = m /\ true) /\ true ==>

(0 < n => (0 < m => (true /\ n - 1 < ^n /\ m - 1 < ^m) /\

(!n1 m1.

true ==> (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true))

| (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true)) | true)}]]

For procedure `coast`,

By the "CALL" rule, we have

[[{(true /\ n = ^n /\ m - 1 < ^m) /\ (!n m. true ==> true)}

coast(;n,m - 1)

{true}]]

By the "SKIP" rule, we have

[[{true} skip {true}]]

By the "IF" rule, we have

[[{(0 < m => (true /\ n = ^n /\ m - 1 < ^m) /\

(!n m. true ==> true) | true)}

if 0 < m then coast(;n,m - 1) else skip fi

{true}]]

220

By the "CALL" rule, we have

[[{(true /\ n = ^n /\ m = ^m) /\

(!n1 m1. true ==> (0 < m => (true /\ n = ^n /\ m - 1 < ^m) /\

(!n m. true ==> true) | true))}

pedal(;n,m)

{(0 < m => (true /\ n = ^n /\ m - 1 < ^m) /\

(!n m. true ==> true) | true)}]]

By the "SEQ" rule, we have

[[{(true /\ n = ^n /\ m = ^m) /\

(!n1 m1. true ==> (0 < m => (true /\ n = ^n /\ m - 1 < ^m) /\

(!n m. true ==> true) | true))}

pedal(;n,m); if 0 < m then coast(;n,m - 1) else skip fi

{true}]]

By precondition strengthening, we have

[[{(^n = n /\ ^m = m /\ true) /\ true}

pedal(;n,m); if 0 < m then coast(;n,m - 1) else skip fi

{true}]]

with additional verification condition

[[{(^n = n /\ ^m = m /\ true) /\ true ==>

(true /\ n = ^n /\ m = ^m) /\

(!n1 m1. true ==> (0 < m => (true /\ n = ^n /\ m - 1 < ^m) /\

(!n m. true ==> true) | true))}]]

Examining the structure of the procedure call graph:

Traversing the call graph back from the procedure coast:

By the call graph progress from procedure coast to coast, we have

[[{true /\ (!n1 m1. n1 = n /\ m1 < m ==> m1 < ^m)}

coast-<>->coast

{m < ^m}]]

Generating the undiverted recursion verification condition

[[{true /\ m = ^m ==> (!n1 m1. n1 = n /\ m1 < m ==> m1 < ^m)}]]

By the call graph progress from procedure pedal to coast, we have

[[{true /\ (!n1 m1. n1 < n /\ m1 < m ==> m1 < ^m)}

pedal-<>->coast

{m < ^m}]]

221

By the call graph progress from procedure coast to pedal, we have

[[{true /\ (!n1 m1. n1 = n /\ m1 = m ==>

(!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))}

coast-<>->pedal

{!n1 m1. n1 < n /\ m1 < m ==> m1 < ^m}]]

Generating the undiverted recursion verification condition

[[{true /\ m = ^m ==>

(!n1 m1. n1 = n /\ m1 = m ==>

(!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))}]]

By the call graph progress from procedure pedal to pedal, we have

[[{true /\ (!n1 m1. n1 < n /\ m1 = m ==>

(!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))}

pedal-<>->pedal

{!n1 m1. n1 < n /\ m1 < m ==> m1 < ^m}]]

Generating the diversion verification condition

[[{(!n1 m1. n1 < n /\ m1 < m ==> m1 < ^m) ==>

(!n1 m1. n1 < n /\ m1 = m ==>

(!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))}]]

Traversing the call graph back from the procedure pedal:

By the call graph progress from procedure coast to pedal, we have

[[{true /\ (!n1 m1. n1 = n /\ m1 = m ==> n1 < ^n)}

coast-<>->pedal

{n < ^n}]]

By the call graph progress from procedure coast to coast, we have

[[{true /\ (!n1 m1. n1 = n /\ m1 < m ==>

(!n2 m2. n2 = n1 /\ m2 = m1 ==> n2 < ^n))}

coast-<>->coast

{!n1 m1. n1 = n /\ m1 = m ==> n1 < ^n}]]

Generating the diversion verification condition

[[{(!n1 m1. n1 = n /\ m1 = m ==> n1 < ^n) ==>

(!n1 m1. n1 = n /\ m1 < m ==>

(!n2 m2. n2 = n1 /\ m2 = m1 ==> n2 < ^n))}]]

222

By the call graph progress from procedure pedal to coast, we have

[[{true /\ (!n1 m1. n1 < n /\ m1 < m ==>

(!n2 m2. n2 = n1 /\ m2 = m1 ==> n2 < ^n))}

pedal-<>->coast

{!n1 m1. n1 = n /\ m1 = m ==> n1 < ^n}]]

Generating the undiverted recursion verification condition

[[{true /\ n = ^n ==>

(!n1 m1. n1 < n /\ m1 < m ==>

(!n2 m2. n2 = n1 /\ m2 = m1 ==> n2 < ^n))}]]

By the call graph progress from procedure pedal to pedal, we have

[[{true /\ (!n1 m1. n1 < n /\ m1 = m ==> n1 < ^n)}

pedal-<>->pedal

{n < ^n}]]

Generating the undiverted recursion verification condition

[[{true /\ n = ^n ==> (!n1 m1. n1 < n /\ m1 = m ==> n1 < ^n)}]]

For the main body,

By the "CALL" rule, we have

[[{(true /\ true) /\ (!n m. true ==> true)} pedal(;7,12) {true}]]

By precondition strengthening, we have

[[{true} pedal(;7,12) {true}]]

with additional verification condition

[[{true ==> (true /\ true) /\ (!n m. true ==> true)}]]

8 subgoals

"!m ^m n. (m = ^m) ==> (!n1 m1. (n1 = n) /\ m1 < m ==> m1 < ^m)"

"!m ^m n.

(m = ^m) ==>

(!n1 m1.

(n1 = n) /\ (m1 = m) ==> (!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))"

"!n m ^m.

(!n1 m1. n1 < n /\ m1 < m ==> m1 < ^m) ==>

(!n1 m1.

n1 < n /\ (m1 = m) ==> (!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))"

�

!

�

! !

� ! !

pedal

pedal pedal

pedal

pedal coast pedal

coast coast coast pedal

These eight subgoals, in this order, roughly correspond to the following claims:

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC1).

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC2).

The diversion of in does not interfere with

223

"!n m ^n.

(!n1 m1. (n1 = n) /\ (m1 = m) ==> n1 < ^n) ==>

(!n1 m1.

(n1 = n) /\ m1 < m ==> (!n2 m2. (n2 = n1) /\ (m2 = m1) ==>

n2 < ^n))"

"!n ^n m.

(n = ^n) ==>

(!n1 m1.

n1 < n /\ m1 < m ==> (!n2 m2. (n2 = n1) /\ (m2 = m1) ==> n2 < ^n))"

"!n ^n m. (n = ^n) ==> (!n1 m1. n1 < n /\ (m1 = m) ==> n1 < ^n)"

"!^n n ^m m.

(^n = n) /\ (^m = m) ==>

((n = ^n) /\ (m = ^m)) /\

(!n1 m1. (0 < m => ((n = ^n) /\ (m - 1) < ^m) | T))"

"!^n n ^m m.

(^n = n) /\ (^m = m) ==>

(0 < n =>

(0 < m =>

(((n - 1) < ^n /\ (m - 1) < ^m) /\

(!n1 m1. (n - 1) < ^n /\ (m = ^m))) |

((n - 1) < ^n /\ (m = ^m))) |

T)"

() : void

HOL

� ! !

�

! !

�

!

�

�

pedal

pedal pedal pedal coast

coast

coast

coast pedal coast

coast

coast coast

coast

pedal

the recursive progress of the procedure (VC3).

The diversion of in does not interfere with

the recursive progress of the procedure (VC4).

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC5).

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC6).

The body of procedure is partially correct.

The body of procedure is partially correct.

Of these eight subgoals, two have to do with syntactic structure partial cor-

rectness, four have to do with undiverted recursion, and two have to do with

diversions.

All of these subgoals are readily solved. This proof has been completed in

, yielding the following theorem:

224

225

|- [[program

procedure pedal(;n,m);

global ;

pre true;

post true;

calls pedal with n < ^n /\ m = ^m;

calls coast with n < ^n /\ m < ^m;

recurses with n < ^n;

if 0 < n

then if 0 < m then coast(;n - 1,m - 1) else skip fi;

pedal(;n - 1,m)

else skip

fi

end procedure;

procedure coast(;n,m);

global ;

pre true;

post true;

calls pedal with n = ^n /\ m = ^m;

calls coast with n = ^n /\ m < ^m;

recurses with m < ^m;

pedal(;n,m);

if 0 < m then coast(;n,m - 1) else skip fi

end procedure;

pedal(;7,12)

end program

[true]]]

226

