
Peter Vincent Homeier

University of California

Trustworthy Tools for Trustworthy Programs:

A Mechanically Veri�ed

Veri�cation Condition Generator

for the Total Correctness of Procedures

Los Angeles

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

1995




c Copyright by

Peter Vincent Homeier

1995



The dissertation of Peter Vincent Homeier is approved.

Rajive Bagrodia

Donald A. Martin

D. Stott Parker

David F. Martin, Committee Chair

University of California, Los Angeles

1995

ii



I dedicate this dissertation

to the most wonderful friend I have ever had,

my Messiah, Lord, and Savior, the Son of God,

Y'shua Ha Mashiach, Jesus the Christ.

He has cared for every need faithfully,

in the midst of earthquake and opposition.

He has wholeheartedly poured out His Holy Spirit on me.

At each point of di�culty, at each resistant problem,

like a cool drop of rain, He quietly dropped the answer into me.

When the ultimate impossible cli� arose before me,

He opened doors of understanding,

drawing me beyond what I thought was the end,

through the darkness of the grave

to the dawn of a new morning.

He has been the lifter of my head, and the restorer of my hopes.

Of all the people I know,

He is the most precious to me.

He loved me enough to humbly go to the Cross and die in my place.

I can never repay such a pure and shattering gift.

This dissertation is only the smallest of ways

I can express my heart's wonder and love

for such a greater love He has lavished on me.

iii



I Background 1

Table of Contents

1 Introduction 3

2 Underlying Technologies 13

3 Survey of Previous Research 35

2.1 Syntax 14

2.2 Semantics 16

2.3 Partial and Total Correctness 18

2.4 Hoare Logics 20

2.5 Soundness and Completeness 22

2.6 Veri�cation Condition Generators 24

2.7 Higher Order Logic 26

2.7.1 Higher Order Logic as a Logic 27

2.7.2 Higher Order Logic as a Mechanical Proof Assistant 29

2.8 Embeddings 31

3.1 Expressions with Side E�ects 36

3.2 Procedures 37

3.3 Total Correctness of Mutually Recursive Procedures 39

3.3.1 Soko lowski 40

iv

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : :

: : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :



et. al.

II Results 55

4 Organization of Dissertation 53

5 Sunrise 57

3.3.2 Apt 41

3.3.3 America and de Boer 42

3.3.4 Pandya and Joseph 42

3.4 Veri�cation Condition Generators, Embeddings, and Mechanically

Veri�ed Axiomatic Semantics 43

3.4.1 Ragland 45

3.4.2 Igarashi, London, and Luckham 45

3.4.3 Boyer and Moore 46

3.4.4 Gray 46

3.4.5 Gordon 47

3.4.6 Agerholm 48

3.4.7 Melham 48

3.4.8 Camilleri and Melham 48

3.4.9 Zhang, Shaw, Olsson, Levitt, 49

3.4.10 Lin 49

3.4.11 Kaufmann 50

3.4.12 Homeier and Martin 50

v

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :



6 Program Logics 91

: : : : : : : : : : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : :

: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

5.1 Programming Language Syntax 60

5.2 Informal Semantics of Programming Language 63

5.2.1 Numeric Expressions 63

5.2.2 Lists of Numeric Expressions 64

5.2.3 Boolean Expressions 64

5.2.4 Commands 65

5.2.5 Declarations 67

5.2.6 Programs 71

5.3 Assertion Language Syntax 71

5.4 Informal Semantics of Assertion Language 73

5.4.1 Numeric Expressions 74

5.4.2 Lists of Numeric Expressions 74

5.4.3 Boolean Expressions 74

5.5 Formal Semantics 76

5.5.1 Programming Language Structural Operational Semantics 78

5.5.2 Assertion Language Denotational Semantics 83

5.6 Procedure Entrance Semantic Relations 86

5.7 Termination Semantic Relations 88

6.1 Total Correctness of Expressions 99

6.1.1 Closure Speci�cation 101

vi



7 Veri�cation Condition Generator 135

: : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : :

: : : : :

: : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

6.1.2 Numeric Expression Speci�cation 102

6.1.3 Expression List Speci�cation 103

6.1.4 Boolean Expression Speci�cation 104

6.2 Hoare Logic for Partial Correctness 106

6.2.1 Partial Correctness Speci�cation 106

6.2.2 Partial Correctness Rules 108

6.3 Procedure Entrance Logic 110

6.3.1 Entrance Speci�cation 111

6.3.2 Precondition Entrance Speci�cation 115

6.3.3 Calls Entrance Speci�cation 116

6.3.4 Path Entrance Speci�cation 117

6.3.5 Recursive Entrance Speci�cation 123

6.4 Termination Logic 125

6.4.1 Command Conditional Termination Speci�cation 126

6.4.2 Procedure Conditional Termination Speci�cation 129

6.4.3 Command Termination Speci�cation 129

6.5 Hoare Logic for Total Correctness 132

6.5.1 Total Correctness Speci�cation 132

7.1 De�nitions 136

7.1.1 Veri�cation of Commands 136

vii



III Tour of Interesting Aspects 229

8 Example Runs 175

9 Source Code 227

10 Partial Correctness 231

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : :

: : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : :

7.1.2 Veri�cation of Declarations 138

7.1.3 Veri�cation of Call Graph 139

7.1.4 Veri�cation of Programs 149

7.2 Veri�cation Conditions 151

7.2.1 Program Structure Veri�cation Conditions 152

7.2.2 Call Graph Structure Veri�cation Conditions 154

7.3 VCG Soundness Theorems 161

8.1 Quotient/Remainder 176

8.2 McCarthy's \91" Function 182

8.3 Odd/Even Mutual Recursion 187

8.4 Pandya and Joseph's Product Procedures 201

8.5 Cycling Termination 213

10.1 Variants 231

10.2 Substitution 234

10.2.1 Assertion Language Expression Substitution 235

viii



IV Conclusions 289

11 Total Correctness 269

: : : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : : : : : :

10.2.2 Variables-for-Variables Substitution 239

10.2.3 Programming Language Substitution 243

10.3 Translation 247

10.4 Well-Formedness 251

10.4.1 Informal Description 253

10.4.2 Well-Formedness Predicate De�nitions 256

10.5 Semantic Stages 264

11.1 Reprise 271

11.1.1 Entrance Logic 271

11.1.2 Termination Logic 272

11.1.3 Recursiveness 272

11.2 Termination 273

11.2.1 Sketch of Proof 274

11.2.2 Termination of Deep Calls 276

11.2.3 Existence of an In�nite Sequence 278

11.2.4 Consequences of an In�nite Sequence 282

11.2.5 Strictly Decreasing Sequences 283

ix



12 Signi�cance 291

13 Ease of Use 297

14 Future Research 303

15 Conclusions 309

References 311

13.1 Burden of Annotation 297

13.2 Burden of Proof 301

13.3 Areas of VCG Support 302

14.1 Language Extensions 304

14.2 VCG Improvements 307

14.3 Implementations 307

14.4 Completeness 308

x

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :



List of Figures

vcgc

vcgd

extend graph vcs fan out graph vcs

graph vcs

vcgg

mkenv

proc names

vcg

: : : : : : : : : :

vcg : : : : :

: : : : : :

: : : : : : : :

: : : : : :

: : : : : : : : : : : : : : : : : : : : : : :

:

: : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : :

: : :

: : : :

quotient remainder : :

: : : : : :

6.1 Comparison of Partial Correctness and Entrance Speci�cations. 96

6.2 Procedure Call Graph for Odd/Even Example. 122

7.1 De�nition of 1, helper VCG function for commands. 137

7.2 De�nition of , main VCG function for commands. 138

7.3 De�nition of , VCG function for declarations. 139

7.4 De�nition of and . 140

7.5 De�nition of . 143

7.6 De�nition of , the VCG function to analyze the call graph. 144

7.7 Procedure Call Graph for Odd/Even Example. 144

7.8 Procedure Call Tree for Odd/Even Example. 145

7.9 De�nition of . 149

7.10 De�nition of . 150

7.11 De�nition of , the main VCG function. 150

7.12 Procedure Call Tree for Recursion for Odd/Even Example. 156

7.13 Procedure Call Tree for Single Recursion for Odd/Even Example.157

7.14 Diverted and Undiverted Veri�cation Conditions for Odd/Even. 159

8.1 Procedure Call Graph for Quotient/Remainder Program. 177

8.2 Procedure Call Tree for root procedure . 177

8.3 Procedure Call Graph for McCarthy's \91" Program. 183

xi



p : : : : : : : : : : :

: : : : : : : : : :

odd : : : : : : : : : : :

even : : : : : : : : : :

: : : : : : : : : : : :

product : : :

oddproduct

evenproduct : : : : : : : : : : : : : : : : : : : : : : : : : :

product oddproduct

evenproduct : : : : : : : :

product : : : : : : : : :

oddproduct : : : : : : :

evenproduct : : : : : :

: : : :

pedal : : : : : : : : : :

coast : : : : : : : : : :

8.4 Procedure Call Tree for root procedure 91. 184

8.5 Procedure Call Graph for Odd/Even Program. 189

8.6 Procedure Call Tree for root procedure . 189

8.7 Procedure Call Tree for root procedure . 190

8.8 Pandya and Joseph's Product Procedures. 203

8.9 Pandya and Joseph's Proof Skeleton for procedure . 204

8.10 Pandya and Joseph's Proof Skeletons for procedures

and . 205

8.11 Sunrise Proof Skeletons for procedures and . 207

8.12 Sunrise Proof Skeleton for procedure . 208

8.13 Procedure Call Graph for Pandya and Joseph's Product Program.209

8.14 Procedure Call Tree for root procedure . 210

8.15 Procedure Call Tree for root procedure . 211

8.16 Procedure Call Tree for root procedure . 212

8.17 Procedure Call Graph for Cycling Termination Program. 216

8.18 Procedure Call Tree for root procedure . 216

8.19 Procedure Call Tree for root procedure . 217

xii



List of Tables

: : : : : : : : : : : : : : : : :

: : : : :

: : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : : : : : : : :

: : : : : : : : :

: : : : : :

: : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : :

: : : : : : : :

: : : : :

: :

: : : : :

: : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : :

2.1 Example programming language. 14

2.2 Example programming language structural operational semantics. 17

2.3 Floyd/Hoare Partial and Total Correctness Semantics. 19

2.4 Example programming language axiomatic semantics. 21

2.5 Example Veri�cation Condition Generator. 25

5.1 Sunrise programming language. 59

5.2 Sunrise programming language types of phrases. 60

5.3 Sunrise programming language constructor functions. 62

5.4 Sunrise assertion language. 72

5.5 Sunrise assertion language types of phrases. 72

5.6 Sunrise assertion language constructor functions. 73

5.7 Sunrise programming language semantic relations. 78

5.8 Numeric Expression Structural Operational Semantics. 79

5.9 Numeric Expression List Structural Operational Semantics. 79

5.10 Boolean Expression Structural Operational Semantics. 80

5.11 Command Structural Operational Semantics. 81

5.12 Declaration Structural Operational Semantics. 82

5.13 Program Structural Operational Semantics. 82

5.14 Sunrise assertion language semantic functions. 83

xiii



M calls terminate

: : : : :

: :

: : : : :

: : :

: : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

:

C calls terminate :

: : : : : : : : : : : : : : : : : : :

: : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : :

5.15 Assertion Numeric Expression Denotational Semantics. 83

5.16 Assertion Numeric Expression List Denotational Semantics. 84

5.17 Assertion Boolean Expression Denotational Semantics. 84

5.18 Sunrise programming language entrance semantic relations. 86

5.19 Command Entrance Semantic Relation. 87

5.20 Path Entrance Semantic Relation. 88

5.21 Sunrise programming language termination semantic relations. 89

5.22 Command Termination Semantic Relation . 89

5.23 Procedure Path Termination Semantic Relation . 89

6.1 Odd/Even Example Program. 98

6.2 General Rules for Total Correctness of Expressions. 100

6.3 Total Correctness of Numeric Expressions. 102

6.4 Total Correctness of Expression Lists. 103

6.5 Total Correctness of Boolean Expressions. 105

6.6 Hoare Logic for Partial Correctness. 107

6.7 General rules for Partial Correctness. 108

6.8 Entrance Logic. 112

6.9 Path Entrance Logic. 118

6.10 Additional Path Entrance Rules. 119

6.11 Call Progress Function. 120

6.12 Call Path Progress Function. 121

xiv



: : : : : : : : : : : :

: : : : : : : : : : : : :

: : : : : : : : : : : : :

: : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : :

vcg :

vcgc :

vcgd

fan out graph vcs

graph vcs : : :

call path progress

: : : : : : : : : :

: :

graph vcs : : : : : : : :

vcgg : : : : : : : : : : :

vcgg : : : : : : : : : : : : : : : : : :

: : :

: : : : : : : : : : : : : : : : : : : : : : : :

: : :

:

6.13 Command Conditional Termination Logic. 128

6.14 General rules for Command Termination. 130

6.15 Hoare Logic for Command Termination. 131

6.16 General rules for Total Correctness. 132

6.17 Hoare Logic for Total Correctness. 133

7.1 Theorems of veri�cation of commands using the 1 function. 162

7.2 Theorems of veri�cation of commands using the function. 164

7.3 Theorems of veri�cation of declarations using the function. 166

7.4 Theorem of veri�cation condition collection by .168

7.5 Theorem of veri�cation condition collection by . 169

7.6 Theorem of veri�cation of single recursion by . 170

7.7 Theorem of veri�cation of all single recursion. 171

7.8 Theorem of veri�cation of all recursion, single and multiple. 171

7.9 Theorem of veri�cation of recursion by . 172

7.10 Theorem of veri�cation of recursion by . 172

7.11 Theorem of veri�cation of . 172

7.12 Theorem of veri�cation of veri�cation condition generator. 173

9.1 Sunrise Theory Sizes. 228

10.1 Assertion Numeric Expression Simultaneous Substitution. 236

10.2 Assertion Numeric Expression List Simultaneous Substitution. 236

xv



v

: : : :

: : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

== : : :

: : : : :

: : : : : : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : : : : : : :

: : : : : : : : : :

: : : : : : : : : :

: : : :

: : : : : : : : : : : : : : : :

: : : : : :

: : : : : : : : : : : :

: : : : : : : : : : :

: : : : : : :

10.3 Assertion Boolean Expression Simultaneous Substitution. 237

10.4 Assertion Language Substitution Lemmas. 238

10.5 Assertion Numeric Expression Variable-for-Variable Substitution. 239

10.6 Assertion Numeric Expression List Variable-for-Variable Substi-

tution. 239

10.7 Assertion Boolean Expression Variable-for-Variable Substitution. 240

10.8 Variables-for-Variables Substitution Creation operator . 241

10.9 Assertion Language Var-for-Var Substitution Lemmas. 242

10.10 Program Variable List Substitution. 243

10.11 Program Numeric Expression Substitution. 243

10.12 Program Numeric Expression List Substitution. 244

10.13 Program Boolean Expression Substitution. 244

10.14 Program Command Substitution. 244

10.15 Program Progress Environment Substitution. 245

10.16 Programming Language Substitution Lemmas. 245

10.17 Programming Language Substitution Equality Theorems. 246

10.18 Expression Precondition Functions. 250

10.19 Procedure Environment Well-Formedness Predicates. 255

10.20 De�nition of Well-Formedness for Strings. 256

10.21 De�nition of Well-Formedness for Variables. 256

10.22 De�nition of Well-Formedness for Lists of Variables. 256

xvi



: : : :

: : : : :

: : : : :

: : : : : : : : : :

: : :

: : :

: : : :

: : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : :

: : : : : : : : : : : : : : :

: : : : : : : : :

: : : : : :

: : : : : : :

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : :

: : : : : : : : : : : : : : :

10.23 De�nition of Not-Well-Formedness for Lists of Variables. 257

10.24 De�nition of Well-Formedness for Numeric Expressions. 257

10.25 De�nition of Well-Formedness for Lists of Numeric Expressions. 257

10.26 De�nition of Well-Formedness for Boolean Expressions. 258

10.27 De�nition of Well-Formedness for Commands. 258

10.28 De�nition of Well-Formedness for Procedure Speci�cation Syntax.259

10.29 De�nition of Well-Formedness for Procedure Speci�cation. 260

10.30 De�nition of Well-Formedness for Procedure Environment. 261

10.31 De�nition of Well-Formedness for Progress Environment. 261

10.32 De�nition of Well-Formedness for Declarations. 261

10.33 De�nition of Empty Progress Environment. 262

10.34 De�nition of Empty Progress Environment. 262

10.35 De�nition of Well-Formedness for Programs. 263

10.36 Repeated VCG veri�cation theorems. 264

10.37 Staged command semantic relation description. 265

10.38 Staged Command Structural Operational Semantics. 266

10.39 Staged command Partial Correctness Speci�cation. 267

10.40 Staged Well-Formed Environment Predicate for Partial Correct-

ness. 267

10.41 Staged Command Substitution Lemmas. 267

10.42 Unstaged-to-Staged Correspondances. 268

xvii



terminates : : : : : : : : : : :

Depth calls : : : : : : : : : : :

: : : : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : : :

mk sequence : : : : : : : : : : :

mk sequence : : : : : : : : :

mk sequence : : : : : : : : : : : : :

sequence : : : :

induct start num : : : :

: : : : : : : :

M calls : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : :

: : : : : : :

: : : : : : : : : : : :

all ps : : : : : : : : : : : : :

all ps : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : :

11.1 Termination Semantic Relation . 274

11.2 Termination Semantic Relation . 274

11.3 Theorem of existence of shallower calls. 277

11.4 Theorem of termination of shallower calls. 278

11.5 Theorem of existence of all deeper calls. 278

11.6 Sequence Generator Function . 279

11.7 De�nitional property satis�ed by . 279

11.8 Chain of calls induced by . 280

11.9 In�nite Recursive Descent Sequence Predicate . 280

11.10 Recursion Expression Value Function . 281

11.11 Existence of In�nite Recursive Descent Sequence. 282

11.12 Sequence calls related by . 282

11.13 Sequence Precondition Maintenance. 282

11.14 Sequence Decreasing Values. 283

11.15 Sequence Occurrence Implies Limit on Occurrences. 284

11.16 Each Procedure Has Limit on Occurrences. 284

11.17 Each Procedure in Sequence is in . 285

11.18 Limit on All Occurrences in . 285

11.19 Sequence Contradiction. 286

11.20 Procedure Termination. 286

11.21 Total Correctness of Procedure Environment. 287

xviii



Acknowledgments

My earnest thanks go to Professors Rajive Bagrodia, Donald A. Martin, D.

Stott Parker, and my advisor, David F. Martin, for serving on my committee.

I am grateful to The Aerospace Corporation for supporting my education with

a fellowship for several years through most of my graduate studies.

Ching-Tsun Chou read early drafts of this manuscript and provided many

helpful comments and suggestions. We have faced the heat of the battle together,

and I have enormous respect for his intellect. I am grateful to Raymond Toal for

his cheerful inspiration and solid example.

I thank my wonderful father and stepmother, Skip and Della Homeier, for

too much to say, but especially for their encouragement to return to school and

pursue the Ph.D. Their words sparked the desire of my heart to become a manifest

reality, and have profoundly sharpened my life as a sword on the anvil.

Pastor Jim Nelson at The Church on the Way has given me consistent and

faithful support over the years. From the beginning of this quest, with insight

and devotion he has tenaciously watched over me, and I shall always be grateful

for his protective care. I also want to thank Pastor Chip Graves, for praying and

encouraging me when I needed to choose between my job and my degree.

Pastor Jack Hayford has been a sta� and a covering for me. His wisdom and

simple sincerity of heart have been a living model, blending biblical brilliance

with tender faith and honest humility. He has an uncanny ability to speak to

the heart of a situation, inevitably displaying the perspective of heaven. He has

xix



focused me on the essentials, on integrity of heart, passion for fullness, and �erce-

ness of commitment, as an elite trained soldier. (Isaiah 28:5-6, Zechariah 6:11,

1 Peter 5:4) The little boy who was healed from falling down is now teaching us

all to go \leaping upon the mountains, skipping upon the hills." My respect and

love for him know no bounds.

Verra Morgan is a shining angel, clucking like a mother hen. Her �erce,

eager, combative spirit is always ready like a growling mother bear to defend

her cubs, and then to cu� them when they misbehave. She has saved my neck

administratively more times than I can count. I honestly do not know if I would

have completed my degree if in the accident she had been taken from us. My

heart over
ows with thanks she was not. Verra has always lived for the success

of the graduate students in her care. May she someday �nd a joy even greater.

Susan has been a gift beyond expectations, knitting raveled edges. She has

shown me a mother's love, faith, and encouragement in the secret depths, with

wisdom that few have ever seen. \For the Spirit searches all things, yes, the deep

things of God. For what man knows the things of a man except the spirit of

the man which is in him?" (1 Corinthians 2:10{11) She has eyes for the light in

the heart of the dark, and a rod of healing held over troubled waters. My deep

thanks go to her for our many rich words and woven times.

My special heartfelt appreciation goes to my advisor, Professor David F. Mar-

tin, for his supervision of this research. He has been a guiding light, an inspiration,

a constant source of encouragement and approval, and the warmest of friends.

He has truly been \the advisor from Heaven," in every way going beyond all that

I ever conceived or could have asked for. I want to always give the same consci-

xx



Soli Deo Gloria.

entious and diligent care he has given me. Through this long walk together, he

has become a father to me, cherished beyond words. May his brilliance and his

heart be recognized and rewarded.

My highest gratitude goes to someone not seen on Earth, who spun the galax-

ies with His �ngertips, and blew the stars a
ame. It was He who gave me the

strength to leap each wall. Indeed every good and perfect gift comes down from

above, from the Father of Lights. When opposition arose demanding I stop, He

provided the way to continue and grow. When I was at the end of myself, with

all my hopes at risk, He reached down and kept me from sliding into the pit,

and placed my feet on a rock. He who said, \Let there be light," has shone in

my heart. (2 Corinthians 4:6) All of this dissertation is only here by His hand

extended in grace and peace.

xxi



Vita

1956 Born, Santa Monica, California, USA

1979 B.S. in Mathematics/Computer Science

Summa Cum Laude

Mathematics/Computer Science Senior Prize

University of California, Los Angeles (UCLA)

Los Angeles, California, USA

1979 Regents Fellowship

University of California, Los Angeles (UCLA)

Los Angeles, California, USA

1981 M.S. in Computer Science

University of California, Los Angeles (UCLA)

Los Angeles, California, USA

1981{1983 Member of the Technical Sta�

Hughes Aircraft Corporation

El Segundo, California, USA

1983{1995 Member of the Technical Sta�

The Aerospace Corporation

El Segundo, California, USA

xxii



Publications

The Computer Journal

Proceedings of the 7th

International Workshop on Higher Order Logic Theorem Proving and its Appli-

cations

Proceedings of

Arti�cial Intelligence/Expert Systems Symposium

1988{1994 Aerospace Graduate Fellowship

The Aerospace Corporation

El Segundo, California, USA

Peter V. Homeier and David F. Martin, \A Mechanically Veri�ed Veri�cation

Condition Generator," , Vol. 38, No. 2, 1995, pages 131{

141.

Peter V. Homeier and David F. Martin, \Trustworthy Tools for Trustworthy Pro-

grams: A Veri�ed Veri�cation Condition Generator," in

, eds. Thomas F. Melham and Juanito Camilleri, Valletta, Malta, Septem-

ber 19{22, 1994, Lecture Notes in Computer Science Vol. 859, Springer{Verlag,

pages 269{284.

Peter V. Homeier, Thach C. Le, Y. Peter Li, and Peter C. Eggan, \DEF{CLIPS:

Extensions to the CLIPS Production System Environment," in

, El Segundo, CA, September

1{2, 1993.

Peter V. Homeier and Thach C. Le, \ECLIPS: An Extended CLIPS for Backward

xxiii



Proceedings of the Second CLIPS

Users Group Conference

Proceedings of the Sec-

ond Annual Workshop on Space Operations Automation and Robotics

Chaining and Goal-Directed Reasoning," in

, September 23{25, 1991, Houston, Texas, NASA Con-

ference Publication 10085, Volume 2, pages 213{225.

Thach C. Le and Peter V. Homeier, \PORTABLE INFERENCE ENGINE: An

Extended CLIPS for Real-Time Production Systems," in

, (SOAR

'88), July 20{23, 1988, NASA Conference Publication 3019, pages 187{192.

xxiv



Peter Vincent Homeier

Abstract of the Dissertation

Veri�cation Condition Gen-

erator

veri�cation conditions

Trustworthy Tools for Trustworthy Programs:

A Mechanically Veri�ed

Veri�cation Condition Generator

for the Total Correctness of Procedures

by

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 1995

Professor David F. Martin, Chair

As an alternative to testing, formal proofs of a program's correctness may be

constructed. The application of these techniques has been limited by the di�-

culty of constructing the required proofs by hand. The task of proving a program

correct can be simpli�ed and eased by a tool called a

(VCG), which automatically constructs a signi�cant portion of the proof.

The VCG processes programs written in the speci�ed language, and produces

as its result a set of lemmas called , as the remainder left

for the programmer to prove. The truth of these is intended to imply the cor-

rectness of the program. However, most VCGs that have been written have not

themselves been veri�ed, making that support unreliable.

xxv



We have written a VCG and veri�ed its soundness, proving that if the veri�-

cation conditions produced are true, then the original program is totally correct.

This proof is conducted within and checked by the Higher Order Logic (HOL)

mechanical proof checker, ensuring its complete soundness. The resulting veri-

�ed VCG provides an e�ective means for proving programs totally correct with

complete security.

The programming language studied contains two areas of special interest, ex-

pressions with side e�ects, and mutually recursive procedures, with global vari-

ables and variable and value parameters. As part of this work, we provide �ve

program logics which together provide an axiomatic semantics for total correct-

ness. Of the �ve program logics, three are fundamental inventions in this dis-

sertation. These new logics are used to verify the correctness of expressions, the

progress achieved between recursive calls of the same procedure, and the termi-

nation of procedures. All of these logics are mechanically proven within the HOL

system to be sound with respect to the formal semantics of the language.

The most novel contribution of this dissertation is the discovery of a new

method for proving the termination of programs with mutually recursive proce-

dures, which is both more general and easier to use than prior proposals. In

addition, VCG automation is naturally supported. This method analyzes the

structure of the procedure call graph, generating veri�cation conditions based on

the cycles found.

xxvi



1

Part I

Background



2



1

1




truth,

CHAPTER 1

Introduction

'emet eh

'Emet 'aman

'Emet

* \ ( -met); Strong's #571: Certainty, stability, truth, rightness,

trustworthiness. derives from the verb , meaning \to be �rm, per-

manent, and established." conveys a sense of dependability, �rmness, and

reliability. Truth is therefore something upon which a person may con�dently

stake his life."

| The Spirit-Filled Life Bible, Thomas Nelson Publishers, 1991, page 774.

All quotations from the Bible are taken from the New King James Version, copyright c 1991

Thomas Nelson, Inc., unless otherwise indicated.

\Behold, You desire truth* in the inward parts,

And in the hidden part You will make me to know wisdom."

| Psalm 51:6

Good software is very di�cult to produce. This contradicts expectations, for

building software requires no large factories or furnaces, ore or acres. It consumes

no rare, irreplaceable materials, and generates no irreducible waste. It requires

no physical agility or grace, and can be made in any locale.

What good software does require, it demands of the intelligence and character

of the person who makes it. These demands include patience, perseverance, care,

3



guaranteed

craftsmanship, attention to detail, and a streak of the detective, for hunting down

errors. Perhaps most central is an ability to solve problems logically, to resolve

incomplete speci�cations to consistent, e�ective designs, to translate nebulous

descriptions of a program's purpose to de�nite detailed algorithms. Finally, soft-

ware remains lifeless and mundane without a well-crafted dose of the artistic and

creative.

Large software systems often have many levels of abstraction. Such depth of

hierarchical structure implies an enormous burden of understanding. In fact, even

the most senior programmers of large software systems cannot possibly know all

the details of every part, but rely on others to understand each particular small

area.

Given that creating software is a human activity, errors occur. What is sur-

prising is how di�cult these errors often are to even detect, let alone isolate,

identify, and correct. Software systems typically pass through hundreds of tests

of their performance without 
aw, only to fail unexpectedly in the �eld given

some unfortunate combination of circumstances. Even the most diligent and

faithful applications of rigorous disciplines of testing only mitigate this problem.

The core remains, as expressed by Dijkstra: \Program testing can be used to

show the presence of bugs, but never to show their absence!" [Dij72] It is a fact

that virtually every major software system that is released or sold is, not merely

suspected, but in fact to contain errors.

This degree of unsoundness would be considered unacceptable in most other

�elds. It is tolerated in software because there is no apparent alternative. The

resulting erroneous software is justi�ed as being \good enough," giving correct an-

4



any

typical

\X" CORPORATION PROVIDES THIS SOFTWARE \AS IS"WITHOUT ANY

WARRANTEE OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUD-

ING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OR CONDI-

TIONS OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PUR-

POSE. IN NO EVENT SHALL \X" CORPORATION BE LIABLE FOR ANY

LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA, INTER-

RUPTION OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR

CONSEQUENTIAL DAMAGES OF ANY KIND, EVEN IF \X" CORPORA-

TION HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES

ARISING FROM ANY DEFECT OR ERROR IN THIS SOFTWARE.

swers \most of the time," and the occasional collapses of the system are shrugged

o� as inevitable lapses that must be endured. Virtually every piece of software

that is sold for a personal computer contains a disclaimer of particular per-

formance at all. For example, the following is , not extraordinary:

The limit to which many companies stand behind their software is to promise

to reimburse the customer the price of a 
oppy disk, if the physical medium is

faulty. This means that the customer must hope and pray that the software per-

forms as advertised, for he has no �rm assurance at all. This lack of responsibility

is not tolerated in most other �elds of science or business. It is tolerated here

because it is, for all practical purposes, impossible to actually create perfect soft-

ware of the size and complexity desired, using the current technology of testing

to detect errors.

There is a reason why testing is inadequate. Fundamentally, testing examines

a piece of software as a \black box," subjecting it to various external stimuli, and

observing its responses. These responses are then compared to what the tester

5



expected, and any variation is investigated. Testing depends solely on what is

externally visible. This approach treats the piece of software as a mysterious

locked chest, impenetrable and opaque to any deeper vision or understanding of

its internal behavior. A good tester does examine the software and study its

structure in order to design his test cases, so as to test internal paths, and check

circumstances around boundary cases. But even with some knowledge of the

internal structure, it is very di�cult in many cases to list a su�cient set of cases

that will exhaustively test all paths through the software, or all combinations of

circumstances in which the software will be expected to function.

In truth, though, this behavioral approach is foreign to most real systems in

physics. Nearly all physical systems may be understood and analyzed in terms

of their component parts. It is far more natural to examine systems in detail,

by investigating their internal structure and organization, to watch their internal

processes and interrelationships, and to derive from that observation a deep un-

derstanding of the \heart" of the system. Here each component may be studied

to some degree as an entity unto itself, existing within an environment which is

the rest of the system. This is essentially the \divide and conquer" strategy ap-

plied to understanding systems, and it has the advantage that the part is usually

simpler than the whole. If a particular component is still too complex to permit

immediate understanding, it may be itself analyzed as being made up of other

smaller pieces, and the process recurses in a natural way.

This concept was recognized by Floyd, Hoare, Dijkstra, and others, beginning

about 1969, and an alternative technique to testing is currently in the process of

being fashioned by the computing community. This approach is called \program

6



every

every

correctness" or \software veri�cation." It is concerned with analyzing a program

down to the smallest element, and then synthesizing an understanding of the

entire program by composing the behaviors of the individual elements and sub-

systems. This attention to detail costs a good deal of e�ort, but it pays o� in that

the programmer gains a much deeper perception of the program and its behavior,

in a way that is complete while being tractable. This deeper examination allows

for stronger conclusions to be reached about the software's quality.

As opposed to testing, veri�cation can trace path through a system, and

consider possible combination of circumstances, and be certain that nothing

has been left out. This is possible because the method relies on mathematical

methods of proof to assure the completeness and correctness of every step. What

is actually achieved by veri�cation is a mathematical proof that the program being

studied satis�es its speci�cation. If the speci�cation is complete and correct, then

the program is guaranteed to perform correctly as well.

However, the claims of the bene�ts of program veri�cation need to be tem-

pered with the realization that substantially what is accomplished may be consid-

ered an exercise in redundancy. The proof shows that the speci�cation and the

program, two forms of representing the same system, are consistent with each

other. But deriving a complete and correct formal speci�cation for a problem

from the vague and nuanced words of an English description is a di�cult and un-

certain process itself. If the formal speci�cation arrived at is not what was truly

intended, then the entire proof activity does not accomplish anything of worth.

In fact, it may have the negative e�ect of giving a false sense of certainty to the

user's expectations of how the program will perform. It is important, therefore,

7



its

to remember that what program veri�cation accomplishes is limited in its scope,

to proving the consistency of a program with its speci�cation.

But within that scope, program veri�cation becomes more than redundancy

when the speci�cation is an abstract, less detailed statement than the program.

Usually the speci�cation as given describes only the external behavior of the

program. In one sense, the proof maps the external speci�cation down through

the structure of the program to the elements that must combine to support each

requirement. In another sense, the proof is good engineering, like installing steel

reinforcement within a largely concrete structure. The proof spins a single thread

through every line of code|but this single thread is far stronger than steel; it

has the in�nite strength of logical truth. Clearly this greatly increases one's

con�dence in the �nished product. Here is the relevance of the introductory

quote from Psalm 51. A system is far stronger if it has internal integrity, rather

than simply satisfaction of an external behavioral criterion. The heart of the

system must be correct, and to achieve this requires \wisdom" (truth) in the

\hidden part."

The theory for creating these proofs of program correctness has been devel-

oped and applied to sample programs. It has been found that for even moderately

sized programs, the proofs are often long and involved, and full of complex de-

tails. This raises the possibility of errors occurring in the proof itself, and brings

into question credibility.

This situation naturally calls for automation. Assistance may be provided by

a tool which records and maintains the proof as it is constructed step by step, and

ensures its soundness. This tool becomes an agent which mechanically veri�es

8



VCG

VCG

Veri�cation Condition Generator

the proof's correctness. The Higher Order Logic (HOL) proof assistant is such

a mechanical proof checker. It is an interactive theorem-proving environment

for higher order logic, built originally at Edinburgh in the 1970's, based on an

approach to mechanical theorem proving developed by Robin Milner. It has been

used for general theorem proving, hardware veri�cation, and software veri�cation

and re�nement for a variety of languages. HOL has the central quality that only

true theorems may be proved, and is thus secure. It performs only sound logical

inferences. A proof is then a properly composed set of instructions on what

inferences to make. Each step is thus logically consistent with what was known

to be true before. The result of a successful proof is accredited with the status

of \theorem," and there is no other way to produce a theorem. The derivation is

driven by the human user, who makes use of the facilities of HOL to search and

�nd the proof.

Even greater assistance for program veri�cation may be provided by a tool

which writes the proof automatically, either in part or in whole. One kind of

mechanical tool that has been built is a ( ).

Such a tool analyzes a program and its speci�cation, and based on the structure of

the program, constructs a proof of its correctness, modulo a set of lemmas called

veri�cation conditions which are left to the programmer to prove. This is a great

aid, as it twice reduces the programmer's burden, lessening both the volume of

proof and the level of proof. Many details and complexities can be automati-

cally handled by the , and only the essentials left to the programmer. In

addition, the veri�cation conditions that remain for him to prove contain no ref-

erences to programming language phrases, such as assignment statements, loops,

or procedures. The veri�cation conditions only describe relationships among the

9



VCG

VCG VCG

VCG VCG

VCG

VCG

underlying datatypes of the programming language, such as integers, booleans,

and lists. All parts of the proof that deal directly with programming language

constructs are handled automatically by the . This does not mean that there

cannot be depth and di�culty in proving the veri�cation conditions; but the

program proving task has been signi�cantly reduced.

Several example Veri�cation Condition Generators have been written by var-

ious researchers over the past twenty years. Unfortunately, they have not been

enough to encourage a widespread use of program veri�cation techniques. One

problem area is the reliability of the itself. The is a program; and just

as any other program, it is subject to errors. This is critical, however, because

the is the foundation on which all later proof e�orts rest. If the is

not sound, then even after proving all of the veri�cation conditions it produces,

the programmer has no �rm assurance that in fact he has proven his original

program correct. Just stating a set of rules for proving each construct in a pro-

gramming language is not enough; there is enough subtlety in the semantics of

programming languages to possibly invalidate rules which were arrived at simply

by intuition, and this has happened for actual rules that have been proposed in

the literature. There is a need for these rules, and the s that incorporate

them, to be rigorously proven themselves.

This we have done in this dissertation. We present a veri�ed Veri�cation

Condition Generator, which for any input program and speci�cation, produces a

list of veri�cation conditions whose truth in fact implies the correctness of the

original program with respect to its speci�cation. This veri�cation of the is

proven as a theorem, and the proof has been mechanically checked in every detail

10



VCGwithin HOL, and thus contains no logical errors. The reliability of this is

therefore complete.

Program veri�cation holds the promise in theory of enabling the creation of

software with qualitatively superior reliability than current techniques. There is

the potential to forever eliminate entire categories of errors, protecting against

the vast majority of run-time errors. However, program veri�cation has not

become widely used in practice, because it is di�cult and complex, and requires

special training and ability. The techniques and tools that are presented here

are still far from being a usable methodology for the everyday veri�cation of

general applications. The mathematical sophistication required is high, the proof

systems are complex, and the tools are only prototypes. However, the results of

this dissertation point the direction to computer support of this di�cult process

that make it more e�ective and secure. Another approach than testing is clearly

needed. If we are to build larger and deeper structures of software, we need a

way to ensure the soundness of our construction, or else, inevitably, the entire

edi�ce will collapse, buried under the weight of its internal inconsistencies and

contradictions.

11



12



VCG

CHAPTER 2

Underlying Technologies

\According to the grace of God which was given to me, as a wise

master builder I have laid the foundation."

| 1 Corinthians 3:10

Every building has a foundation. The foundation of this dissertation is the

collection of technologies that underlie the work. This chapter will describe these

technologies, and give a sense of how these elements �t together to support the

goal of program veri�cation.

To make this more concrete, we will take as an example a small programming

language, similar to a subset of Pascal, with assignment statements, condition-

als, and while loops. Associated with this language is a language of assertions,

which describe conditions about states in the computer. For these languages, we

will de�ne their syntax and semantics, and give a Hoare logic as an axiomatic

semantics for partial correctness. Using this logic, we will de�ne a Veri�cation

Condition Generator for this programming language. Finally, we will discuss

embedding this programming language and its within Higher Order Logic.

This small programming language is not the language actually studied in

13



j

j

j

j

j

2.1 Syntax

cmd

exp bexp

1 2

1 2

1 2 1

2 1 2

1 2

c

x e

c c

b c c

a b c

c

e

b

x e e

x c c c

c b c c

b c c

a b c b

skip

abort

if then else �

assert while do od

skip

abort

if then else �

assert while do od

::=

:=
;

Table 2.1: Example programming language.

this dissertation, but in its simplicity serves as a clear illustration to discuss the

fundamental technologies and ideas present in this chapter.

Table 2.1 contains the syntax of a small programming language, de�ned using

Backus{Naur Form as a context{free grammar. We denote the type of commands

as , with typical member . We take as given a type of numeric expressions

with typical member , and a type of boolean expressions with typical

member . We will further assume that these expressions contain all of the normal

variables, constants, and operators.

These constructs are mostly standard. Informally, the command has

no e�ect on the state. causes an immediate abnormal termination of the

program. := evaluates the numeric expression and assigns the value to

the variable . ; executes command �rst, and if it terminates, then

executes . The conditional command �rst evaluates the

boolean expression ; if it is true, then is executed, otherwise is executed.

Finally, the iteration command evaluates ; if it is true,

14



j

assert

1 2 3

1 2 3 1

vexp

aexp

aexp

c

b a

a

a > a a

a a a a

v a p q

invariant

assertion language

then the body is executed, followed by executing the whole iteration command

again, until evaluates to false. The ` ' phrase of the iteration command

does not a�ect its execution; this is here as an annotation to aid the veri�cation

condition generator. The signi�cance of is to denote an , a condition

that is true every time control passes through the head of the loop.

Annotations are written in an that is a partner to this

programming language. The assertion language is used to expresses conditions

that are true at particular moments in a program's execution. Usually these

conditions are attached to speci�c points in the control structure, signifying that

whenever control passes through that point, then the attached assertion evaluates

to true. For this simple example, we will take the assertion language to be the

�rst-order predicate logic with operators for the normal numeric and boolean

operations. In particular, = is a conditional expression, which �rst

evaluates , and then yields the value of or depending on whether

was true or false, respectively. We also speci�cally include the universal and

existential quanti�ers, ranging over nonnegative integers. We denote the types of

numeric expressions and boolean expressions in the assertion language as

and , respectively, with typical members and . We will also use and

occasionally as typical members of .

We use the same operator symbols (like \+") in the programming and as-

sertion languages, overloading the operators and relying on the reader to disam-

biguate them by context.

15



(

!

6

HOL

1 2 1 2

2.2 Semantics

num bool var

state var num

:exp

:num

:bexp

:bool

x s s x

E

B

E e s n e s

n

B b s t b s

t

f e=x f

f e=x y
e y x;

f y y x

C c s s c s s

The execution of programs depends on the state of the computer's memory. In

this simple programming language, all variables have nonnegative integer values.

Following the notation of , we will denote the type of nonnegative integers by

and the type of truth values as . We take the type of variables to be ,

without specifying them completely at this time. Then we can represent states as

functions of type = , and we can refer to the value of a variable

in a state as , using simple juxtaposition to indicate the application of a

function to its argument.

Numeric and boolean expressions are evaluated by the curried functions and

, respectively. Because these expressions may contain variables, their evaluation

must refer to the current state.

= Numeric expression evaluated in state yields

numeric value .

= Boolean expression evaluated in state yields

truth value .

The notation [ ] indicates the function updated so that

( [ ])( ) =
if = and

( ) if =

The operational semantics of the programming language is expressed by the

following relation:

Command executed in state yields resulting state .

16



vexp aexp

:vexp

:num

:aexp

:bool

1 1 2 2 2 3

1 2 1 3

1 1 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 1 2

2 3

1 3

1

1 1

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

skip

if then else �

if then else �

assert while do od

assert while do od

assert while do od

C s s

C x e s s E e s =x

C c s s ; C c s s
C c c s s

B b s ; C c s s
C b c c s s

B b s ; C c s s
C b c c s s

B b s ; C c s s
C a b c s s
C a b c s s

B b s
C a b c s s

C

V

A

V v s n v s

n

A a s t a s

t

(no rules)

( := ) [( ) ]

( ; )

= T
( )

= F
( )

= T
( )
( )

= F
( )

Table 2.2: Example programming language structural operational semantics.

Table 2.2 gives the structural operational semantics of the programming lan-

guage, speci�ed by rules inductively de�ning the relation .

The semantics of the assertion language is given by recursive functions and

de�ned on the structure of and , in a directly denotational fashion.

Since the expressions may contain variables, their evaluation must refer to the

current state.

= Numeric expression evaluated in state yields

numeric value .

= Boolean expression evaluated in state yields

truth value .

This syntax and structural operational semantics is the foundational de�ni-

17



f g

2.3 Partial and Total Correctness

partial correctness total correctness Partial correctness

total correctness

and

Hoare triples

tion for this programming language and its meaning. It is complete, in that we

know the details of any prospective computation, given the initial state and the

program to be executed. However, it is not the easiest form with which to reason

about the correctness of programs. For that, we need to turn to a more abstract

representation of the semantics, such as Hoare-style program logics.

When talking about the correctness of a program, exactly what is meant? In

general, this describes the consistency of a program with its speci�cation. There

have developed two versions of the speci�c meaning of correctness, known as

and . signi�es that every

time you run the program, every answer that it gives you is consistent with what

is speci�ed. However, partial correctness admits the possibility of not giving you

any answer at all, by permitting the possibility of the program not terminating.

A program that does not terminate is still said to be partially correct. In contrast,

signi�es that every time you start the program, it will in fact

terminate, the answer it gives you will be consistent with what is speci�ed.

The partial and total correctness of commands may be expressed by logical

formulae called , each containing a precondition, a command, and a

postcondition. The precondition and postcondition are boolean expressions in the

assertion language. Traditionally, the precondition and postcondition are written

with curly braces ( ) around them to signify partial correctness, and with square

braces ([ ]) to signify total correctness. For our example programming language

and its assertion language, we de�ne notations for partial and total correctness

18



close

close

universal closure

1 2 1 1 2 2

1 2 1 1 2 2

1 1 2 1 2

f g 8

f g f g 8 ^ )

8 ^ )

^ 8 ) 9

f g

a a s: A a s

p c q s s : A p s C c s s A q s

p c q s s : A p s C c s s A q s

s : A p s s : C c s s

a

a a

a

= =
=

[ ] [ ] = ( )
( ( ))

Table 2.3: Floyd/Hoare Partial and Total Correctness Semantics.

in Table 2.3.

As described in the table, we use to denote a boolean assertion expression

which is true in all states. This is the same as having all of the free variables of

universally quanti�ed, and so this is also known as the of .

denotes the same universal closure, but by means of a unary operator.

With these partial and total correctness notations, it now becomes possible

to express an axiomatic semantics for a programming language, as a Hoare-style

logic, which we will do in the next section.

In this dissertation, we will study a larger programming language that will

include procedures with parameters. Verifying these procedures will introduce

several new issues. It is an obvious but nevertheless signi�cant feature that a

procedure call has a semantics which depends on more than the syntactic com-

ponents of the call itself|it must refer to the declaration of the procedure, which

is external and part of the global context. This is unlike all of the constructs in

the small example programming language given above.

The parameters to a procedure will include both value parameters, which are

passed by value, and variable parameters, which are passed by name to simulate

call-by-reference. The passing of these parameters, and their interaction with

19



2.4 Hoare Logics

global variables, has historically been a delicate issue in properly de�ning Hoare-

style rules for the semantics of procedure call. The inclusion of parameters also

raises the need to verify that no aliasing has occurred between the actual vari-

ables presented in each call and the global variables which may be accessed from

the body of the procedure, as aliasing greatly complicates the semantics in an

intractable fashion.

To verify total correctness, it is necessary to prove that every command ter-

minates, including procedure calls. If the termination of all other commands is

established, a procedure call will terminate unless it initiates an in�nitely de-

scending sequence of procedure calls, which continue issuing new calls deeper

and deeper and never �nishing them. To prove termination, we must prove this

in�nite recursive descent does not occur. This will constitute a substantial por-

tion of this dissertation's work, as we describe a new method for proving the

termination of procedure calls which we believe to be simpler, more general, and

easier to use than previous proposals.

In [Hoa69], Hoare presented a way to represent the calculations of a program

by a series of manipulations of logical formulae, which were symbolic represen-

tations of sets of states. The logical formulae, known as \axioms" and \rules of

inference," gave a simple and beautiful way to express and relate the sets of pos-

sible program states at di�erent points within a program. In fact, under certain

conditions it was possible to completely replace a denotational or operational def-

inition of the semantics of a language with this \axiomatic" semantics. Instead

20



1 2

1 2

1

2

1 2

skip

false abort

if then else �

assert while do od

f g f g

f g f g

f g f g

f g f g f g f g
f g f g

f ^ g f g
f ^ � g f g

f g f g

f ^ g f g
f ^ � ) g

f g f g

f ) g
f g f g
f g f g

q q

q

q < e=x x e q

p c r ; r c q
p c c r

p b c q
p b c q

p b c c q

a b c a
a b q

a a b c q

p a
a c q
p c q

q < e=x <

e x q

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Precondition Strengthening:

[ ] :=

;

Table 2.4: Example programming language axiomatic semantics.

of involving states, these \rules" now dealt with symbolic formulae representing

sets of possible states. This had the bene�t of more closely paralleling the rea-

soning needed to actually prove a program correct, without being as concerned

with the details of actual operational semantics. To some, reasoning about states

seemed \lower level" and more representation-dependent than reasoning about

expressions denoting relationships among variables.

To illustrate these ideas, consider the Hoare logic in Table 2.4 for the simple

programming language we have developed so far.

In the rule for Assignment, the precondition is [ ]. denotes the

operation of proper substitution; hence, this denotes the proper substitution of

the expression for the variable throughout the assertion . There is one small

21



f � ^ g f � ^ g

f � ^ g f � ^ g

f � ^ g f � ^ g

2.5 Soundness and Completeness

e q

e b

x y x y y r x x y r y y

x y r y y q x q y r y y :

x y x y y r x q x q y r y y :

problem with this, which is that the expressions and are really from two

di�erent, though related, languages. We will intentionally gloss over this issue

now, simply using as a member of both languages. This also applies to where

it appears in the Conditional and Iteration rules.

Given these rules, we may now compose them to prove theorems about struc-

tured commands. For example, from the Rule of Assignment, we have

0 = 0 0 + 0 = := 0 = 0 0 + 0 =

and

0 = 0 0 + 0 = := 0 0 = 0 + 0 =

From these and the Rule of Sequence, we have

0 = 0 0 + 0 = := ; := 0 0 = 0 + 0 =

For completeness, a Hoare logic will usually contain additional rules not based

on particular commands, such as precondition strengthening or postcondition

weakening. The Precondition Strengthening Rule in Table 2.4 is an example.

An axiomatic semantics for a programming language has the bene�t of better

supporting proofs of program correctness, without involving the detailed and

seemingly mechanical apparatus of operational semantics. However, with this

bene�t of abstraction comes a corresponding weakness. The very fact that the

new Hoare rules are more distant from the operational details means a greater

possibility that in fact they might not be logically consistent. This question

22



soundness completeness

Soundness

Completeness

of consistency has two aspects, which are called and .

is the quality that every rule in the axiomatic semantics is true for

every possible computation described by the foundational operational semantics.

A rule is sound if every computation that satis�es the antecedents of the rule also

satis�es its consequent. is the quality of the axiomatic semantics of

being expressive and powerful enough to be able to prove within the Hoare logic

theorems that represent every computation allowed by the operational semantics.

One could easily come up with a sound axiomatic semantics by having only

a few trivial rules; but then one would never be able to derive useful results

about interesting programs. Likewise, one could come up with powerful axiomatic

semantics with which many theorems about programs could be proven; but if any

one rule is not sound, the entire system is useless.

Of these two qualities, we have chosen for this dissertation to concentrate on

soundness. By this choice, we do not intend to minimize the role or importance

of completeness|it is simply a question of not being able to solve every problem

at once. Nevertheless, we do feel that of the two qualities, soundness is in some

sense the more vital one. A system that is sound but not complete may still be

useful for proving many programs correct. A system that is complete but not

sound will give you the ability to prove many seemingly powerful theorems about

programs which are in fact not true with respect to the operational semantics.

Also, researchers have occasionally proposed rules for axiomatic semantics

which were later found to be unsound. This problem has arisen, for example,

in describing the passing of parameters in procedure calls. This history shows a

need for some mechanism to more carefully establish the soundness of the rules

23



^ � )a b q

VCG

2.6 Veri�cation Condition Generators

of an axiomatic semantics, thereby establishing the rules as trustworthy, since all

further proof e�orts in that language depend on them.

Given a Hoare logic for a particular programming language, it may be possible

to partially automate the process of applying the rules of the logic to prove the

correctness of a program. Generally this process is guided by the structure of the

program, applying in each case the Hoare logic rule for the command which is

the major structure of the phrase under consideration.

A Veri�cation Condition Generator takes a suitably annotated program and

its speci�cation, and traces a proof of its correctness, according to the rules of

the language's axiomatic semantics. Each command has its own appropriate rule

which is applied when that command is the major structure of the current proof

goal. This replaces the current goal by the antecedents of the Hoare rule. These

antecedents then become the subgoals to be resolved by further applications of

the rules of the logic.

At certain points, the rules require that additional conditions be met; for

example, in the Iteration Rule in Table 2.4, there is the antecedent .

This is not a partial correctness formula, and so cannot be reduced further by

rules of the Hoare logic. The emits this as a veri�cation condition to be

proven by the user.

As an example, we present in Table 2.5 a Veri�cation Condition Generator for

the simple programming language discussed so far. It consists of two functions,

24



j

^ )

^� )

)

1 2 2 2

1 1

1 2

1 2

1 1 1

2 2 2

1 2 1 2

skip

abort true

let in

let in

if then else �

let in

let in

assert while do od

let in

let in

1 ( ) = [ ]
1 ( ) = [ ]
1 ( := ) = [ ] [ ]
1 ( ; ) = ( ) = 1

( ) = 1
( & )

1 1 ( ) =
( ) = 1
( ) = 1

( = ) ( & )
1 ( ) =

( ) = 1
[ ;

] &

= ( ) = 1 [ ] &

Table 2.5: Example Veri�cation Condition Generator.

25

vcg q q;

vcg q ;

vcg x e q q < e=x ;

vcg c c q r; h vcg c q

p; h vcg c r

p; h h

vcg vcg b c c q

r ; h vcg c q

r ; h vcg c q

b > r r ; h h

vcg a b c q

p; h vcg c a

a; a b p

a b q h

vcg vcg p c q r; h vcg c q p r h



! ! �

! ! !

VCG VCG

VCG

HOL

sound

complete

vcg vcg

vcg

vcg vcg

vcg

2.7 Higher Order Logic

cmd aexp aexp (aexp)list

aexp cmd aexp (aexp)list

the main function and a helper function 1. The square brackets [ and

] enclose a list, for which semicolons (`;') separate list elements; the phrase [ ]

denotes an empty list. Comma (`,') creates a pair, and ampersand (`&') appends

two lists together.

1 has type ( ). This function takes a com-

mand and a postcondition, and returns a precondition and a list of veri�cation

conditions that must be proved in order to verify that command with respect

to the precondition and postcondition. This function does most of the work of

calculating veri�cation conditions.

1 is called by the main veri�cation condition generator function, , with

type . takes a precondition, a command, and

a postcondition, and returns a list of the veri�cation conditions for that command.

Given such a Veri�cation Condition Generator, there are two interesting

things we might ask about it. First, does the truth of the veri�cation condi-

tions it generates in fact imply the correctness of the program? If so, then we

say the is . Second, if the program is in fact correct, does the

generate veri�cation conditions su�cient to prove the program correct from the

axiomatic semantics? We call such a . In this dissertation, we will

only focus on the �rst question, that of soundness.

Higher Order Logic ( ) is a mechanical proof assistant that mechanizes higher

order logic, and provides an environment for de�ning systems and proving state-

26



�

!-order

HOL

HOL

HOL

HOL HOL

HOL HOL

HOL

2.7.1 Higher Order Logic as a Logic

ments about them. It is secure in that only true theorems may be proven, and

this security is ensured at each point that a theorem is constructed.

has been applied in many areas. The �rst and still most prevalent

use is in the area of hardware veri�cation, where it has been used to verify the

correctness of several microprocessors. In the area of software, has been

applied to Lamport's Temporal Logic of Actions (TLA), Chandy and Misra's

UNITY language, Hoare's CSP, and Milner's CCS and -calculus. is one

of the oldest and most mature mechanical proof assistants available, roughly

comparable in maturity and degree of use with the Boyer-Moore Theorem Prover

[BM88]. Many other proof assistants have been introduced more recently that in

some ways surpass , but has one of the largest user communities and

history of experience. We therefore considered it ideal for this work.

di�ers from the Boyer-Moore Theorem Prover in that does not

attempt to automatically prove theorems, but rather provides an environment

and supporting tools to the user to enable him to prove the theorems. Thus,

is better described as a mechanical proof assistant, recording the proof e�orts and

its products along the way, and maintaining the security of the system at each

point, but remaining essentially passive and directed by the user. It is, however,

powerfully programmable, and thus the user is free to construct programs which

automate whatever theorem-proving strategy he desires.

Higher Order Logic is a version of predicate calculus which allows quanti�cation

over predicate and function symbols of any order. It is therefore an

27



Q

Q

0

0

HOL

HOL

HOL

HOL

HOL

HOL

logic, �nite type theory,or according to Andrews [And86]. In such a type theory,

all variables are given types, and quanti�cation is over the values of a type.

Type theory di�ers from set theory in that functions, not sets, are taken as the

most elementary objects. Some researchers have commented that type theory

seems to more closely and naturally parallel the computations of a program than

set theory. A formulation of type theory was presented by Church in [Chu40].

Andrews presents a modern version in [And86] which he names . The logic

implemented in the Higher Order Logic system is very close to Andrews' . This

logic has the power of classical logic, with an intuitionistic style. The logic has

the ability to be extended by several means, including the de�nition of new types

and type constructors, the de�nition of new constants (including new functions

and predicates), and even the assertion of new axioms.

The logic is based on eight rules of inference and �ve axioms. These are

the core of the logical system. Each rule is sound, so one can only derive true

results from applying them to true theorems. As the system is built up, each

new inference rule consists of calls to previously de�ned inference rules, ultimately

devolving to sequences of these eight primitive inference rules. Therefore the

proof system is fundamentally sound, in that only true results can be proven.

provides the ability to assert new axioms; this is done at the user's dis-

cretion, and he then bears any responsibility for possible inconsistencies which

may be introduced. Since such inconsistencies may be hard to predict intuitively,

we have chosen in our use of the system to restrict ourselves to never using

the ability to assert new axioms. This style of using is called a \de�nitional"

or \conservative extension," because it is assured of never introducing any incon-

28



term thm

theories

Meta Language

Object Language

HOL

HOL

HOL

HOL

VCG

HOL

HOL

HOL

HOL

HOL

ML

HOL ML

ML

HOL

2.7.2 Higher Order Logic as a Mechanical Proof Assistant

sistencies. In a conservative extension, the security of is not compromised,

and hence the basic soundness of is maintained.

We will not describe in detail the theoretical foundation of the logic,

referring the interested reader to [GM93], because the purpose of this dissertation

is not the study of itself, but rather its application as a tool to support the

veri�cation of s. Hence we will concentrate on describing the useful aspects

of that apply to our work.

The system provides the user a logic that can easily be extended, by the

de�nition of new functions, relations, and types. These extensions are organized

into units called . Each theory is similar to a traditional theory of logic,

in that it contains de�nitions of new types and constants, and theorems which

follow from the de�nitions. It di�ers from a traditional theory in that a traditional

theory is considered to contain the in�nite set of all possible theorems which could

be proven from the de�nitions, whereas a theory in contains only the subset

which have been actually proven using the given rules of inference and other tools

of the system.

When the system it started, it presents to the user an interactive pro-

gramming environment using the programming language , or

of . The user types expressions in , which are then executed by the sys-

tem, performing any side e�ects and printing the value yielded. The language

contains the data types and , which represent terms and theorems in the

logic. These terms represent a second language, called the

29



thm

thm

OL HOL ML ML

OL

ML HOL

ML

HOL

HOL

ML

derived rules of inference

forward proof

backwards proof

tactic

tacticals

( ) of , embedded within . functions are provided to construct and

deconstruct terms of the language. Theorems, however, may not be so freely

manipulated. Of central importance is the fact that theorems, objects of type

, can only be constructed by means of the eight standard rules of inference.

Each rule is represented as a function. Thus the security of is maintained

by implementing as an abstract data type.

Additional rules, called , can be written as new

functions. A derived rule of inference could involve thousands of individual calls

to the eight standard rules of inference. Each rule typically takes a number of

theorems as arguments and produces a theorem as a result. This methodology

of producing new theorems by calling functions is called .

One of the strengths of is that in addition to supporting forward proof,

it also supports , where one establishes a goal to be proved, and

then breaks that goal into a number of subgoals, each of which is re�ned further,

until every subgoal is resolved, at which point the original goal is established as a

theorem. At each re�nement step, the operation that is applied is called in

a , which is a function of a particular type. The e�ect of applying a tactic

is to replace a current goal with a set of subgoals which if proven are su�cient

to prove the original goal. The e�ect of a tactic is essentially the inversion of an

inference rule. Tactics may be composed by functions called , allowing a

complex tactic to be built to prove a particular theorem.

Functions in are provided to create new types, make new de�nitions, prove

new theorems, and store the results into theories on disk. These may then be

used to support further extensions. In this incremental way a large system may

30



+

P E V

` 8

HOL

HOL

HOL

2.8 Embeddings

=

P E V: P;E; V ; V; E ; PSpec Truth Subst Assign Value Truth

be constructed.

Previous researchers have constructed representations of programming languages

within , of which the work of Gordon [Gor89] was seminal. He introduced

new constants in the logic to represent each program construct, de�ning

them as functions directly denoting the construct's semantic meaning. This is

known as a \shallow" embedding of the programming language in the logic,

using the terminology described in [BGG 92]. This approach yielded tools which

could be used to soundly verify individual programs. However, there were certain

fundamental limitations to the expressiveness of this approach, and to the theo-

rems which could be proven about all programs. This was recognized by Gordon

himself [Gor89]:

[ ] (substitution) is a meta notation and consequently the assign-

ment axiom can only be stated as a meta theorem. This elementary

point is nevertheless quite subtle. In order to prove the assignment

axiom as a theorem within higher order logic it would be necessary

to have types in the logic corresponding to formulae, variables and

terms. One could then prove something like:

( ( ( )) ( ) )

It is clear that working out the details of this would be a lot of work.

This dissertation explores the alternative approach described but not investi-

gated by Gordon. It yields great expressiveness and control in stating and prov-

31



` 8 f g f g

as

within

q x e: q < x e x e q

q < x e q

HOL

HOL

HOL

HOL

HOL

HOL

ing as theorems within concepts which previously were only describable as

meta-theorems outside . For example, we have proven the assignment axiom

described above:

[ := ] :=

where [ := ] is a substituted version of , described later.

To achieve this expressiveness, it is necessary to create a deeper foundation

than that used previously. Instead of using an extension of the Object Lan-

guage as the programming language, we create an entirely new set of datatypes

within the Object Language to represent constructs of the programming language

and the associated assertion language. This is known as a \deep" embedding,

as opposed to the shallow embedding developed by Gordon. This allows a sig-

ni�cant di�erence in the way that the semantics of the programming language is

de�ned. Instead of de�ning a construct its semantics meaning, we de�ne the

construct as simply a syntactic constructor of phrases in the programming lan-

guage, and then separately de�ne the semantics of each construct in a structural

operational semantics. This separation means that we can now decompose and

analyze syntactic program phrases at the Object Language level, and thus

reason within about the semantics of purely syntactic manipulations, such

as substitution or veri�cation condition generation, since they exist the

logic.

This has de�nite advantages because syntactic manipulations, when seman-

tically correct, are simpler and easier to calculate. They encapsulate a level of

detailed semantic reasoning that then only needs to be proven once, instead of

having to be repeatedly proven for every occurrence of that manipulation. This

32



HOL

will be a recurring pattern in this dissertation, where repeatedly a syntactic ma-

nipulation is de�ned, and then its semantics is described, and proved correct

within .

33



34



CHAPTER 3

Survey of Previous Research

\Now if anyone builds on this foundation with gold, silver, precious

stones, wood, hay, straw, each one's work will become clear; for the

Day will declare it, because it will be revealed by �re; and the �re

will test each one's work, of what sort it is."

| 1 Corinthians 3:12{13

In this chapter we discuss the work that has been done by others that supports

proofs of program correctness for programs containing various language features.

The research discussed below include expressions with side e�ects, procedures

with variable and value parameters, including especially the total correctness

of mutually recursive procedures, veri�cation condition generators, embeddings,

and mechanically veri�ed axiomatic semantics. These areas have been developed

in varying degrees, from fairly deep descriptions of the partial correctness of

procedures, to an apparent lack of development of expressions with side e�ects.

In all these areas we hope to give a perspective on the context in which our

research was conducted.

35



^p b p

b

translate

3.1 Expressions with Side E�ects

Expressions have typically not been treated as a highlight in previous work on

veri�cation; there are some exceptions, notably Soko lowski [Sok84]. Even he does

not treat expressions with side e�ects. Side e�ects appear commonly in actual

programming languages, such as C or C++, with the operators ++ and get ch.

In addition, several interesting functions are naturally designed with a side e�ect;

an example is the standard method for calculating random numbers, based on a

seed which is updated each time the random number generator is run.

In general, expressions with side e�ects have been explicitly excluded, from

the original paper by Hoare [Hoa69], through Dijkstra's work [Dij76], and contin-

uing through that of Alagi�c and Arbib [AA78], de Bakker [dB80], Gries [Gri81],

Gordon [Gor88], Apt and Olderog [AO91], and Dahl [Dah92].

Since expressions did not have side e�ects, they were often considered to be

a sublanguage, common to both the programming language and the assertion

language. Thus one would commonly see expressions such as , where was

an assertion and was a boolean expression from the programming language.

One of the key realizations of this work was the need to carefully distinguish

these two languages, and not confuse their expression sublanguages. This then

requires us to programming language expressions into the assertion lan-

guage before the two may be combined as above. This is described in detail in

Section 10.3 on Translations.

36



call

procedure

3.2 Procedures

proc x e x

e proc

proc y z c y

z

c

variable formal parameters

value formal

parameters

The treatment of procedures by di�erent authors has varied in the aspects ad-

dressed and in their depth. Some have dealt with parameters, some have not.

Some methods handle recursive procedures, but not mutual recursion, and others

do. Some treatments have been explicitly detailed, including such complexities

as the subtleties of proper substitution and the generation of new variable names;

other discussions have concentrated on providing a more intuitive, high-level view

of the proof process. Partial correctness has been generally well analyzed, but

termination has been treated by relatively few authors.

Hoare's original paper [Hoa69] did not cover procedures, but with foresight

described how the correct speci�cation and proof of the correctness of procedures

could be an essential building block in the proof of large programs, as well as

providing aid in documentation and in code modi�cation. Hoare saw that the

structure of the proof would mirror the structure of the procedures. In [Hoa71],

he gave an axiomatic approach to recursive procedures, and this has been the

style generally used since.

Current versions of Hoare's rules for the partial correctness of procedures

including parameters are presented by Francez [Fra92]. For illustration, and

leaving out several details, we have adapted his rules into our notation as follows.

We take the syntax of a procedure call to be ( ; ), where is a list of

variables and is a list of expressions. is the name of a procedure de�ned

as ( ; ); , where is a list of the ,

using call by value-result to pass the parameters, is a list of the

, using call by value, and is the body of the procedure, a command.

37



meta-rule

f g f g ` f g f g
f g f g

� [ �

f g f g

f g f g

f g f g
f ^ 8 ) g f g

f g f g ` f g f g

Rule of Recursion:

call

call

procedure

call

Rule of Adaptation:

call

call

call

pre proc y z post pre c post
pre proc y z post

proc y z c

FV pre y z FV post y

pre proc y z post

pre c post

proc c pre post

pre proc y z post
pre < e=z a: post < a=y q < a=x proc x e q

pre proc y z post pre c post

( ; )
( ; )

provided that the program contains the declaration ( ; ); ,

and ( ) , ( ) . This is actually a , which has

a \provability" claim as one of its assumptions. This provability claim is a side

proof, where one may use ( ; ) as an assumption in

proving . This rule is the veri�cation of the partial correctness

of the body of , , with respect to precondition and postcondition .

This rule is then adapted to particular calls by the following rule:

( ; )
( [ ]) ( ( [ ]) ( [ ])) ( ; )

with additional restrictions, such as non-aliasing.

This approach to proving the correctness of procedures has been generally

adopted, and every other treatment we have studied used some variation of these

rules. However, Soko lowski has remarked [Sok77] that it is not clear what mean-

ing is assigned to ( ; ) that appears in

the Rule of Recursion. Francez [Fra92] explains the Rule of Recursion as a meta-

rule, one of whose antecedents is not merely a correctness assertion, but instead

is a statement about the existence of a proof from an assumption, namely that if

one assumes the partial correctness speci�cation about the invocation command,

then the same speci�cation is provable about the body of the invoked procedure.

This is handled as a separate or side proof, which must be completed before

making the application of the Rule of Recursion.

38



VCG

VCG

3.3 Total Correctness of Mutually Recursive Procedures

We found this approach to be di�cult to break down into a standard method

of solution, and therefore not easily adaptable for a . Instead, we handle the

problem of the order of proof of the body versus the call by a meta-level proof

done once to verify the .

The treatment of procedures has historically been fraught with unsoundness,

as noted by Francez [Fra92]:

Another indication of the intricacy of rules dealing with the language

constructs considered in this chapter [on procedures] is that several

wrong rules have been proposed, the errors in which were caught much

later. However, any serious methodological attempt at veri�cation of

actual software will have to deal with such mechanisms to be of any

practical use. Thus, awareness of complications and limitations is of

crucial importance when programs with procedures are concerned.

We believe that this history of unsoundness from capable researchers is a strong

indication of an inherent underlying degree of complexity which requires powerful

tools. The treatment of procedures is an area where the security of a mechanical

proof-checker has been of great value to us.

Proving the total correctness of mutually recursive procedures involves showing

that they terminate, in addition to their partial correctness. Mutually recursive

procedures may not terminate if a computation follows a cycle of procedures in

the procedure call graph, where the procedures repeatedly call each other in that

39



�n; n n

3.3.1 Soko lowski

in�nite recursive descentcycle without ever returning. We call this situation .

The general strategy to prevent this in�nite recursive descent is to limit the

possible depth of calls that such a calling chain can descend. Any �nite limit is

su�cient to guarantee termination. A powerful and general technique to impose

such a limit is to track the procedures in the calling chain, attaching a value to

each procedure, where the values are all taken from a well-founded set, and where

the values strictly decrease along the chain. By the de�nition of a well-founded

set, there do not exist any in�nite descending sequences of values from the well-

founded set, and so the situation of such an in�nite chain of procedure calls can

not occur.

To specify this, one chooses an expression whose value is in the well-founded

set, and considers the value attached to each procedure to be the value of the

expression at the head of the procedure, when it is entered. In the past, most

reseachers have limited the choice of well-founded set to be the nonnegative in-

tegers. In addition, most researchers have chosen the ordering relation of the

well-founded set to be the successor relation, where the only pairs in the relation

were of the form ( + 1) for 0. These are useful choices for exploration,

but they can also occlude the fact that there is a great deal more power available

in the more general well-founded set.

For termination, the original work was done by Soko lowski [Sok77], where he

introduced a recursion depth counter. This depth counter was a measure of how

much more deeply the computation could issue calls. For each call, the depth

40



call

call

3.3.2 Apt

f g f g
f g f g ` f g f g

f9 � g f g

pre c post
pre i proc post pre i c post

i : pre i proc post

pre

counter was decreased by one, with the invariant maintained that it remained

nonnegative. Since any number cannot be decreased inde�nitely without becom-

ing negative (an example of a well-foundedness argument), the procedure could

be proven to terminate. Soko lowski gave a rule of procedure recursion that sup-

ported a termination argument. His rule was based on Hoare's, and had the

following form, adapted to the style used above.

(0)
( ) ( + 1)

0 ( )

The recursion depth counter is represented by the argument to the precon-

dition . Soko lowski then extended this rule to systems of mutually recursive

procedures by reinterpreting the elements of the rule as vectors. He gave proofs

of soundness and completeness of the new rule.

Soko lowski spent some time discussing the fact that the provability claim in

the above rule did not concern programs, but the inference system for reasoning

about programs. He resolved this trouble by describing an in�nite sequence of

predicate transformers, and modi�ed the rule to depend on all the predicate

transformers.

This system did not deal with parameters.

In 1981, Apt [Apt81] proved that Soko lowski's rule did not have su�cient strength

to be able to prove all valid correctness speci�cations, i.e., that it was not com-

plete. Apt then added additional proof rules, still not including parameters, to

deal with the e�ects of procedure calls on variables not used in the procedure.

41



data-directed syntax-directed

header

3.3.3 America and de Boer

3.3.4 Pandya and Joseph

In 1990, America and de Boer [AdB90] noted that the augmented system pre-

sented by Apt was not sound, that one could derive from it correctness speci-

�cations which were not valid. An example of such a derivation was described

in their work. They then presented a modi�cation of Apt's proof system with

some restrictions added, and proved the resulting system was both sound and

complete. This paper was quite comprehensive and thorough in its treatment.

However, its scope was limited in several ways; the set of declared procedures

was restricted to a single procedure, parameters were not addressed, and contin-

uing the tradition set by Soko lowski, the recursion depth counter was required to

decrease by exactly one for every individual procedure call.

During this discussion of soundness and completeness, Pandya and Joseph [PJ86]

considered a new aspect of the problem of proving the total correctness of recur-

sive procedures, namely the simplicity and ease of applying the proof techniques.

They found that even for simple programs, that Soko lowski's rule could require

the use of complex predicates to encode information about the depth counter, to

ensure that it decreased by exactly one for each procedure call. This signi�cantly

added to the di�culty of practically proving such programs. Pandya and Joseph

noted that this requirement of decreasing by one did not consider the structure of

the program itself, and thus was as opposed to being .

They proposed a new rule, based on choosing a subset of the procedures called

the procedures. Every cycle in the procedure call graph was required to

42



VCG

VCG

VCG

3.4 Veri�cation Condition Generators, Embeddings, and

Mechanically Veri�ed Axiomatic Semantics

contain at least one header procedure. Then the requirement of decreasing by

one was applied to only the header procedures, and not the rest. This enabled

much simpler descriptions of the recursion depth counter, making proofs more

natural. Pandya and Joseph's approach did require the programmer to select a

valid set of header procedures for a program, but they described algorithms to

help identify such a set. Still, this was an additional burden on the programmer,

and varied in its e�ectiveness based on the particular structure of the program

being proved. In the worst case, one would need to choose all procedures as being

header procedures, in which case their rule simpli�ed to Soko lowski's.

Veri�cation Condition Generators have a long and respectable history. They

�rst appeared in the early 1970's, of which Igarashi, London, and Luckham's

[ILL75] is a notable and characteristic example. In the beginning they were

hailed as an answer to the di�culty of proving programs correct. This hope

waned over time, however. First of all, it was discovered that for many simple

programming languages, the work done by the was mostly trivial and not

hard to do by hand. Then, even after the had done its work and reduced

the problem of proving the program to the problem of proving the veri�cation

conditions, that those veri�cation conditions were not always easy to prove, and

could contain the bulk of the necessary e�ort of the entire proof. An additional

feature that was not discussed as much was the fact that for the most part, these

veri�cation condition generators were not themselves veri�ed. This meant that

43



VCG

VCG

HOL

HOL

VCG HOL

VCG HOL

VCG

HOL

VCG

VCG VCG

any proof using and relying on these tools might not be sound, even if all

the veri�cation conditions were correctly proven. Ragland's work [Rag73] in 1973

is a notable exception to this, far ahead of its time.

Finally, a veri�cation condition generator is usually based on an axiomatic

semantics for the programming language. When these programming languages

were extended to include procedure calls (an obvious necessity), a disturbing

number of the rules proposed for procedure calls turned out to be unsound. It

became evident that the area of procedure calls was more complicated than had

originally appeared. Given these di�culties, interest declined in the use of s,

and research mostly turned to other subjects, such as discovering rules to handle

concurrency in various forms.

In recent years, there have been several shallow embeddings of programming

languages in the theorem proving environment, including the creation of

veri�cation condition generators. These have taken the form of tactics,

which in general reduce a current goal to be proved to a su�cient set of subgoals.

In contrast to the traditional s created as stand-alone programs, these

s had their soundness secured by the inherent security of the system

itself. This was a very signi�cant advantage. No veri�cation of the itself was

necessary, as every application of the tactic would prove all necessary subsidiary

theorems as part of the process. However, this also was a weakness of the

s, because it required that every proof be carried out at the semantic level,

instead of the syntactic manipulations that were simpler and that were the tra-

ditional work of s. Also, these semantic s required an additional degree

of annotation and speci�cation from the user beyond what had been required by

44



tour de force

VCG

HOL

VCG

VCG

VCG

VCG

VCG VCG

VCG

VCG

VCG

VCG

3.4.1 Ragland

3.4.2 Igarashi, London, and Luckham

the syntactic s.

In addition, there have been forays into the areas of deep embeddings within

and into mechanical veri�cation of axiomatic semantics, including concur-

rency, proven from the underlying operational semantics. These technologies

have not usually been combined together with s, however, and generally the

veri�cation of s has not been targeted recently, until our work.

Ragland in 1973 veri�ed a veri�cation condition generator [Rag73]. It was written

in Nucleus, a language Ragland had invented to have the expressiveness to write

a , and also be veri�able itself. This was a remarkable piece of work, well

ahead of its time. The system consisted of 203 procedures, nearly all of

which were less than one page long. These gave rise to approximately 4000

veri�cation conditions. The proof of the used an unveri�ed written in

Snobol4. The 4000 veri�cation conditions it generated were proven by Ragland

by hand, not mechanically. In our opinion, this proof was a . This

proof substantially increased the degree of trustworthiness of Ragland's .

In 1975, Igarashi, London, and Luckham [ILL75] gave an axiomatic semantics for

a substantial subset of Pascal which included procedures, and described a

for partial correctness that they had written in MLISP2. The soundness of the

axiomatic semantics was veri�ed by hand proof, but the correctness of the

was not rigorously proven. The only mechanized part of this work was the

45



VCG

VCG

VCG

VCG VCG

3.4.3 Boyer and Moore

3.4.4 Gray

itself. This paper has become a classic reference on s.

In 1981, Boyer and Moore presented a veri�cation condition generator for a sub-

set of ANSI FORTRAN 66 and 77 [BM81]. This produced veri�cation conditions

as goals for the Boyer-Moore theorem prover. The was remarkable for sev-

eral reasons, including the substantial coverage of much of a \real" programming

language, the inclusion of a static check of the syntax to enforce a set of syn-

tactic restrictions (similar to our \well-formedness" constraints), the thorough

analysis of aliasing, and the generation of veri�cation conditions to prove ter-

mination. The approach to proving termination involved attaching \clocks" to

various statements, which were expressions yielding values in a well-founded set,

with the provision that every time control passed a clock, strictly less time was

left on the clock than on the previous clock encountered.

This was a substantial and powerful , with the advantage that the veri�-

cation conditions generated could then be proven with the aid of the Boyer-Moore

theorem prover. However, there was no formal axiomatic semantics presented to

justify the operation of the , and no veri�cation of the was considered.

In 1987, Gray presented a veri�cation condition generator he had created [Gra87]

to help teach axiomatic semantics to undergraduate students. The language con-

sidered resembled a subset of Pascal, and contained input and output commands,

as well as procedure calls with both value and variable parameters. This stand-

46



3.4.5 Gordon

VCG

VCG

VCG

HOL

HOL

VCG

HOL

alone was implemented by Gray and provided to his students. He wrote

that

In a teaching situation this allows the students to concentrate

on the tasks of specifying programs and proving lemmas, and relieves

them of the tedious symbol manipulation required to generate the

lemmas.

The veri�cation conditions produced were to be proven by hand by the students.

The issue of the veri�cation of the itself was not addressed by Gray, because

it was not central to his goal of undergraduate education.

Gordon in 1989 [Gor89] did the original work of constructing within a frame-

work for proving the correctness of programs. This was a seminal work, although

it did not cover procedures. Gordon created a shallow embedding of the pro-

gramming language considered, introducing new constants in the logic to

represent each program construct, de�ning them as functions directly denoting

the construct's semantic meaning. This work included de�ning veri�cation con-

dition generators for both partial and total correctness as tactics. This approach

yielded tools which could be used to soundly verify individual programs. How-

ever, the tactic he de�ned was not itself proven. Its soundness was ensured

by the security of itself. The chief strength of this work was the ability to

contain the entire proof of a program, from the original program correctness goal

to the proof of the individual veri�cation conditions, within a single mechanical

proof checker.

47



�

�

deep

HOL

HOL

VCG

HOL

3.4.6 Agerholm

while

while

3.4.7 Melham

3.4.8 Camilleri and Melham

In 1991 Agerholm [Age91] used a similar shallow embedding to de�ne the weak-

est preconditions of a small -loop language, including unbounded nondeter-

minism and blocks. The semantics was designed to avoid syntactic notions like

substitution. Similar to Gordon's work, Agerholm de�ned a veri�cation condition

generator for total correctness speci�cations as an tactic. This tactic needed

the user to supply additional information to handle sequences of commands and

the command.

In 1992, Melham [Mel92] created a embedding of the -calculus in sup-

porting meta-theoretic reasoning about the -calculus itself. Melham was careful

to explicitly de�ne all syntactic operations within the logic, including substitu-

tion, which previous authors had avoided. He used simultaneous substitutions,

and noted that this was one of the more complex de�nitions, due to the need to

change bound names. There were several points where the work was automated,

but no of the traditional style was presented.

Also in 1992, Camilleri and Melham [CM92] created a library for which

supported the de�nition and use of relations inductively de�ned by rules. In this

work, one of the examples presented was the de�nition of a structural operational

semantics for a small language. The command structure was based on a deep

48



+

HOL

VPAM

vpam ccs

et. al.

symbolically

while

3.4.9 Zhang, Shaw, Olsson, Levitt,

3.4.10 Lin

embedding, although the authors did not use this term. From this de�nition, the

authors proved the soundness of a Floyd-Hoare partial correctness rule for the

command.

In 1993, Zhang, Shaw, Olsson, Levitt, Archer, Heckman, and Benson [ZSO 93]

described a shallow embedding within of the concurrent programming lan-

guage microSR, a derivative of SR. This language used a message-passing mech-

anism, with asynchronous send and synchronous receive statements. Concur-

rent parts of the program could only communicate through this message-passing

mechanism, with no shared globals. The Hoare logic for microSR was formally

proven to be sound within HOL, a valuable achievement in the subtle area of

concurrency. The work did not include a veri�cation condition generator. The

chief contribution of this paper was the substantial and important mechanical

veri�cation of the Hoare logic rules concerning concurrency.

Also in 1993, Lin [Lin93] presented a veri�cation tool called for value-

passing CCS, Milner's Calculus of Communicating Systems. This tool appears

similar to veri�cation condition generators. This was described in a paper by

Nesi [Nes93] as follows:

The veri�cation tool for value-passing is based on a proof

system which deals with data and boolean expressions .

This means that, when value-passing agents are analyzed, boolean

49



deep

VCG

VCG

HOL

VCG VCG

VCG

HOL

HOL

HOL

3.4.11 Kaufmann

3.4.12 Homeier and Martin

while

and value expressions are not evaluated, and input variables are not

instantiated. In this way, reasoning about data is separated from

reasoning about agents, and is performed by extracting \proof obli-

gations" which can be veri�ed by another theorem prover later or

on-line with the main proof about the process behavior.

In 1994, Kaufmann used the Boyer-Moore Theorem Prover to produce a

similar in style and concept to the s produced for shallow embeddings in

[Kau94]. In this work, Kaufmann created a proof which was essentially a

proof at the semantic level, but it was guided and aided automatically by the

structure of the program by the . The acted as a heuristic guide to

form the proof, so the security of the proof rested not on the unveri�ed , but

on the security of the Boyer-Moore Theorem Prover.

In 1994, we presented an early version of some of the work of this dissertation

[HM94], for a standard -loop programming language without procedures

but containing expressions with side-e�ects. The rules of the Hoare logic pre-

sented were proven sound within from an underlying structural operational

semantics. As opposed to much previous work in this was based on a

embedding of the programming language in the logic. The veri�ed Hoare

logic then formed an axiomatic semantics for partial correctness which supported

the de�nition and proof of correctness for a veri�cation condition generator func-

50



within HOL VCG

VCG

VCG

tion the logic. The theorem of the veri�cation of the stated that

for any program and its speci�cation, if all of the veri�cation conditions the

generated were true, then the program was partially correct with respect to its

speci�cation. This theorem then supported the application of the function

to prove individual programs correct.

51



52



VCG

CHAPTER 4

Organization of Dissertation

\Let all things be done decently and in order."

| 1 Corinthians 14:40

The dissertation is organized as follows.

Part I describes the background of this work, including the technologies that

underlie it and the previous research in this area. Part II presents our primary

results, including the �ve program logics, the de�nition and proof of the ,

and examples of its use. Part III is a tour of interesting aspects of the system;

these are divided into those relevant to partial correctness and those supporting

total correctness. Finally, Part IV presents our conclusions and possibilities for

future research.

In Part I, Chapter 1 introduces and motivates the need for program correct-

ness, and introduces the concept of veri�cation condition generators. Chapter 2

describes the foundational technologies that underlie this work, such as structural

operational semantics and Floyd/Hoare-style rules. Chapter 3 is a survey of pre-

vious research on veri�cation condition generators, and in particular, methods to

prove the total correctness of procedures. Chapter 4 gives the overall organization

53



VCG

of the dissertation.

In Part II, Chapter 5 de�nes the syntax and semantics of the Sunrise pro-

gramming language and assertion language. Chapter 6 presents the �ve program

logics, with their fourteen correctness speci�cations, that can be used to prove

Sunrise programs totally correct. Chapter 7 is the heart of this work. It de-

�nes a veri�cation condition generator for the Sunrise system, and also presents

theorems that verify it. Chapter 8 then takes this and applies it to sev-

eral examples, with transcripts. Chapter 9 describes where the source code of

the Sunrise system may be found, for readers who may wish to use the system

themselves to prove programs.

In Part III, Chapter 10 describes various aspects of the system relating to

proving partial correctness. Chapter 11 then describes the proof of termination,

presenting its essence.

In Part IV, Chapter 12 describes our sense of this work's signi�cance. Chapter

13 examines the question of ease of use for Sunrise. Chapter 14 gives an outline

of our plans for future research in this area. Finally, Chapter 15 presents our

conclusions.

54



55

Part II

Results



56



while

CHAPTER 5

Sunrise

\They will speak with new tongues."

| Mark 16:17

\A wholesome tongue is a tree of life,

But perverseness in it breaks the spirit."

| Proverbs 15:4

In this chapter we describe the Sunrise programming language and its as-

sociated assertion language, which is the language studied in this work. This

is a representative member of the family of imperative programming languages,

and its constructs will be generally familiar to programmers. We have carefully

chosen the constructs included to have natural, straightforward, and simple se-

mantics, which will support proofs of correctness. To this end, we have extended

the normal notation for some constructs, notably loops and procedure

declarations, to include annotations used in constructing the proof of a Sunrise

program's correctness. These annotations are required, but have no e�ect on the

actual operational semantics of the constructs involved. They could therefore

be considered comments, except that they are used by the veri�cation condition

57



generator in order to produce an appropriate set of veri�cation conditions to

complete the proof.

In the past, there has been considerable debate over the need for the pro-

grammer to provide, say, a loop invariant. Some have claimed that this is an

unreasonable burden on the programmer, who should have to provide only a

program and an input/output speci�cation. Others have replied that the re-

quirement to provide a loop invariant forces clear thinking and documentation

that should have been done in any case.

We would like to take the pragmatic position that the provision of loop in-

variants is necessary for the simple de�nition of veri�cation condition generators,

which are not complex functions. The same principle holds for the more complex

annotations we require for procedures, that the provision of these annotations are

necessary for simple and clean de�nitions of the program logic rules which serve

as an axiomatic semantics for procedures. If one wishes to transfer the burden of

coming up with the loop invariant from the human to the automatic computer,

one incurs a great increase in the degree of di�culty of constructing the veri-

�cation condition generator, including the need for automatic theorem provers,

multiple decision procedures, and search strategies which have exponential time

complexity. We wish to attempt something rather more tractable, and to per-

form only part of the task, in particular that part which seems most amenable to

automatic analysis. This desire has guided the construction of the language here

de�ned.

58



pr

n m

n m

k

pre

post

j j

rec

j j j j � j �

h i j

j j � j ^ j _ j �

j

j

j

j

j

j

j

j

1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

1 2

1 2

1 1

1 1

1

1 1

1 2

exp:

(exp)list:

bexp:

cmd:

decl:

prog:

e n x x e e e e e e

es CONS e es

b e e e < e es es b b b b b

c

x e

c c

b c c

a a b c

p x ; ; x e ; ; e

d p x ; ; x y ; ; y

z ; ; z

a

a

p a

p a

a

c

d d

� d c

::= ++ +

::=

::= =

::=

:=
;

( . . . ; . . . )

::= ( . . . ; . . . );
. . . ;

;
;

;
...

;
;

;

::= ;

Table 5.1: Sunrise programming language.

59

skip

abort

if then else �

assert with while do od

procedure var val

global

pre

post

calls with

calls with

recurses with

end procedure

empty

program end program



a priori HOL

HOL

VCG

e

es

b

c

d

�

n

x y

5.1 Programming Language Syntax

exp

(exp)list

bexp

cmd

decl

prog

num

var

^

Table 5.1 contains the concrete syntax of the Sunrise programming language,

de�ned using Backus-Naur Form as a context-free grammar.

We de�ne six types of phrases in this programming language (Table 5.2):

Type Description Typical Member

numeric expressions
lists of numeric expressions
boolean expressions
commands
declarations
programs

Table 5.2: Sunrise programming language types of phrases.

The lexical elements of the syntax expressed in Table 5.1 are numbers and

variables. Numbers (denoted by ) are simple unsigned decimal integers, includ-

ing zero, with no limit on size, to match the type . They cannot

be negative, either as written or as the result of calculations.

Variables (denoted with or , etc.) are a new concrete datatype consist-

ing of two components, a string and a number. In a character string may be

of any length from zero or more. The name of a variable is typically printed as

the string, followed immediately by the variant number, unless it is zero, when no

number is printed; the possibility exists for ambiguity of the result. The parser

we have constructed expects the name of the variable to consist of letters, digits,

and underscore (` '), except that the �rst character may also be a caret (` ').

However, the operations of the allow the string to contain any characters.

The meaning of the string is to be the base of the name of the variable, and the

60



HOL

^

y ^y

logical variable program variable

meaning of the number is to be the variant number of the variable. Hence there

might be several variables with the same string but di�ering in their number

attribute, and these are considered distinct variables. This structure is used for

variables to ease the construction of variants of variables, by simply changing

(increasing) the variant number of the variable.

Variables are divided into two classes, depending on the initial character (if

any) of the string. If the initial character is a caret (` '), then the variable is

a , otherwise it is a . Program and logical vari-

ables are completely disjoint; \ " and \ " are separate and distinct variables.

Both kinds are permitted in assertion language expressions, but only program

variables are permitted in programming language expressions. Since logical vari-

ables cannot appear in programming language expressions, they may never be

altered by program control, and thus retain their values unchanged throughout

a computation.

The syntax given in Table 5.1 uses standard notations for readability. The

actual data types (except for lists) are created in as new concrete recur-

sive datatypes, using Melham's type de�nition package [GM93]. The results of

this de�nition includes the creation of the constructor functions for the various

programming language syntactic phrases in Table 5.3. This forms the abstract

syntax of the Sunrise programming language.

All the internal computation of the veri�cation condition generator is based

on manipulating expressions which are trees of these constructor functions and

the corresponding ones for assertion language expressions. These trees are not

highly legible. However, we have provided parsers and pretty-printing functions

61



�

�

�

^

_
�

exp

bexp

cmd

decl

prog

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

skip

abort

if then else �

assert with while do od

proc

empty

program end program

:

++
+

: =

:

:=
;

( ; )

:

;

: ;

Table 5.3: Sunrise programming language constructor functions.

62

NUM n n

PV AR x x

INC x x

PLUS e e e e

MINUS e e e e

MULT e e e e

EQ e e e e

LESS e e e < e

LLESS es es es es

AND b b b b

OR b b b b

NOT b b

SKIP

ABORT

ASSIGN x e x e

SEQ c c c c

IF b c c b c c

WHILE a pr b c a pr b c

CALL p xs es p xs es

PROC p vars vals glbs p vars vals glbs

pre post calls rec c pre post calls rec c

DSEQ d d d d

DEMPTY

PROG d c d c



�

�

n

x

x x

x y

x y

5.2.1 Numeric Expressions

5.2 Informal Semantics of Programming Language

to provide an interface that is more human-readable, so that the constructor trees

are not seen for most of the time.

The constructs in the Sunrise programming language, shown in Table 5.1, are

mostly standard. The full semantics of the Sunrise language will be given as

a structural operational semantics later in this chapter. But to familiarize the

reader with these constructs in a more natural and understandable way, we here

give informal descriptions of the semantics of the Sunrise language. This is in-

tended to give the reader the gist of the meaning of each operator and clause in

Table 5.1. We also describe the signi�cance of the system of annotations for both

partial and total correctness.

is an unsigned integer.

is a program variable. It may not here be a logical variable.

++ denotes the increment operation, where is a program variable as above.

The increment operation adds one to the variable, stores that new value into the

variable, and yields the new value as the result of the expression.

The addition, subtraction, and multiplication operators have their normal

meanings, except that subtraction is restricted to nonnegative values, so = 0

for . The two operands of a binary operator are evaluated in order from

left to right, and then their values are combined and the numeric result yielded.

63



h i

h i h i

�1 2

1

1 1

2

1 2

HOL

HOL

HOL

NIL CONS

NIL

es es

es

es es

es

es es

5.2.2 Lists of Numeric Expressions

5.2.3 Boolean Expressions

provides a polymorphic list type, and a set of list operators that function

on lists of any type. This list type has two constructors, and , with

the standard meanings. In both its meta language and object language,

typically displays lists using a more compact notation, using square brackets ([ ])

to delimit lists and semicolons (;) to separate list elements. Thus = [ ], and

[2;3;5;7] is the list of the �rst four primes. In this programming language we wish

to reserve square brackets to denote total correctness speci�cations, and so we

will use angle brackets ( ) instead to denote lists within the Sunrise language,

for example 2; 3; 5; 7 or . When dealing with lists, however, the square

brackets will still be used.

The numeric expressions in a list are evaluated in order from left to right, and

their values are combined into a list of numbers which is the result yielded.

The operators provided here have their standard meaning, except for ,

which evaluates two lists of expressions and compares their values according to

their lexicographic ordering. Here the left-most elements of each list are compared

�rst, and if the element from is less, then the test is true; if the element from

is greater, then the test is false; and if the element from is the same as

(equal to) the element from , then these elements are discarded and the tails

of and are compared in the same way, recursively.

For every operator here, the operands are evaluated in order from left to right,

and their values combined and the boolean result yielded.

64



�

pr

pr

pr

pr

n m

m

1 2

1 2

1 2

1 2

1 1

1

invariant

progress expression

variant

x e e

x c c

c c

b c c b

c c

a a b c b

c

b a

a

a

a

v < x v x

v

v

a

vs xs

p x ; ; x e ; ; e

e ; ; e

5.2.4 Commands

skip abort

if then else �

assert with while do od

assert

with

The command has no e�ect on the state. causes an immediate

abnormal termination of the program. := evaluates the numeric expression

and assigns the value to the variable , which must be a program variable. ;

executes command �rst, and if it terminates, then executes . The conditional

command �rst evaluates the boolean expression ; if it is

true, then is executed, otherwise is executed.

The iteration command evaluates ; if it

is true, then the body is executed, followed by executing the whole iteration

command again, until evaluates to false, when the loop ends. The \ "

and \ " phrases of the iteration command do not a�ect its execution; these

are here as annotations to aid the veri�cation condition generator. denotes an

, a condition that is true every time control passes through the head of

the loop. This is used in proving the partial correctness of the loop.

In contrast, denotes a , which here must be of the form

, where is a assertion language numeric expression and is a logical

variable. may only contain program variables. Assertion language expressions

will be de�ned presently; here, serves as a , an expression whose value

strictly decreases every time control passes through the head of the loop. This

is used in proving the termination of the loop. In future versions of the Sunrise

programming language, we intend to broaden to other expressions, such as

, whose variants describe values of well-founded sets.

Finally, ( . . . ; . . . ) denotes a procedure call. This �rst

evaluates the actual value parameters . . . in order from left to right,

65



1

1

n

n

p

x ; ; x

p

x ; ; x

p p

and then calls procedure with the resulting values and the actual variable

parameters . . . . The value parameters are passed by value; the variable

parameters are passed by name, to simulate call-by-reference. The call must

match the declaration of in the number of both variable and value parameters.

Aliasing is forbidden, that is, the actual variable parameters . . . may

not contain any duplicates, and may not duplicate any global variables accessible

from . The body of has the actual variable parameters substituted for the

formal variable parameters. This substituted body is then executed on the state

where the values from the actual value parameters have been bound to the formal

value parameters. If the body terminates, then at the end the values of the formal

value parameters are restored to their values before the procedure was entered.

The e�ect of the procedure call is felt in the actual variable parameters and in

the globals a�ected.

66



!

1 1

1

1 1

1

1

1

1 1

progress environment prog env

prog env string aexp

n m

k

pre

post

j j

rec

n

m

k

pre

post

j j

rec

5.2.5 Declarations

procedure var val

global

pre

post

calls with

calls with

recurses with

end procedure

proc

false

calls with

p x ; ; x y ; ; y

z ; ; z

a

a

p a

p a

a

c

p vars vals glbs pre post calls rec c

p p

vars x ; ; x

vals y ; ; y

vars z ; ; z

pre a

post a

calls �p: a =p a =p

rec a

c c

calls

The main kind of declaration is the procedure declaration; the other forms sim-

ply serve to create lists of procedure declarations or empty declarations. The

procedure declaration has the concrete syntax

( . . . ; . . . );
. . . ;

;
;

;
...

;
;

This syntax is somewhat large and cumbersome to repeat; we will usually use

instead the lithe abstract syntax version

where it is to be understood that we mean

=
= . . .
= . . .
= . . .
=
=
= ( )[ ] . . . [ ]
=
=

Note that the parameter is now a of type ,

where = , a function from procedure names to progress

expressions, to serve as the collection of all the . . . phrases given.

67



n

m

k

1

1

1

�

�

�

�

�

�

var

val

global

p

vars

x ; ; x

vals

y ; ; y

glbs

z ; ; z

pre

post

post

The meaning of each one of these parameters is as follows:

is the name of the procedure, a simple string.

is the list of the formal variable parameters, a list of variables. If there

are no formal variable parameters, the entire \ . . . " phrase may

be omitted.

is the list of the formal value parameters, a list of variables. If there

are no formal value parameters, the entire \ . . . " phrase may

be omitted.

is the list of the global variables accessible from this procedure. This

includes not only those variables read or written within the body of this

procedure, but also those read or written by any procedure called immedi-

ately or eventually by the body of this procedure. Thus it is a list of all

globals which can possibly be read or written during the course of execu-

tion of the body once entered. If there are no globals accessible, the entire

\ . . . ;" phrase may be omitted.

is the precondition of this procedure. This is a boolean expression

in the assertion language, which denotes a requirement that must be true

whenever the procedure is entered. Only program variables may be used.

is the postcondition of this procedure. This is a boolean expression in

the assertion language, which denotes the relationship between the states

at the entrance and exit of this procedure. Two kinds of variables may be

used in , program variables and logical variables. The logical variables

68



�

�

i i

i

i i

i

i

i

calls with

calls with

progress expression

recursion expression

calls

p a

post

p

p

p p

p p

a post

a

p

p

rec

rec

p p

p

post

will denote the values of variables at the time of entrance, and the program

variables will denote the values of the variables at the time of exit. The

postcondition expresses the logical relationship between these two sets of

values, and thus describes the e�ect of calling the procedure.

is the progress environment, the collection of all the . . .

phrases given. Each \ " phrase expresses a relationship

between two states, similar to the expression but for di�erent states.

The �rst state is that at the time of entrance of this procedure . The

second state is that at any time that procedure is called directly from

the body of . That is, if while executing the body of there is a direct

call to , then the second state is that just after entering .

Expression is a . Similar to the expression, there

are two kinds of variables that may be used in , program variables and

logical variables. The logical variables will denote the values of variables at

the time of entrance of , and the program variables will denote the values

of the variables at the time of entrance of . The progress expression gives

the logical relationship between these two sets of values, and thus describes

the degree of progress achieved between these calls.

is the for this procedure. It is a progress expression,

similar to the progress expression of an iteration command, describing a

relationship between two states. For , the �rst state is that at the time

of entrance of , and the second state is any time of entrance of recursively

as part of executing the body of for the �rst call.

Similar to the expression, there are two kinds of variables that may be

69



rec

�

�

�

false false

recurses with

false

rec

p

p rec

rec rec v < x

v x

rec p

v < x v

v x rec

p

p v < x

vs xs

a rec

c

vars vals glbs

calls rec

used in , program variables and logical variables. The logical variables

will denote the values of variables at the time of original entrance of , and

the program variables will denote the values of the variables at the times

of recursive entrance of . The expression gives the logical relationship

between these two sets of values, and thus describes the degree of progress

achieved between recursive calls.

There are two permitted forms for . may be of the form , where

is an assertion language numeric expression and is a logical variable, or

may be . is appropriate when the procedure is not recursive

and cannot call itself. Otherwise, should be used. may only contain

program variables; it serves as a variant, an expression whose value strictly

decreases for each recursive call. Thus if was equal to at the time

was originally called, then at any recursive call to nested within that �rst

call to , we should have .

In the future we intend to broaden this to include other expressions, such

as , whose variants describe values in well-founded sets, and the

strict decrease described will be in terms of the relation used, e.g., .

If this procedure is not expected to ever call itself recursively, then the

phrase \ ;" may be omitted, in which case is taken

by default to be .

Command is the body of this procedure. It may only use variables ap-

pearing in , , or .

The actual signi�cance of the various annotations, especially and ,

will be explained in greater depth and illustrated with examples in later chapters.

70



HOL

h i

! � � �

� � � �

5.2.6 Programs

procedure environment

5.3 Assertion Language Syntax

�

� p vars; vals; glbs; pre; post; calls; rec; c :

:

env

env

env string var list var list var list

aexp aexp prog env aexp cmd

A program consists of a declaration of a set of procedures and a command as the

main body. The declarations are processed to create a

of type , collecting all of the information declared for each procedure into a

function from procedure names to tuples of the following form:

=

The de�nition of is

= (( ) ( ) ( )
)

This environment is the context used for executing the bodies of the proce-

dures themselves, and also for executing the main body of the program.

The program is considered to begin execution in a state where the value of

all variables is zero; however, this initial state is not included in the proof of

a program's correctness. A future version of the Sunrise program may have an

arbitrary initial state, and the same programs will prove correct.

Table 5.4 contains the syntax of the Sunrise assertion language, de�ned using

Backus-Naur Form as a context-free grammar.

We de�ne three types of phrases in this assertion language, in Table 5.5.

The above syntax uses standard notations for readability. The actual data

types are created in as new concrete recursive datatypes, using Melham's

71



true false

close

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 3

j j j � j �

h i j

j

j j j �

j ^ j _ j �

j ) j j j

j j 8 j 9

vexp:

(vexp)list:

aexp:

vexp

(vexp)list

aexp

v n x v v v v v v

vs CONS v vs

a

v v v < v vs vs

a a a a a

a a a a a > a a

a x: a x: a

v

vs

a

::= +

::=

::=
=

= ( = )

Table 5.4: Sunrise assertion language.

Type Description Typical Member

numeric expressions
lists of numeric expressions
boolean expressions

Table 5.5: Sunrise assertion language types of phrases.

72



vexp

aexp

�

�

�

^

_
�

)

j

8

9

true

false

close

5.4 Informal Semantics of Assertion Language

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 3 1 2 3

ANUM n n

AV AR x x

APLUS v v v v

AMINUS v v v v

AMULT v v v v

ATRUE

AFALSE

AEQ v v v v

ALESS v v v < v

ALLESS vs vs vs vs

AAND a a a a

AOR a a a a

ANOT a a

AIMP a a a a

AEQB a a a a

ACOND a a a a > a a

ACLOSE a a

AFORALL x a x: a

AEXISTS x a x: a

type de�nition package [GM93]. The results of this de�nition includes the cre-

ation of the constructor functions for the various assertion language syntactic

phrases in Table 5.6. This forms the abstract syntax of the Sunrise assertion

language.

:

+

:

=

=
=

Table 5.6: Sunrise assertion language constructor functions.

The constructs in the Sunrise assertion language, shown in Table 5.4, are mostly

standard. The full semantics of the Sunrise assertion language will be given as a

73



�

�

n

x

x y

x y

NIL

CONS

5.4.1 Numeric Expressions

5.4.2 Lists of Numeric Expressions

5.4.3 Boolean Expressions

true

denotational semantics later in this chapter. But to familiarize the reader with

these constructs in a more natural and understandable way, we here give informal

descriptions of the semantics of the Sunrise assertion language. This is intended

to give the reader the gist of the meaning of each operator and clause.

The evaluation of any expression in the assertion language cannot change the

state; hence it is immaterial in what order subexpressions are evaluated.

is an unsigned integer, as before for the programming language.

is a variable, which may be either a program variable or a logical variable.

The addition, subtraction, and multiplication operators have their normal

meanings, except that subtraction is restricted to nonnegative values, so = 0

for .

These are similar to the lists of numeric expressions described previously for

the programming language, except that the constituent expressions are assertion

language numeric expressions. This list type has two constructors, and

, with the standard meanings.

Most of the operators provided here have their standard meaning, and are similar

to their counterparts in the programming language, if one exists. and

74



HOL

^ _

�

j

1 2

1 2 3

1 2 3

1

false

close

<

vs vs

a > a a

a a a

a a

a a

are the logical constants. = and have the normal interpretation, and

so do the various boolean operators, such as conjunction ( ) and disjunction ( ).

evaluates two lists of expressions and compares their values according

to their lexicographic ordering. ( = ) is a conditional expression, �rst

evaluating , and then yielding the value of or respectively, depending on

whether evaluated to T or F, which are the truth constants.

forms the universal closure of , which is true when is true for all possible

assignments to its free variables. We have speci�cally included the universal and

existential quanti�ers; all quanti�cation is over the nonnegative integers.

75



HOL

HOL

VCG

5.5 Formal Semantics

\There are, it may be, so many kinds of languages in the world, and

none of them is without signi�cance. Therefore, if I do not know the

meaning of the language, I shall be a foreigner to him who speaks,

and he who speaks will be a foreigner to me."

| 1 Corinthians 14:10, 11

We present in this section the structural operational semantics of the Sunrise

programming language, according to the style of Plotkin [Plo81] and Hennessey

[Hen90]. We also present the semantics of the Sunrise assertion language in a

denotational style.

The de�nitions in this section are the primary foundation for all succeeding

proof activity. In particular, it is from these de�nitions that the �ve program

logics described in Chapter 6 are proven sound, and from which the veri�cation

condition generator presented in Chapter 7 is proven sound. It is therefore also

the foundation for the example programs which are veri�ed in Chapter 8.

These extensions to the system are purely de�nitional. No new axioms

are asserted. This is therefore classi�ed as a \conservative extension" of ,

and there is no possibility of unsoundness entering the system. This security was

essential to our work. This choice ensured that we faced a very di�cult task

in proving the soundness of the logics of Chapter 6, and in fact this may have

consumed 65{70% of the e�ort of this project. These proofs culminated in the

soundness theorems, and once proven, the theorems are applied to example

76



HOL

HOL

HOL HOL

programs without needing to retrace the same proofs for each example.

This signi�cant expenditure of e�ort was necessary because of the history of

unsoundness in proposed axiomatic semantics, particularly in relation to proce-

dures. After constructing the necessary proofs, we are grateful for the unrelenting

vigilance of the system, which kept us from proving any incorrect theorems.

Apparently it is easier to formulate a correct structural operational semantics

than it is to formulate a sound axiomatic semantics. This agrees with our in-

tuition, that an axiomatic semantics is inherently higher-level than operational

semantics, and omits details covered at the lower level. We exhibit this structural

operational semantics as the critical foundation for our work, and present it for

the research community's appraisal.

As previously described, the programming language has six kinds of phrases,

and the assertion language has three. For each programming language phrase,

we de�ne a relation to denote the semantics of that phrase. The structural

operational semantics consists of a series of rules which together constitute an

inductive de�nition of the relation. This is implemented in using Melham's

excellent library [Mel91] for inductive rule de�nitions.

The semantics of the assertion language is de�ned in a denotational style. For

each assertion language phrase, we de�ne a function which yields the interpreta-

tion of that phrase into the Object Language. This is implemented in

using Melham's tool for de�ning recursive functions on concrete recursive types

[Mel89]. The types used here are the types of the assertion language phrases.

77



1 2 1

2

1 2 1

2

1 2 1

2

1 2

1 2

1 2 1

2

:exp

:num

:(exp)list

:(num)list

:bexp

:bool

:cmd

:decl

:prog

E e s n s e s

n s

ES es s ns s es s

ns s

B b s t s b s

t s

C c � s s c �

s s

D d � � d �

�

P � s � s

5.5.1 Programming Language Structural Operational Semantics

The structural operational semantics of the six kinds of Sunrise programming

language phrases is expressed by the six relations in Table 5.7.

numeric expression evaluated in state yields

numeric value and state

numeric expressions evaluated in state

yield numeric values and state

boolean expression evaluated in state yields

truth value and state

command evaluated in environment and

state yields state

declaration elaborated in environment yields

result environment

program executed yields state

Table 5.7: Sunrise programming language semantic relations.

78



HOL

� �

� �

h i

1 2

1 2

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 2 2 3

1 3

Number: Variable: Increment:

Addition: Subtraction:

Multiplication:

Nil: Cons:

E

E n s n s E x s s x s
E x s n s

E x s n s n =x

E e s n s
E e s n s

E e e s n n s

E e s n s
E e s n s

E e e s n n s

E e s n s
E e s n s

E e e s n n s

ES

ES

ES s s
E e s n s ES es s ns s

ES CONS e es s CONS n ns s

In Table 5.8, we present rules that inductively de�ne the numeric expres-

sion semantic relation . This is a structural operational semantics for numeric

expressions.

( ) ( ) ( )
( )

(++ ) ( + 1) [( + 1) ]

( + ) ( + ) ( ) ( )

( ) ( )

Table 5.8: Numeric Expression Structural Operational Semantics.

In Table 5.9, we present rules that inductively de�ne the numeric expression

list semantic relation . This is a structural operational semantics for lists

of numeric expressions. The relation was actually de�ned in as a list

( ) [ ] ( ) ( )

Table 5.9: Numeric Expression List Structural Operational Semantics.

79



� �

^ ^

_ _

� �

Equality:

Less Than:

Lexicographic Less Than:

Conjunction:

Disjunction:

Negation:

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 1 1 2

2 2 2 3

1 2 1 1 2 3

1 2

1 2

NIL CONS

B

E e s n s
E e s n s

B e e s n n s

E e s n s
E e s n s

B e < e s n < n s

ES es s ns s
ES es s ns s

B es es s ns ns s

B b s t s
B b s t s

B b b s t t s

B b s t s
B b s t s

B b b s t t s

B b s t s
B b s t s

recursive function, with two cases for the de�nition based on or .

In Table 5.10, we present rules that inductively de�ne the boolean expres-

sion semantic relation . This is a structural operational semantics for boolean

expressions.

( = ) ( = )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

Table 5.10: Boolean Expression Structural Operational Semantics.

80



h i
0

0 0

0 0

pr

pr

pr

1 2

1 2

1 1 2 2 2 3

1 2 1 3

1 2 1 2 3

1 2 1 3

1 2 2 2 3

1 2 1 3

1 2 2 3

3 4

1 4

1 2

1 2

1 2

2 3

1 3 2

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Call:

skip if then else �

if then else �

assert with

while do od

assert with

while do od

assert with

while do od

call map

C

C � s s

E e s n s
C x e � s s n=x

C c � s s ; C c � s s
C c c � s s

B b s s ; C c � s s
C b c c � s s

B b s s ; C c � s s
C b c c � s s

B b s s ; C c � s s
C a a

b c � s s

C a a
b c � s s

B b s s
C a a

b c � s s

ES es s ns s
� p vars; vals; glbs; pre; post; calls; rec; c

vals variants vals SL xs glbs
C c < xs vals =vars vals � s ns=vals s
C p xs es � s s s vals =vals

In Table 5.11, we present rules that inductively de�ne the command semantic

relation . This is a structural operational semantics for commands.

(no rules)

( := ) [ ]

( ; )

T
( )

F
( )

T
(

)
(

)

F
(

)

=
= ( ( & ))

( [ & & ]) [ ]
( ( ; )) [( ) ]

Table 5.11: Command Structural Operational Semantics.

81



h i

h i

1 1 2 2 2 3

1 2 1 3

0

0

0 0

0 1 1 0 1

1

proc

empty

false true false false abort

program end program

Procedure Declaration:

Declaration Sequence: Empty Declaration:

Program:

D

D p vars vals glbs pre post calls rec c �
� vars; vals; glbs; pre; post; calls; rec; c =p

D d � � ; D d � �
D d d � � D � �

P

�

� �p: ; ; ; ; ; �p: ; ; ;

s s �x:

D d � � ; C c � s s
P d c s

In Table 5.12, we present rules that inductively de�ne the declaration semantic

relation . This is a structural operational semantics for declarations.

( )
[ ]

( ; ) ( )

Table 5.12: Declaration Structural Operational Semantics.

In Table 5.13, we present rules that inductively de�ne the program semantic

relation . This is a structural operational semantics for programs. As used in

this de�nition, we de�ne as the empty environment

= [ ] [ ] [ ] ( )

and as the initial state = 0.

( ; )

Table 5.13: Program Structural Operational Semantics.

82



� �

� �

1 2 1 2

1 2 1 2

1 2 1 2

:vexp

num

:(vexp)list

(num)list

:aexp

bool

5.5.2 Assertion Language Denotational Semantics

V v s v s

V S vs s vs s

A a s a s

V

V n s n

V x s s x

V v v s V v s V v s

V v v s V v s V v s

V v v s V v s V v s

The denotational semantics of the three kinds of Sunrise assertion language

phrases is expressed by the three functions in Table 5.14.

numeric expression evaluated in state

yields numeric value in

list of numeric expressions evaluated in state

yields list of numeric values in

boolean expression evaluated in state

yields truth value in

Table 5.14: Sunrise assertion language semantic functions.

In Table 5.15, we present a denotational de�nition of the assertion language

semantic function for numeric expressions.

=
=

( + ) = +
( ) =
( ) =

Table 5.15: Assertion Numeric Expression Denotational Semantics.

83



true

false

close

h i

� �

^ ^

_ _
� �

) )

j j

8

8 8

9 9

�

�

�

�

� _ ^ �

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 3 1 2 3

1 1

1 1 2 2 1 2 1 2 1 2

V S

V S s

V S CONS v vs s CONS V v s V S vs s

A

A s

A s

A v v s V v s V v s

A v < v s V v s < V v s

A vs vs s V S vs s V S vs s

A a a s A a s A a s

A a a s A a s A a s

A a s A a s

A a a s A a s A a s

A a a s A a s A a s

A a > a a s A a s > A a s A a s

A a s s : A a s

A x: a s n: A a s n=x

A x: a s n: A a s n=x

CONS n ns

CONS n ns

CONS n ns CONS n ns n < n n n ns ns

In Table 5.16, we present a denotational de�nition of the assertion language

semantic function for lists of numeric expressions.

= [ ]
( ) = ( ) ( )

Table 5.16: Assertion Numeric Expression List Denotational Semantics.

In Table 5.17, we present a denotational de�nition of the assertion language

semantic function for boolean expressions.

= T
= F

( = ) = ( = )
( ) = ( )
( ) = ( )
( ) = ( )
( ) = ( )
( ) = ( )
( ) = ( )
( = ) = ( = )
( = ) = ( = )
( ) = ( )
( ) = ( [ ])
( ) = ( [ ])

Table 5.17: Assertion Boolean Expression Denotational Semantics.

The lexicographic ordering is de�ned as

[ ] [ ] = F
[ ] = T

[ ] = F
= ( = )

This concludes the de�nition of the semantics of the assertion language.

84



and

The Sunrise language is properly thought of as consisting of both the program-

ming language the assertion language, even though the assertion language

is never executed, and only exists to express speci�cations and annotations, to

facilitate proofs of correctness. The two languages are di�erent in character; the

semantics of the programming language is very dependent on time; it both re-

sponds to and causes the constantly changing state of the memory. In contrast,

the assertion language has a timeless quality, where, for a given state, an ex-

pression will always evaluate to the same value irrespective of how many times

it is evaluated. The variables involved also re
ect this, where program variables

often change their values during execution, but logical variables never do. The

programming language is an active, involved participant in the execution as it

progresses; the assertion language takes the role of a passive, detached observer

of the process.

This di�erence carries over to how the languages are used. States and their

changes in time are the central focus of the operational semantics, whereas asser-

tions and their permanent logical interrelationships are the focus of the axiomatic

semantics. Programs in the programming language are executed, causing changes

to the state. Assertions in the assertion language are never executed or even

evaluated. Instead they are stepping stones supporting the proofs of correctness,

which also have a timeless quality. Done once for all possible executions of the

program, a proof replaces and exceeds any �nite number of tests.

85



:cmd1 2

1

2

1 1 2 2 1

1

2

2 2

5.6 Procedure Entrance Semantic Relations

C calls c � s p s c �

s p c

p s

M calls p s ps p s � p

� s

ps

p

p s

In addition to the traditional structural operational semantics of the Sunrise

programming language, we also de�ne two semantic relations that connect to

states reached at the entrances of procedures called from within a command.

These semantic relations are used to de�ne the correctness speci�cations for the

Entrance Logic.

The entrance structural operational semantics of commands and procedures

is expressed by the two relations described in Table 5.18.

Command , evaluated in environment

and state , calls procedure directly from ,

where the state just after entering is .

The body of procedure , evaluated in

environment and state , goes through

a path of successively nested calls, and

�nally calls , where the state just after

entering is .

Table 5.18: Sunrise programming language entrance semantic relations.

86



h i
0

0 0

pr

pr

pr

1 1 2

1 2 1 2

1 1 2

2 2 3

1 2 1 3

1 2

1 2 3

1 2 1 3

1 2

2 2 3

1 2 1 3

1 2

2 3

1 3

1 2 2 3

3 4

1 4

1 2

1 2

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Call:

if then else �

if then else �

assert with

while do od

assert with

while do od

assert with

while do od

call

In Table 5.19, we present rules that inductively de�ne the command semantic

relation .

(no rules)

(no rules)

(no rules)

( ; )

( ; )

T

( )

F

( )

T

(
)

T
(

)
(

)

=
= ( ( & ))

( ( ; )) (( [ ]) [ & & ])

Table 5.19: Command Entrance Semantic Relation.

87

C calls

C calls c � s p s
C calls c c � s p s

C c � s s
C calls c � s p s

C calls c c � s p s

B b s s
C calls c � s p s

C calls b c c � s p s

B b s s
C calls c � s p s

C calls b c c � s p s

B b s s
C calls c � s p s

C calls a a
b c � s p s

B b s s ; C c � s s
C calls a a

b c � s p s

C calls a a
b c � s p s

ES es s ns s
� p vars; vals; glbs; pre; post; calls; rec; c
vals variants vals SL xs glbs

C calls p xs es � s p s ns=vals < xs vals =vars vals



h i

Single:

Multiple:

1

1 2 2

1 1 2 2

1 1 1 2 2

2 2 2 3 3

1 1 1 2 2 3 3

1

5.7 Termination Semantic Relations

M calls

� p vars; vals; glbs; pre; post; calls; rec; c
C calls c � s p s

M calls p s p s �

M calls p s ps p s �
M calls p s ps p s �

M calls p s ps CONS p ps p s �

c p

In Table 5.20, we present rules that inductively de�ne the procedure path

semantic relation .

=

[ ]

( & ( ))

Table 5.20: Path Entrance Semantic Relation.

In addition to the other structural operational semantics of the Sunrise program-

ming language, we also de�ne two semantic relations that describe the termina-

tion of executions begun in states reached at the entrances of procedures called

from within a command. These semantic relations are used to de�ne the correct-

ness speci�cations for the Termination Logic.

The termination semantics of commands and procedures is expressed by the

two relations in Table 5.21. These termination semantic relations are true when

all direct calls from or from the body of are known to terminate.

88



0

0

let in

let in

8 )

9 h i

8 )

9 h i

M calls terminate

1 2

1 2

2

1 1 2 2

1 1 2 2

2 2

1

2 1 2

3

2 3

1 1

2 2 1 1 2 2

3 2

2 3

C calls terminate c � s p s

C calls c � s p s

p s

M calls terminate p s � p s

M calls p s p s �

p s

C calls terminate

M calls terminate

C calls terminate c � s

p s : C calls c � s p s

s : vars; vals; glbs; pre; post; calls; rec; c � p

C c � s s

C calls terminate

M calls terminate p s �

p s : M calls p s p s �

s : vars; vals; glbs; pre; post; calls; rec; c � p

C c � s s

For every procedure and state such that

,

the body of executed in state terminates.

For every procedure and state such that

[ ] ,

the body of executed in state terminates.

Table 5.21: Sunrise programming language termination semantic relations.

In Tables 5.22 and 5.23, we present the de�nitions of the command termi-

nation semantic relation and the procedure path termination

semantic relation .

=

( =
)

Table 5.22: Command Termination Semantic Relation .

=
[ ]

( =
)

Table 5.23: Procedure Path Termination Semantic Relation .

89



VCG

The de�nitions of the relations presented in this chapter de�ne the semantics

of the Sunrise programming language, as a foundation for all later work. From

this point on, all descriptions of the meanings of program phrases will be proven

as theorems from this foundation, with the proofs mechanically checked. This will

ensure the soundness of the later axiomatic semantics, a necessary precondition

to a veri�ed .

90



if

CHAPTER 6

Program Logics

\And you shall teach them the statutes and the laws, and show them

the way in which they must walk and the work they must do."

| Exodus 18:20

\Prove all things; hold fast that which is good."

| 1 Thessalonians 5:21, King James Version

Floyd's and Hoare's seminal papers ([Flo67], [Hoa69]) set forth the idea that

one could reason about all executions of a program using the axioms and rules

of inference of a logic. The axioms and rules of this logic describe valid patterns

of deduction, and involve both phrases of the programming language, and as-

sertions describing conditions at points in the execution. A key element of this

reasoning process is that it involves only syntactic manipulations of the program

and assertion language phrases involved. This is inherently much simpler than

following the same structure of reasoning by tracing the sequence of states that

the computation passes through according to the operational semantics. We dis-

tinguish these two kinds of reasoning as \syntactic" versus \semantic" reasoning.

Essentially, syntactic reasoning involves much simpler operations, which is a great

advantage, the syntactic reasoning is semantically valid. Then the syntactic

91



ad hoc

call

call

call

q B r
q i p r q i B r

i : q i p r

q

q i p r q i B r :

f g f g
f g f g ` f g f g

f9 � g f g

f g f g ` f g f g

reasoning step embodies and stands for a level of semantic reasoning, which only

need be veri�ed once. This then saves one from repeating the same patterns of

semantic reasoning every time the syntactic manipulation applies.

In this chapter we will describe �ve program logics, which together constitute

an axiomatic semantics for total correctness for the Sunrise programming lan-

guage. These logics and their rules are the \laws" referred to in the introductory

quote. Unlike previously proposed axiomatic semantics, every rule in every logic

presented in this chapter is not simply asserted or proposed, but in fact has been

mechanically proven correct as a theorem from the underlying structural opera-

tional semantics. Much of the content of these logics concerns proving the total

correctness of mutually recursive procedures.

In the past, axiomatic semantics for total correctness for procedures has in-

volved a rule for procedure call similar to the following rule by Soko lowski [Sok77]:

(0)
( ) ( + 1)

0 ( )

The argument to is a recursion depth counter, which must decrease by

exactly one for each procedure call. Soko lowski described the need to �nd an

appropriate meaning for the phrase

( ) ( + 1)

He then gave an interpretation which involved an in�nite chain of predicate trans-

formers.

In the various papers which have proposed rules similar to this one, the ex-

ample proofs presented appeared to us to have an quality, where the proof

92



ad hoc

at least

depended greatly on the speci�c example, and not as much on the veri�cation

mechanism. Thus the proofs of the examples seemed somewhat irregular in shape,

although entirely valid.

In our investigation, we have created a new approach to the proof of total

correctness of procedures not deriving from the above style of rule for procedure

call. The approach we give has considerably more mechanism than the single

rule above; but we �nd that the additional mechanism give a structure to the

proof which largely removes the quality, and in fact regularizes the pro-

cess enough that it can be successfully mechanized in a veri�cation condition

generator. In addition, that veri�cation condition generator then removes from

the user's view all of the new mechanism, leaving only a set of relatively simple

veri�cation conditions which do not themselves involve any recursion.

This additional mechanism is an aid, in that it moves much of the proof e�ort

out of the arena which is particular for each individual program to be proved,

into the area which is regularized and structured, with established patterns of

reasoning. It also helps the user in that it breaks a large problem into smaller

pieces, and allows a more incremental, stepwise, \line upon line" construction of

a proof.

In addition, our system appears to be more general than the previous pro-

posals. These generally asked the user to supply a recursion depth counter that

decreased by exactly one for each call. Instead of this, we ask the user to supply

a recursion expression which must decrease by one every time a nested

recursive call is made to the same procedure. This might be an immediately

recursive call, as in the factorial procedure; or it might be an eventual recursive

93



all

recurses with

call, as in a top-down recursive descent parser that may have many intermediate

calls between a call of a particular procedure and a recursive entry of the same

procedure. This is a looser condition than previously proposed, and thus will

support proofs of total correctness for a larger class of programs. We do not

claim that our system can support proofs of total correctness for programs

which in fact terminate; there may be some exotic examples which cannot be

veri�ed within this structure that we propose. Nevertheless, seems to us at this

point that our system may be expressive enough to cover most of the programs

that would be written in actual practice.

This claim of generality must be quali�ed, however. In general, it may be

possible to �nd a recursion depth counter that decreases by exactly one for each

call for any example program which could be proven by our system. However,

we agree with Pandya and Joseph [PJ86] that this can be di�cult in practice be-

cause it leads to the use of predicates which are often complex and non-intuitive,

even for simple programs. Pandya and Joseph make the excellent point that it

is important for a program proof to make a proper use of abstraction, to remove

unnecessary details from the burden imposed on the user, and to be structured

in a natural, intuitive way. We wholly agree, and have constructed the system

contained in this dissertation to re
ect this concern for proper abstraction, natu-

ral and intuitive steps, and structuring the proof to re
ect the structure present

in the program itself. Our claim of generality should then be understood in the

sense of this more intuitive and natural approach.

The core of our system's approach to proving the termination of recursive

procedure calls uses an expression, supplied by the user in the

94



1 2f g f ga c a =�

calls

with

calls with

calls with

recursion expres-

sion

entrance

part of the speci�cation of a procedure, which we will call the

of that procedure. This part of the speci�cation is a claim that the recursion

expression's value decreases by at least one between recursive calls of that pro-

cedure. If this is true, then for any value that the expression may have the �rst

time that procedure is called, it can only decrease a �nite number of times, and

thus must eventually come to a place where it does not call itself recursively any

more. This guarantees that the procedure terminates.

To verify that the recursion expression's value decreases by at least one be-

tween recursive calls of the procedure requires that we compare the value of this

expression at two di�erent times, which may be widely separated with a chain

of many nested calls in between. We break this chain down into the individ-

ual steps achieved between each procedure call in this chain and the next. The

progress achieved in each individual procedure call is described in the . . .

part of the speci�cation of the procedure. Then the progress achieved be-

tween recursive procedure calls is the accumulation of the progress achieved in

each step.

This then requires that we verify the progress claimed in the . . .

part of the speci�cation of the procedure. This progress speci�cation describes

the change in state between two points in time, one at the head of the procedure's

body, which we call the of the procedure, and the other at the entrance

of the procedure named in the . . . speci�cation. We can de�ne this

progress by a new form of program logic, described in detail below.

This new form of program logic may seem strange at �rst glance. The tradi-

tional Hoare logic partial correctness speci�cation has the form ,

95



c

p p
body of p body of p

a1

s1

a2

s2

Diagram of {a1} c {a2} /ρ:

If a1 is true in state s1, then a2 is true in state s2.

Diagram of {a1} c → p {a2} /ρ:

If a1 is true in state s1, then a2 is true in states s2 and s3.

Nothing is claimed about state s4.

c

p p
body of p body of p

a1

s1

a2

s3

a2

s2

?

s4

Figure 6.1: Comparison of Partial Correctness and Entrance Speci�cations.

96



1 2f g ! f g

within

diagonal

c �

a c p a =�

p c

c

c

c

c

c

c

calls with

recurses with

describing the relationship between the states before and after executing the com-

mand , given the procedure environment . One of the new correctness speci�-

cations we propose has the form , describing the relationship

between the states (1) before executing c and (2) just after entering the procedure

as a result of a call which issued from within the command . Whereas the

traditional correctness speci�cation relates two points in the computation which

are at the same level of procedure call, the new correctness speci�cation relates

two points which are at two di�erent levels of procedure call. Further, where the

traditional correctness speci�cation gives a postcondition describing the state at

the end of executing the command , the new correctness speci�cation does not

in any way describe the state at the end of , but rather the states at particular

points the execution of . This is diagrammed in Figure 6.1. The tradi-

tional correctness speci�cation is diagrammed as a horizontal dashed arrow to

the right, denoting the progress of computation between the beginning of and

its end. The new correctness speci�cation is diagrammed as a arrow,

pointing down and to the right, denoting the progress of computation between

the beginning of and the points of entry of a procedure called directly from

within .

The purpose of this new correctness speci�cation is to be able to express

the progress achieved from the beginning of the entire body of a procedure to

the points of entry of procedures called from within the body. This is used to

verify the . . . speci�cations, which are then used in turn to verify the

speci�cations. These are then used to prove the termination of

procedures, an essential element in proving the total correctness of programs.

97



b bbbb

b bbbb

9 � ^ ^

�

�

9 � ^ ^

�

�

odd a n

b: n b a a < n n

odd n < n

even n < n

n < n

n a

n even a n

odd a n

even a n

b: n b a a < n n

even n < n

odd n < n

n < n

n a

n odd a n

even a n

odd a

a

( ; );
;

( = 2 + ) 2 = ;
;
;
;

= 0 := 0
= 1 ( ; 1)

( ; 2)

;

( ; );
;

( + 1 = 2 + ) 2 = ;
;
;
;

= 0 := 1
= 1 ( ; 1)

( ; 2)

;

( ; 5)

[ = 1 ]

Table 6.1: Odd/Even Example Program.

98

program

procedure var val

pre true

post

calls with

calls with

recurses with

if then

else if then

else

�

�

end procedure

procedure var val

pre true

post

calls with

calls with

recurses with

if then

else if then

else

�

�

end procedure

end program



odd even

n

ae pre

aes pre ab pre

6.1 Total Correctness of Expressions

To make these ideas more concrete, let us take as a speci�c example the pro-

gram in Table 6.1. This is the odd/even program. It has two mutually recursive

procedures, and , each of which calls itself and the other. The procedures

actually could have been written with far less recursion; this version was created

to exhibit as much recursion as possible. The procedure call progress expressions

all declare that the value of the variable decreases for each call, and this is the

progress declared by the recursion expressions as well. This odd/even program

will serve as a running example throughout this chapter to illustrate several of

the correctness speci�cations that we describe.

In Table 6.2, we present a Hoare logic for the total correctness of numeric

and boolean expressions in the Sunrise programming language. This is the �rst

of three newly invented logics of this dissertation. It is based on three new

correctness speci�cations, for numeric expressions, lists of numeric expressions,

and boolean expressions. Generally speaking, this is a modest expression logic.

We have added side e�ects in only one operator, the increment operator, and none

of the operators are either nondeterministic or nonterminating. In the future, we

intend to explore these other possibilities. This logic is intended to show a robust

structure capable of growth.

The key rules are the ones for expression preconditions. The functions ,

, and calculate appropriate preconditions which guarantee that the

given postcondtion is true after executing the expression. The precondition is

not simply the same as the postcondition, because the programming language

99



false

false

false

f ) g

f ) g

f ) g

f ) g

f ) g

f ) g

p a
a e q
p e q

p a
a es q
p es q

p a
a b q
p b q

e q

es q

b q

p e a
a q
p e q

p es a
a q
p es q

p b a
a q
p b q

ae pre e q e q

aes pre es q es q

ab pre b q b q

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

Table 6.2: General Rules for Total Correctness of Expressions.

100

Precondition Strengthening:

False Precondition:

Postcondition Weakening:

Numeric Expression Precondition:

Expression List Precondition:

Boolean Expression Precondition:



f g

f g 8

f g f g f g f g

ae pre aes pre ab pre

a

a

a s: A a s

a

a

p c q =� p q

c

6.1.1 Closure Speci�cation

6.1.1.1 Semantics of Closure Speci�cation

we are considering allows expressions to have side e�ects, and this change of

state requires a change in the expression that describes the state. For a complete

de�nition of the functions , , and , see the Section 10.3 on

Translations.

In Tables 6.3, 6.4, and 6.5, we have the rules of inference for individual expres-

sions in the Sunrise programming language. All of these in fact are subsumed by

the three rules in Table 6.2 for expression preconditions, but are presented here

for completeness.

: assertion language condition

= ( )

Assertion language boolean expression is true in every state, and thus is

equivalent to the universal closure of . These expressions are deterministic,

have no side e�ects, and always terminate.

These should not be confused with partial correctness speci�cations, for ex-

ample . The and in the partial correctness speci�cations

do not refer to closure speci�cations, but to conditions about two di�erent states

at the beginning and end of executions of the command . In contrast, closure

speci�cations are single assertions which evaluate to true in every single state.

101



�

�

8 ^ ) ^

8 ) 9

1

2

1 2

1

2

1 2

1

2

1 2

1 2

1

2

1 2 1 2 1 1 1 2 2 2

1 1 1 2 1 2

Number:

Variable:

Increment:

Addition:

Subtraction:

Multiplication:

q n q

q x q

q < x =x x q

p e r
r e q

p e e q

p e r
r e q

p e e q

p e r
r e q

p e e q

a e a

a

e

a

a e a s n s : A a s E e s n s A a s

s : A a s n s : E e s n s

6.1.2 Numeric Expression Speci�cation

6.1.2.1 Semantics of Numeric Expression Speci�cation

[ ] [ ]

[ ] [ ]

[ [( + 1) ]] ++ [ ]

[ ] [ ]
[ ] [ ]

[ ] + [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]

Table 6.3: Total Correctness of Numeric Expressions.

These are used to express side conditions of rules, some of which will eventually

become veri�cation conditions.

[ ] [ ]

: precondition
: numeric expression
: postcondition

[ ] [ ] = ( )
( ( ))

102



h i

1

2

1

1 2

1

2

Null list: Cons:

6.1.3 Expression List Speci�cation

q q
p e r
r es q

p CONS e es q

e a

a

V E

e v

v a

e

a es a

a

es

a

[ ] [ ]
[ ] [ ]
[ ] [ ]

[ ] [ ]

Table 6.4: Total Correctness of Expression Lists.

If the numeric expression is executed, beginning in a state satisfying , then

the execution terminates in a state satisfying . For this language, expressions

are deterministic and always terminate.

Table 6.3 presents the rules of inference for individual constructors of numeric

expressions in the Sunrise programming language. These are subsumed by the

single rule in Table 6.2 for numeric expression preconditions, but are presented

here for completeness.

The translation function maps a programming language numeric expres-

sion into a corresponding assertion language numeric expression , such that

the value of in the prior state, where is true, is the same as the value yielded

by the execution of .

[ ] [ ]

: precondition
: list of numeric expressions
: postcondition

103



8 ^ ) ^

8 ) 9

h i

8 ^ ) ^

8 ) 9

1 2 1 2 1 1 1 2 2 2

1 1 1 2 1 2

1 2

1

1 2

1

2

1 2 1 2 1 1 1 2 2 2

1 1 1 2 1 2

a es a s ns s : A a s ES es s ns s A a s

s : A a s ns s : ES es s ns s

es

a a

CONS

V ES

es

vs vs a

es

a b a

a

b

a

a b a s t s : A a s B b s t s A a s

s : A a s t s : B b s t s

6.1.3.1 Semantics of Expression List Speci�cation

6.1.4 Boolean Expression Speci�cation

6.1.4.1 Semantics of Boolean Expression Speci�cation

[ ] [ ] = ( )
( ( ))

If the list of numeric expressions is executed, beginning in a state satisfying

, then the execution terminates in a state satisfying . For this language,

expression lists are deterministic and always terminate.

Table 6.4 presents the rules of inference for individual constructors of lists

of expressions in the Sunrise programming language. In this language, lists are

delimited by angle brackets (so is the empty list), and a new element is added

at the head of a list by . These are subsumed by the single rule in Table

6.2 for expression list preconditions, but are presented here for completeness.

The translation function maps a programming language list of numeric

expressions into a corresponding assertion language list of numeric expressions

, such that the value of in the prior state, where is true, is the same as

the value yielded by the execution of .

[ ] [ ]

: precondition
: boolean expression
: postcondition

[ ] [ ] = ( )
( ( ))

104



�

^

_

�

1

2

1 2

1

2

1 2

1

2

1 2

1

2

1 2

1

2

1 2

p e r
r e q

p e e q

p e r
r e q

p e < e q

p es r
r es q

p es es q

p b r
r b q

p b b q

p b r
r b q

p b b q

p b q
p b q

Numeric Equals:

Less Than:

Lexicographic Less Than:

Conjunction:

Disjunction:

Negation:

[ ] [ ]
[ ] [ ]

[ ] = [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]
[ ] [ ]

Table 6.5: Total Correctness of Boolean Expressions.

105



f g f g

f g f g 8 ^ )

1

2

1

1 2

1

2

1 2 1 2 1 1 1 2 2 2

6.2 Hoare Logic for Partial Correctness

b a

a

AB

b a

a a

b

a c a =�

a

c

a

�

a c a =� s s : A a s C c � s s A a s

6.2.1 Partial Correctness Speci�cation

6.2.1.1 Semantics of Partial Correctness Speci�cation

If the boolean expression is executed, beginning in a state satisfying ,

then the execution terminates in a state satisfying . For this language, boolean

expressions are deterministic and always terminate.

Table 6.5 presents the rules of inference for individual constructors of boolean

expressions in the Sunrise programming language. These are subsumed by the

single rule in Table 6.2 for boolean expression preconditions, but are presented

here for completeness.

The translation function maps a programming language boolean expres-

sion into a corresponding assertion language numeric expression , such that

the value of in the prior state, where is true, is the same as the value yielded

by the execution of .

In this section we present a Hoare logic for the partial correctness of commands.

: precondition
: command
: postcondition
: procedure environment

= ( )

106



0

0 0

0

0 0

0

0 0 0

1 2

1 2

1 1

2 2

1 2

1 2

0 0 0

0

0

0 0 0

0 0 0 0

0 0 0

env syntax

c

env syntax c xs

a

c a a

envp c

a

a

skip

abort

if then else �

assert with

while do od

assert with

while do od

call

call

f g f g

f g f g

f g f g

f g f g f g f g
f g f g

f g f g
f g f g

f j g
f g

f g f ^ g

f ^ ^ ) g
f ^ � ) g

f g
f g

� � � [
f ^ g f g

f ^ 8 ) g f g

h i
[

f ^ 8 ) g
f g

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Rule of Adaptation:

Procedure Call:

[ := ] :=

;

=

(
)

( )
( ) ( = )

( )

= = ( )
( )

=
(( ( [ ] )) [ ])

( ( ; ))
=

= ( ( & )) = & &
= & = & = & &

= = = ( )
( [ ] (( ( [ ] )) [ ])) [ := ]

( ; )

Table 6.6: Hoare Logic for Partial Correctness.

107

q q =�

a q =�

q < x e x e q =�

p c r =�; r c q =�
p c c q =�

r c q =�
r c q =�

AB b > ab pre b r ab pre b r
b c c q =�

WF �

WF a v < x
b c g �

p c a v < x =�

a AB b v x ab pre b p
a AB b ab pre b q

a a v < x
b c q =�

WF �; WF c g �; WF x; DL x
x logicals x; x variants x FV q

FV c � x; FV pre x; FV post x x
x x pre c post =�

pre x: post < x =x q < x=x c q =�

WF �; WF p xs es g �

� p vars; vals; glbs; pre; post; calls; rec; c
vals variants vals FV q SL xs glbs ; y vars vals glbs

u xs vals ; v vars vals; x xs vals glbs
x logicals x; y logicals y; x variants x FV q

pre < u=v x: post < u; x =v; y q < x=x < vals es
p xs es q =�



1

2

0

0

env partial

f ) g
f g f g
f g f g

f g f g

f g f g
f ) g
f g f g

8 h i

f ^ g f g

false

let in

let in

let in

6.2.2 Partial Correctness Rules

Precondition Strengthening:

False Precondition:

Postcondition Weakening:

well-formed for partial correct-

ness

p a
a c q =�
p c q =�

c q =�

p c a =�
a q

p c q =�

c a

a

�

p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

x logicals x

x x pre c post =�

=�

�

Table 6.7: General rules for Partial Correctness.

If the command is executed, beginning in a state satisfying , then if the

execution terminates, the �nal state satis�es . For this language, commands

are deterministic, but may not terminate.

The procedure environment is de�ned to be

if for every procedure , its body is partially correct with respect to the

given precondition and postcondition:

= =
= & &
=

=

Consider the Hoare logic in Tables 6.6 and 6.7 for partial correctness. This

is a traditional Hoare logic, except that we have added at the end of each

speci�cation to indicate the ubiquitous procedure environment. This must be

used to resolve the semantics of procedure call. However, the environment

108



with

f g f g
+

+

will

well-formedness�

env syntax

envp env syntax

envp

v < x

v < x v x

p c q =�
p c =�
p c q =�

p c =� c

WF �

WF �

� WF � WF �

WF �

never changes during the execution of the program, and hence could be deleted

from every speci�cation, being understood in context.

The rules describing the partial correctness of the commands of the Sunrise

programming language includes phrases that concern total correctness. For ex-

ample, the iteration command includes a phrase in the syntax, and

the iteration rule uses antecedents that include and = . This mechanism

applies to proofs of termination, not to proofs of partial correctness. Neverthe-

less, it is important to include this mechanism here because eventually we wish

to prove versions of these rules for total correctness, which need the extra

mechanism. These rules will be ultimately proven using the following rule:

[ ]
[ ] [ ]

where [ ] denotes the termination of the command . For this rule to

apply, the shape of the partial and total correctness versions must agree.

The functions , for various , denote conditions, which

will be described later in Part III. In brief, these are generally simple syntactic

checks on variable names and limits on the free variables of program phrases,

checks that the signatures of procedure de�nitions and their calls match, and the

exclusion of aliasing. These checks could be performed once at compile time for

a program. checks that these well-formedness criteria are met by

each procedure de�nition in . includes the criteria of ,

but goes beyond in also requiring a semantic criterion, that the body of each

procedure is partially correct with respect to the precondition and postcondi-

tion speci�ed in the procedure header. We establish by what we call

109



�FV

SL

DL

6.3 Procedure Entrance Logic

semantic stages

entrance speci�cation precondition entrance speci�cation calls en-

trance speci�cation path entrance speci�cation recursion entrance

speci�cation

, which will be described later in Part III. In addition to the well-

formedness notation, we also use to denote the free variables of a construct,

ampersand (&) to append two lists together, and to convert a list into a set.

is a predicate on a list, which determines if all the elements of the list are

distinct.

Of particular interest are the Rule of Adaptation and the Procedure Call Rule.

All global variables and variable and value parameters are carefully and correctly

handled. These rules are completely sound and trustworthy, having been proved

as theorems.

The Procedure Entrance Logic is the second of the three newly invented logics

of this dissertation. It is based on �ve new correctness speci�cations, which are

the , the , the

, the , and the

. Each of these is a relation, de�ned using the other relations and

the underlying structural operational semantics relations. The common thread

linking all of these is the purpose of relating a state at the beginning of a com-

putation with a state reached at the entrance of a procedure called during the

computation. The style of these �ve speci�cations is similar to partial correct-

ness, in that there is no guarantee of reaching the entrance of any procedure, only

that if the appropriate entrance is reached, then the entrance condition speci�ed

is true. This is contrasted with the Termination Logic to be presented later,

which has more the style of total correctness.

110



f g ! f g

f g ! f g 8 ^ )

1 2

1

2

1 2 1 2 1 1 1 2 2 2

1

2

a c p a =�

a

c

p

a

�

a c p a � s s : A a s C calls c � s p s A a s

c a

c p p

p a c

c p p

c c

c

c p

p c

p p

6.3.1 Entrance Speci�cation

6.3.1.1 Semantics of Entrance Speci�cation

All of the rules listed for this entrance logic have been mechanically proven

as theorems from the underlying structural operational semantics.

: precondition
: command
: procedure name
: entrance condition
: procedure environment

= ( )

If command is executed, beginning in a state satisfying , then if at any

point within procedure is called, then at the entry of , (just before the body

of is executed,) is satis�ed. This refers only to the �rst level of calls from , to

those that issue directly from a syntactically contained procedure call command

within . It does not refer to calls of that may occur from the body of , or of

other procedures that may call indirectly during the execution of .

No statement is made here about conditions that may hold at the end of the

execution of .

Note that a particular command may contain several calls of , each of which

might be responsible for entering . Also, if contains a loop, even a single call of

may generate multiple states at the entrance of . Thus this is a relation, where

for a single command and starting state, there may be many entrance states for

111



0

0 0

env syntax

c

a

env syntax

c

0 1

1 2

0 2

1 2

2 3

1 3

1 2

1 3

1 2 3

1 1

1 1 2

2 2

1 1 2

1 1

2 2

1 2

1 2

0

0

0

1

1

:=

;

=

(
)

[ ( ) ( = )] [ ]

( )

=
( ; )

( ( ; ))
=

= ( ( & ))
( [ & & ]) [ := ]

( ; )

Table 6.8: Entrance Logic.

112

false

skip

abort

if then else �

assert with

while do od

assert with

while do od

call

call

call

f ) g
f g ! f g
f g ! f g

f g ! f g
f ) g

f g ! f g

f g ! f g
f g ! f g
f g ! f ^ g

f g ! f g

f g ! f g

f g ! f g

f g ! f g

f g ! f g

f g f g
f g ! f g
f g ! f g

f g ! f g
f g ! f g

f j g
! f g

62
^ ^

f g ! f g
f g f ^ g

f g
! f g

6
f g ! f g

h i

f g
! f g

Precondition Strengthening:

Entrance Condition Weakening:

Entrance Condition Conjunction:

False Precondition:

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Procedure Call:

a a
a c p a =�
a c p a =�

a c p a =�
a a

a c p a =�

a c p a =�
a c p a =�

a c p a a =�

c p q =�

a p q =�

a p q =�

a x e p q =�

a c p q =�

a c a =�
a c p q =�

a c c p q =�

a c p q =�
a c p q =�

AB b > ab pre b a ab pre b a
b c c p q =�

WF �

WF a v < x
b c g �

x FV q
a AB b v x b a

a c p q =�
a c a v < x =�

a a v < x
b c p q =�

p p
a p xs es p q =�

WF �
WF p xs es g �

� p vars; vals; glbs; pre; post; calls; rec; c
vals variants vals SL xs glbs

q < xs vals =vars vals < vals es
p xs es p q =�



b

b b

b b
b

�

f � g � ! f g

� �

�

axiomatic entrance semantics

6.3.1.2 Example of Entrance Speci�cation

calls with

call

odd

even

odd even n < n

n even n

odd

even a n

odd

n < n < a; n=a; n < n n even a n even n < n =�

n < n < a; n=a; n < n n n < n < n n

n < n

which the entrance condition is to hold.

Table 6.8 presents an for the Sunrise program-

ming languge.

As an example, consider the progress claimed for calls from procedure to

procedure in the odd/even program presented in Table 6.1. In the heading

for procedure , the phrase indicates that the value of

the argument to must be strictly less than the value of at the head of

the body of .

First, by the Procedure Call rule of Table 6.8 applied to the call ( ; 1)

within the body of procedure , we have

(( ) [ ]) [ := 1] ( ; 1)

The substitutions evaluate as

(( ) [ ]) [ := 1] = ( ) [ := 1]

= ( 1)

113



b b
b

b

b
b

b

b
b b
b

b

b

f � g � ! f g

f g � ! f g

f � j g

�

�

! f g

f g ! f g

f

j � j g

�

�

! f g

f )

j � j g

f g

�

�

! f g

true

true

if then

else

�

true

true

true

if then

else if then

else

�

�

true

true

if then

else if then

else

�

�

calls with

: n < n even a n even n < n =�

: odd a n even n < n =�

: n > n < n

n even a n

odd a n

even n < n =�

: a even n < n =�

: n >

n > n < n

n a

n even a n

odd a n

even n < n =�

: n n n >

n > n < n

: n n

n a

n even a n

odd a n

even n < n =�

odd n < n

odd

even

Then the call progress claim is proven as follows.

1 ( 1) ( ; 1) Procedure Call
Rule (2nd)

2 ( ; 2) Procedure Call
Rule (1st)

3 = 1 = ( 1)
= 1 ( ; 1)

( ; 2)

1, 2, Conditional
Rule

4 := 0 Assignment Rule

5 = 0 =
( = 1 = ( 1) )

= 0 := 0
= 1 ( ; 1)

( ; 2)

4, 3, Conditional
Rule

6 = ( = 0 =
( = 1 = ( 1) ) )

Tautology

7 =
= 0 := 0

= 1 ( ; 1)
( ; 2)

6, 5, Precondition
Strengthening

A similar pattern of reasoning could be followed to prove the clause

in the heading for procedure , and the other such clauses in the heading for

.

114



0

env pre

f g !

f g ! 8 h i

f g ! f g

8 h i

f g !

well-formed for preconditions

6.3.2 Precondition Entrance Speci�cation

pre

6.3.2.1 Semantics of Precondition Entrance Speci�cation

pre let

in

let

in pre

a c =�

a

c

�

a c =� p: vars; vals; glbs; pre; post; calls; rec; c � p

a c p pre =�

c a

c p p

p

c

�

p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

pre c =�

: precondition
: command
: procedure environment

= =

If command is executed, beginning in a state satisfying , then if at any

point within a call is made to any procedure, say , then at the entry of , the

declared precondition of is satis�ed.

This speci�cation is used to prove that the preconditions which are declared

for each procedure in its header are achieved at the point of each call of those

procedures within the command . Eventually, this will be used to prove the

maintenance of preconditions, that for each procedure, if it is entered with its

precondition true, then for every procedure it calls, their preconditions are true

at their entry. This will then extend to the maintenance of preconditions over

deep chains of calls.

The procedure environment is de�ned to be if

for every procedure , its body maintains all procedures' preconditions:

= =

Proving that the environment is well-formed for preconditions is one of the

necessary steps to prove programs totally correct.

115



0

0

env calls

f g !

f g ! 8 f g ! f g

8 h i

f ^ g !

well-formed for calls progress

6.3.3 Calls Entrance Speci�cation

6.3.3.1 Semantics of Calls Entrance Speci�cation

calls with

calls with

let in

let in

let in

a c calls =�

a

c

calls

�

a c calls =� p: a c p calls p =�

calls

c a

c p p

calls p

c

�

p calls

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

x logicals x

x x pre c calls =�

: precondition
: command
: calls progress environment
: procedure environment

=

is a collection of progress expressions, as declared in the . . .

speci�cations for a procedure in its header. It is represented as a function, from

the names of procedures being called to the progress expression speci�ed.

If command is executed, beginning in a state satisfying , then if at any

point within a call is made to any procedure, say , then at the entry of ,

( ) is satis�ed.

This speci�cation is used to prove that the progress expressions which are

declared in the . . . speci�cations for each procedure in its header are

achieved at the point of each call of those procedures within the command .

The procedure environment is de�ned to be if

for every procedure , its body establishes the truth of its progress expres-

sions at the point of each call:

= =
= & &
=

=

116



env calls

f g ! f g

f g ! f g

8 ^ )

1 1 2 2

1

1

2

2

1 1 2 2

1 2 1 1 1 1 2 2 2 2

1 1

1

WF �

a p ps p a =�

a

p

ps

p

a

�

a p ps p a �

s s : A a s M calls p s ps p s � A a s

p a

p

ps

recurses with

6.3.4 Path Entrance Speci�cation

6.3.4.1 Semantics of Path Entrance Speci�cation

Proving that the environment is well-formed for calls progress is one of the

necessary steps to prove programs totally correct.

Eventually, will be used to prove the speci�ca-

tions, that for each procedure, if it is entered with its recursion expression equal

to a certain value, then for every possible recursive entry of that procedure, the

value of the recursion expression is strictly less than before. This will then help

prove the termination of procedures.

Up to this point, the entrance speci�cations have been based on a command

over which the progress was measured. For the last two entrance speci�cations in

this Procedure Entrance Logic, they will be based on progress from one entrance

of a procedure to another.

|

: precondition
: starting procedure name
: path (list of procedure names)
: destination procedure name
: entrance condition
: procedure environment

| =
( )

If execution begins at the entry of in a state satisfying , and if in the

execution of the body of , procedure calls are made successively deeper to the

procedures listed in the (possibly empty) path , and �nally a call is made to

117



env pre

0 0 0 0 0 0 0 0

0

1

1 2 2

1 1 2 2

1 1 1 2 2

2 2 2 3 3

1 1 1 2 2 3 3

2 2 2

1

2

1 2

Single Call (Empty Path):

Transitivity:

h i
f g ! f g

f g h i ! f g

f g ! f g
f g ! f g

f g ! f g

h i
h i
f g ! f g

� p vars; vals; glbs; pre; post; calls; rec; c
a c p a =�

a p p a =�

a p ps p a =�
a p ps p a =�

a p ps CONS p ps p a =�

p p a

�

WF �

� p vars; vals; glbs; pre; post; calls; rec; c
� p vars ; vals ; glbs ; pre ; post ; calls ; rec ; c

pre p ps p pre =�

=

|

|
|

| ( & ( ))

Table 6.9: Path Entrance Logic.

the procedure , then at that entry of , is satis�ed.

The path entrance speci�cation is de�ned based on the underlying operational

semantics. However, it could have been de�ned by rule induction on the rules in

Table 6.9. Instead, these rules have been proven as theorems, as have those in

Table 6.10.

Once the environment is proven to be well-formed for preconditions, the

following rule, proven as a theorem, applies for proving the truth of preconditions

across procedure calls.

=
=

|

118



0 0 0 0 0 0 0 0

0 0 0

env syntax env calls

a

false

6.3.4.2 Call Progress Function

0 1

1 1 2 2

0 1 2 2

1 1 2 2

2 3

1 1 2 3

1 1 2 2

1 1 2 3

1 1 2 2 3

1 2

1

2

1 2 1 2

f ) g
f g ! f g
f g ! f g

f g ! f g
f ) g

f g ! f g

f g ! f g
f g ! f g

f g ! f ^ g

f g ! f g

h i
h i

�
f ^ g h i ! f g

Precondition Strengthening:

Entrance Condition Weakening:

Entrance Condition Conjunction:

False Precondition:

Call Progress Rule:

a a
a p ps p a =�
a p ps p a =�

a p ps p a =�
a a

a p ps p a =�

a p ps p a =�
a p ps p a =�

a p ps p a a =�

p ps p q =�

ab pre

call progress

�

call progress

WF �; WF �

� p vars; vals; glbs; pre; post; calls; rec; c
� p vars ; vals ; glbs ; pre ; post ; calls ; rec ; c

y vars vals glbs
FV q SL y logicals z

pre call progress p p q � p p q =�

|
|

|

|

|
|

|

|

Table 6.10: Additional Path Entrance Rules.

Just as the function can compute the appropriate precondition to es-

tablish a given postcondition as true after executing a boolean expression, the

function can compute the appropriate precondition when starting

execution from the entrance of one procedure to establish a given entrance con-

dition for another procedure as true. It is de�ned in Table 6.11.

Once the environment is proven to be well-formed for calls progress, the fol-

lowing rule, proven as a theorem, applies for proving the e�ect of the

function across a single procedure call.

=
=

= & &
( & )

|

119



a

0

0 0 0 0 0 0 0 0

0 0 0

0 0

b

b b

b
b b c b b b b c
c b b c
c b b c

b

h i

h i

j 8 )

f ^ g h i ! f g

8 )

8 )

8 )

8 )

1 2

1

0

0 0

2

2

0 0 0

1 1

1 1

1 1 1 1 1 1

1 1 1 1

let in

let in

let in

let in

let in

let in

let in

false true

6.3.4.3 Example of Call Progress Speci�cation

calls with

true

call progress p p q �

vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

x logicals x

x variants x FV q

vars ; vals ; glbs ; pre ; post ; calls ; rec ; c � p

y vars vals glbs

a calls p

a >

y: a < x =x q < x=x

odd

even

odd even n <

n n even

n odd

call progress odd even n < n � odd even n < n =�

call progress

call progress odd even n < n �

a; n: n < n < a; n =a;n n < n < a; n=a; n

a; n: n < n n < n < a; n=a; n

a ; n : n < n n < n < a; n=a; n

a ; n : n < n n < n

=
=

= & &
=
= ( )

=
= & &
=

( = =
( ( [ ]) ) [ ] )

Table 6.11: Call Progress Function.

As an example, consider the progress of calls from procedure to procedure

in the odd/even program presented in Table 6.1. We previously proved the

correctness of the claim in the heading for procedure that

, that the value of the argument to must be strictly less than the value

of at the head of the body of .

Then by the Call Progress Rule given above, we have

( ) |

The invocation of evaluates as

( )

= ( (( ) [ ]) ( )) [ ]

= ( ( ) ( )) [ ]

= ( ( ) ( )) [ ]

= ( ) ( )

120



and

b b

b b
b b
b b

6.3.4.4 Call Path Progress Function

1 1 1 1

1 1 1 1

1 1 1 2 2 2 1 2

1 1 1 1

1 1 1 2 2 2 1 2

1 1 1 1

1 2

1 2

1 2

1 2

f8 ) g hi ! f g

f8 ) g

hi ! f g

f8 ) 8 ) g

hi ! f8 ) g

f8 ) 8 ) g

hi ! f8 ) g

h i

a ; n : n < n n < n odd even n < n =�

a ; n : n < n n < n

even even n < n =�

a ; n : n < n a ; n : n < n n < n

odd odd a ; n : n < n n < n =�

a ; n : n < n a ; n : n < n n < n

even odd a ; n : n < n n < n =�

call progress

call path progress

call path progress p p q �

call progress p p q �

call path progress p CONS p ps p q �

call progress p p call path progress p ps p q � �

�

call path progress

Thus we have proven

( ) ( ) |

A similar pattern of reasoning could be followed to prove the following:

( ) ( )
|

( ) ( ( ) ( ))
| ( ) ( )

( ) ( ( ) ( ))
| ( ) ( )

Just as the function can compute the appropriate precondition

across a single procedure call, the function can compute the

appropriate precondition when starting execution from the entrance of one pro-

cedure to establish a given entrance condition at the end of a path of procedure

calls. It is de�ned in Table 6.12.

=

( ) =
( )

Table 6.12: Call Path Progress Function.

Once the environment is proven to be well-formed for preconditions for

calls progress, the following rule, proven as a theorem, applies for proving the

e�ect of the function across a path of procedure calls.

121



odd even

bb
b

1

2

1 2 1 2

0 0 0 0 0 0 0 0

0 0 0

Call Path Progress Rule:

h i
h i

�
f ^ g ! f g

! !

f ^ h i g

h i ! f g

env syntax env pre env calls

a

6.3.4.5 Example of Call Path Progress Speci�cation

calls with

true

WF �; WF �; WF �

� p vars; vals; glbs; pre; post; calls; rec; c
� p vars ; vals ; glbs ; pre ; post ; calls ; rec ; c

y vars vals glbs
FV q SL y logicals z

pre call path progress p ps p q � p ps p q =�

even

even

odd odd even

call path progress odd odd even n < n �

odd odd even n < n =�

call progress odd even n < n �

=
=

= & &
( & )

|

Figure 6.2: Procedure Call Graph for Odd/Even Example.

As an example, consider the progress of paths of procedure calls that involve the

procedure in the odd/even program presented in Table 6.1. Examining the

procedure call graph in Figure 6.2, we can observe several cycles that include the

node. Let us assume the correctness of the call progress parts of the headers

of the procedures as declared, that is, that every . . . clause has been

veri�ed to be true.

Then consider the path . By the Call Path Progress Rule

given above, we have

( )
|

We previously evaluated ( ) as

122



b
b

b
b

b
b

b b c b b b b c
c b b c
c b b c

b

bb

bb
b b

6.3.5 Recursive Entrance Speci�cation

8 )

h i

hi

8 )

8 )

8 )

8 ) 8 )

8 ) 8 )

8 ) 8 )

f8 ) 8 ) g

h i ! f g

f8 ) 8 ) g

h i ! f g

f8 ) g

hi ! f g

f g  f g

1 1 1 1

1 1 1 1

1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 2 2 2 1 2 1

1 1 1 2 2 2 1 2

1 1 1 2 2 2 1 2

1 1 1 2 2 2 1 2

1 1 1 1

1 2

1

2

( )

= ( ) ( )

Using this, we can evaluate the invocation of as

( )

= ( ( ) )

= ( ( ) )

= ( ( ) ( ))

= ( (( ) [ ])
( ( ) ( ))) [ ]

= ( ( ) ( ( ) ( ))) [ ]

= ( ( ) ( ( ) ( ))) [ ]

= ( ) ( ( ) ( ))

Thus we have proven

( ) ( ( ) ( ))
|

Similar patterns of reasoning could be followed to prove the following:

( ) ( ( ) ( ))
|

( ) ( )
|

: precondition
: procedure name
: recursive entrance condition
: procedure environment

123

call progress odd even n < n �

a ; n : n < n n < n

call path progress

call path progress odd odd even n < n �

call progress odd odd call path progress odd even n < n � �

call progress odd odd call progress odd even n < n � �

call progress odd odd a ; n : n < n n < n �

a; n: n < n < a; n =a; n

a ; n : n < n n < n < a; n=a; n

a; n: n < n a ; n : n < n n < n < a; n=a; n

a ; n : n < n a ; n : n < n n < n < a; n=a; n

a ; n : n < n a ; n : n < n n < n

a ; n : n < n a ; n : n < n n < n

odd odd even n < n =�

a ; n : n < n a ; n : n < n n < n

even odd even n < n =�

a ; n : n < n n < n

even even n < n =�

a p - a =�

a

p

a

�



env rec

1 2 1 2

1

2

f g  f g 8 f g ! f g

8 h i

f ^ g  f g

well-formed for recursion

6.3.5.1 Semantics of Recursive Entrance Speci�cation

false

false true

let

in

a p - a =� ps: a p ps p a =�

p a

p

p p a

v < x v

x v

v

induct pre

induct pre v < x v x

�

p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

pre induct pre rec p - rec =�

= |

If execution begins at the entry of in a state satisfying , and if in the

execution of the body of , a (possibly deeply nested) recursive call is made to

the procedure , then at that recursive entry of , is satis�ed.

This speci�cation is used to prove that procedures terminate, by a well-

founded induction on the value of the recursive expression of each procedure.

When a procedure is declared, the recursion expression which is speci�ed

may be of two forms. It may be simply , which signi�es that the procedure

is not recursive. Else, it may be of the form , where is a numeric

assertion language expression whose free variables consist only of the parameters

and globals of the procedure, and where is a logical variable. is the important

part here; such a recursion expression signi�es that strictly decreases between

recursive calls. This then is used to prove termination.

Based on these two cases, there are two initial expressions whose truth guar-

antees the achievement of the recursion expression:

=

( ) = ( = )

The procedure environment is de�ned to be if for

every procedure , it establishes the truth of its recursion expression for every

recursive call:

= =

124



WF �env rec

6.4 Termination Logic

command conditional termination speci�cation procedure conditional termi-

nation speci�cation command termination speci�cation

Proving that the environment is well-formed for recursion is one of the neces-

sary steps to prove programs totally correct.

Eventually, will be used to prove the termination of each proce-

dure. This will then help prove the termination of all commands, and the total

correctness of all commands.

The Termination Logic is the third of the three newly invented logics of this

dissertation. It is based on three new correctness speci�cations, which are the

, the

, and the . Each of these

is a relation, de�ned using the other relations and the underlying structural op-

erational semantics relations. The style of these three speci�cations is similar

to total correctness, in that the speci�cation simply guarantees that the com-

putation terminates, without any claim about the terminal state itself. This is

contrasted with the Procedure Entrance Logic presented earlier, which has more

the style of partial correctness.

All of the rules listed for this termination logic have been mechanically proven

as theorems from the underlying structural operational semantics.

The two \conditional termination" speci�cations involve a conditional quality,

where the termination described is conditioned on the termination of all immedi-

ate calls issuing from the computation at the top level. In other words, if we are

given that all procedure calls terminate which are made at the top level of the

125



#a c =�

a

c

�

except

conditional termination

6.4.1 Command Conditional Termination Speci�cation

command or procedure body concerned, then the command or procedure body

itself terminates.

This is the important issue to consider at this point, because after verifying

the partial correctness axiomatic semantics given in section 6.2, it is then possible

to prove the termination, and hence the total correctness, of every command in

the Sunrise programming language for procedure calls. For example, given

the termination of every procedure call issuing from the body of a while loop, we

could prove without further mechanism the total correctness of the while loop.

The remaining kind of termination which is not yet covered is in�nite recursive

descent, where a cycle of procedures call each other in an ever descending sequence

of procedure calls, none of which ever return.

The purpose of the Procedure Entrance Logic given in section 6.3 is to provide

a means to prove the termination of procedure calls, by showing that a certain

kind of progress is achieved between recursive entrances of the same procedure.

The purpose of the Termination Logic of this section is to take that means, and

prove the termination of commands and procedures. But we begin by proving

, by which we mean a kind of conditional termination

depending on the termination of all immediate calls.

[ ]

: precondition
: command
: procedure environment

126



1 1 1 2 1 2# 8 ^ ) 9

8 h i

#
env term

env term

6.4.1.1 Semantics of Command Conditional Termination Speci�ca-

tion

let

in

axiomatic termination semantics

well-formed for conditional ter-

mination

a c =� s : A a s C calls terminate c � s s : C c � s s

c a

c c

c

c p

p c

c

c

�

p p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

pre c =�

WF �

[ ] = ( ( ))

If command is executed, beginning in a state satisfying , and if all calls

issuing immediately from terminate, then terminates. This refers only to

the �rst level of calls from , to those that issue directly from a syntactically

contained procedure call command within . It does not refer to calls of that

may occur from the body of , or of other procedures that may call indirectly

during the execution of .

No statement is made here about conditions that may hold at the end of the

execution of .

Table 6.13 presents an for the Sunrise pro-

gramming languge.

The procedure environment is de�ned to be

if for every procedure , the body of terminates given the termination

of all immediate calls from the body:

= =
[ ]

Proving that the environment is well-formed for conditional termination is

one of the necessary steps to prove programs totally correct.

Eventually, will be used to prove the termination of each proce-

dure, not conditionally on its immediate calls, but absolutely. This will then help

prove the termination of all commands, and the total correctness of all commands.

127



env syntax

c

env syntax

c

0 1

1

0

1 1

1 1 2

2 2

1 1 2

1 1

2 2

1 2

1 2

0

0

0

f ) g
#
#

#

#

#

#

#
f g f g

#
#

#
#

j
#

^ ^

#
f g f ^ g

#

#

false

skip

false abort

if then else �

assert with
while do od

assert with
while do od

call

call

[ ]
[ ]

[ ]

[ ]

[ ]

[ ] :=

[ ]

[ ]
[ ] ;

[ ]
[ ]

[ = ]

(
)

[ ( ) ( = )] [ ]
[ ]

( )
[ ]

( ( ; ))
[ ] ( ; )

Table 6.13: Command Conditional Termination Logic.

128

Precondition Strengthening:

False Precondition:

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Procedure Call:

a a
a c =�
a c =�

c =�

a =�

=�

a x e =�

a c =�

a c a =�
a c =�

a c c =�

a c =�
a c =�

AB b > ab pre b a ab pre b a
b c c =�

WF �

WF a v < x
b c g �

a AB b v x b a

a c =�
a c a v < x =�

a a v < x
b c =�

WF �
WF p xs es g �
a p xs es =�



env term

#

# h i

#

h i
#

+

p =�

p

�

p =� vars; vals; glbs; pre; post; calls; rec; c � p

pre c =�

p p

p p

�

WF �
� p vars; vals; glbs; pre; post; calls; rec; c

p =�

a c =�

a

c

�

6.4.2 Procedure Conditional Termination Speci�cation

6.4.2.1 Semantics of Procedure Conditional Termination Speci�ca-

tion

let in

6.4.3 Command Termination Speci�cation

: procedure name
: procedure environment

= =
[ ]

If procedure is entered in a state which satis�es the precondition of , and

if all calls issuing immediately from the body of terminate, then terminates.

This speci�cation extends command conditional termination speci�cations to

the bodies of procedures, and �xes the precondition to be the declared precondi-

tion of the procedure involved.

Once the environment is proven to be well-formed for conditional termina-

tion, the following rule, proven as a theorem, says that all procedures condition-

ally terminate.

=

[ ]

: precondition
: command
: procedure environment

129



1 1 2 1 2

0

0

env total

f ) g
+
+

+

+ 8 ) 9

8 h i

^ +

false

6.4.3.1 Semantics of Command Termination Speci�cation

let in

let in

let in

Precondition Strengthening: False Precondition:

axiomatic termination semantics

well-formed for termination

p q
q c =�
p c =�

c =�

a c =� s : A a s s : C c � s s

c a c

c

�

p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

x logicals x

x x pre c =�

[ ]
[ ]

[ ]

Table 6.14: General rules for Command Termination.

[ ] = ( ( ))

If command is executed, beginning in a state satisfying , then terminates.

No statement is made here about conditions that may hold at the end of the

execution of .

Tables 6.14 and 6.15 present an for the Sun-

rise programming languge.

The procedure environment is de�ned to be if

for every procedure , its body terminates with respect to the given precondition:

= =
= & &
=

[ = ]

130



0

0 0

0

0 0

0

0 0 0

1

1

2

1 2

1 1

2 2

1 2

1 2

0 0 0

0

0

0 0 0

0 0 0 0

0 0 0

env syntax

c

env syntax c xs

a

c a a

env c

a

a

+

+

+

+
f g f g

+
+

+
+
j

+

f g f ^ g
+

f ^ ^ ) g
f ^ � ) g

+

� � � [
^ +

^ 8 ) +

h i
[

^ 8 )
+

skip

false abort

if then else �

assert with
while do od

assert with

while do od

call

call

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Rule of Adaptation:

Procedure Call:

[ ]

[ ]

[ ] :=

[ ]

[ ]
[ ] ;

[ ]
[ ]

[ = ]

(
)

( )
[ ]

( ) ( = )
( )

[ ]

= = ( )
( )

[ = ]
[ (( ( [ ] )) [ ])]

( ( ; ))
=

= ( ( & )) = & &
= & = & = & &

= = = ( )
[ ( [ ] (( ( [ ] )) [ ])) [ := ] ]

( ; )

Table 6.15: Hoare Logic for Command Termination.

131

q =�

=�

a x e =�

p c =�
p c q =�
q c =�

p c c =�

r c =�
r c =�

AB b > ab pre b r ab pre b r
b c c =�

WF �

WF a v < x
b c g �

p c a v < x =�
p c =�

a AB b v x ab pre b p
a AB b ab pre b q

a a v < x
b c =�

WF �; WF c g �; WF x; DL x
x logicals x; x variants x FV q

FV c � x; FV pre x; FV post x x
x x pre c =�

pre x: post < x =x q < x=x c =�

WF �; WF p xs es g �

� p vars; vals; glbs; pre; post; calls; rec; c
vals variants vals FV q SL xs glbs ; y vars vals glbs

u xs vals ; v vars vals; x xs vals glbs
x logicals x; y logicals y; x variants x FV q

pre < u=v x: post < u; x =v; y q < x=x < vals es
p xs es =�



f ) g
f ) g

8 ^ ) ^

8 ) 9

1 2

1

2

1 2 1 2 1 1 1 2 2 2

1 1 1 2 1 2

1

2

6.5 Hoare Logic for Total Correctness

Precondition Strengthening:

False Precondition:

Postcondition Weakening:

p a
a c q =�
p c q =�

c q =�

p c a =�
a q

p c q =�

a c a =�

a

c

a

�

a c a =� s s : A a s C c � s s A a s

s : A a s s : C c � s s

c a

a

=�

false

6.5.1 Total Correctness Speci�cation

6.5.1.1 Semantics of Total Correctness Speci�cation

[ ] [ ]
[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

Table 6.16: General rules for Total Correctness.

[ ] [ ]

: precondition
: command
: postcondition
: procedure environment

[ ] [ ] = ( )
( ( ))

If the command is executed, beginning in a state satisfying , then the

execution terminates in a state satisfying .

Consider the Hoare logic in Tables 6.16 and 6.17 for total correctness. This is

a traditional Hoare logic for total correctness, except that we have added at

the end of each speci�cation to indicate the ubiquitous procedure environment.

132



0

0 0

0

0 0

0

0 0 0

j

^

f ^ ^ ) g
f ^ � ) g

� � � [
^

^ 8 )

h i
[

^ 8 )

1 2

1 2

1 1

2 2

1 2

1 2

0 0 0

0

0

0 0 0

0 0 0 0

0 0 0

env syntax

c

env syntax c xs

a

c a a

env c

a

a

skip

false abort

if then else �

assert with
while do od

assert with
while do od

call

call

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Rule of Adaptation:

Procedure Call:

[ ] [ ]

[ ] [ ]

[ [ := ] ] := [ ]

[ ] [ ] [ ] [ ]
[ ] ; [ ]

[ ] [ ]
[ ] [ ]

[ = ]
[ ]

(
)

[ ] [ ( )]
( ) ( = )

( )
[ ]

[ ]

= = ( )
( )

[ = ] [ ]
[ (( ( [ ] )) [ ]) ] [ ]

( ( ; ))
=

= ( ( & )) = & &
= & = & = & &

= = = ( )
[ ( [ ] (( ( [ ] )) [ ])) [ := ] ]

( ; )[ ]

Table 6.17: Hoare Logic for Total Correctness.

133

q q =�

q =�

q < x e x e q =�

p c r =�; r c q =�
p c c q =�

r c q =�
r c q =�

AB b > ab pre b r ab pre b r
b c c q =�

WF �

WF a v < x
b c g �

p c a v < x =�

a AB b v x ab pre b p
a AB b ab pre b q

a a v < x
b c q =�

WF �; WF c g �; WF x; DL x
x logicals x; x variants x FV q

FV c � x; FV pre x; FV post x x
x x pre c post =�

pre x: post < x =x q < x=x c q =�

WF �; WF p xs es g �

� p vars; vals; glbs; pre; post; calls; rec; c
vals variants vals FV q SL xs glbs ; y vars vals glbs

u xs vals ; v vars vals; x xs vals glbs
x logicals x; y logicals y; x variants x FV q

pre < u=v x: post < u; x =v; y q < x=x < vals es
p xs es q =�



0

0

f g f g
+

8 h i

^

^

let in

let in

let in

well-formed for correctness

env correct

env correct env partial env total

�

p c q =�
p c =�
p c q =�

�

p

WF � p: vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

x logicals x

x x pre c post =�

�

WF � WF � WF �

This must be used to resolve the semantics of procedure call. However, the envi-

ronment never changes during the execution of the program, and hence could

be deleted from every speci�cation, being understood in context. Of particular

interest are the Rule of Adaptation and the Procedure Call Rule. Each rule has

been proved completely sound from the corresponding rules in Tables 6.6 and

6.15, using the following rule:

[ ]
[ ] [ ]

The procedure environment is de�ned to be

if for every procedure , its body is totally correct with respect to the given

precondition and postcondition:

= =
= & &
=

[ = ] [ ]

An environment is well-formed for correctness if and only if it is well-formed

for partial correctness and for termination.

=

134



Lord

CHAPTER 7

Veri�cation Condition Generator

\You will not need to �ght in this battle. Position yourselves, stand

still and see the salvation of the , who is with you, O Judah and

Jerusalem!"

| 2 Chronicles 20:17

In this chapter we present a veri�cation condition generator for the Sunrise

programming language. This is a function that analyzes programs with speci�-

cations to produce an implicit proof of the program's correctness with respect to

its speci�cation, modulo a set of veri�cation conditions which need to be proven

by the programmer. This reduces the problem of proving the program correct to

the problem of proving the veri�cation conditions. This is a partial automation

of the program proving process, and signi�cantly eases the task.

The many di�erent correctness speci�cations and Hoare-style rules of the

last chapter all culminate here, and contribute to the correctness of the VCG

presented. All the rules condense into a remarkably small de�nition of the ver-

i�cation condition generator. The operations of the VCG are simple syntactic

manipulations, which may be easily and quickly executed.

135



<

0 1

0 1

7.1 De�nitions

vcgc

vcgc vcg

dest

v < v

v v

7.1.1 Veri�cation of Commands

The correctness that is proven by the VCG is total correctness, including the

termination of programs with mutually recursive procedures. Much of the content

of the previous chapter was aimed at establishing the termination of programs.

This is the part of the veri�cation condition generator which is most novel. The

partial correctness of programs is veri�ed by the VCG producing a fairly standard

set of veri�cation conditions, based on the structure of the syntax of bodies of

procedures and the main body of the program. Termination is veri�ed by the

VCG producing new kinds of veri�cation conditions arising from the structure of

the procedure call graph.

In this section, we de�ne the primary functions that make up the veri�cation

condition generator.

We begin with the analysis of the structure of commands. There are two VCG

functions that analyze commands. The main function is the function. Most

of the work of is done by a helper function, 1.

In the de�nitions of these functions, comma (,) makes a pair of two items,

square brackets ([ ]) delimit lists, semicolon (;) within a list separates elements,

and ampersand (&) appends two lists. In addition, the function is a de-

structor function, breaking an assertion language expression of the form

into a pair of its constituent subexpressions, and .

136



0

0

0

0

0 0

0

pr

< pr

pr

a

a

j

^

^ ^ )

^� )

[

^ ^

8 )

1 2

2 2

1 1

1 2

1 2

1 1 1

2 2 2

1 2 1 2

0 1

0 1

0

0

0 0

0 0 0

skip

abort false

let in

let in

if then else �

let in

let in

assert with while do od

let in

let in

call

let in

let in

let in

let in

let in

let in

let in

let in

let in

1 ( ) = [ ]

1 ( ) = [ ]

1 ( := ) = [ := ] [ ]

1 ( ; ) =
( ) = 1
( ) = 1

&
1 ( ) =

( ) = 1
( ) = 1

( = ) &
1 ( ) =

( ) =
( ) = 1 ( )

[ ( = ) ;
( ) ] &

1 ( ( ; )) =
( ) =

= ( ( & ))
= &
= &
= &
= &
=
=
= ( )

( ( ( ) [ ] )
( ( ( [ & & ]) ) [ ] )

) [ := ] [ ]

Figure 7.1: De�nition of 1, helper VCG function for commands.

137

vcg calls q � q;

vcg calls q � ;

vcg x e calls q � q < x e ;

vcg c c calls q �

s; h vcg c calls q �

p; h vcg c calls s �

p; h h

vcg b c c calls q �

r ; h vcg c calls q �

r ; h vcg c calls q �

AB b > ab pre b r ab pre b r ; h h

vcg a a b c calls q �

v ; v dest a

p; h vcg c calls a a �

a; a AB b v v ab pre b p

a AB b ab pre b q h

vcg p xs es calls q �

vars; vals; glbs; pre; post; calls ; rec; c � p

vals variants vals FV q SL xs glbs

u xs vals

v vars vals

x u glbs

y v glbs

x logicals x

y logicals y

x variants x FV q

pre calls p < u=v

x: post < u x =v y q < x=x

< vals es ;

vcg



vcgc

)

!

! ! ! �

!

! ! !

!

!

let in

7.1.2 Veri�cation of Declarations

cmd

prog env aexp env aexp aexp list

aexp

cmd prog env env aexp list

decl

env aexp list

vcgc p c calls q � a; h vcg c calls q �

p a h

vcg

vcg

vcg

calls p

calls

vcgc

vcgc

vcgd

vcgd

vcgd

= ( ) = 1
[ ] &

Figure 7.2: De�nition of , main VCG function for commands.

The 1 function is presented in Figure 7.1. This function has type

( ( ) ). 1 takes a command, a

calls progress environment, a postcondition, and a procedure environment, and

returns a precondition and a list of veri�cation conditions that must be proved

in order to verify that command with respect to the precondition, postcondition,

and environments. 1 is de�ned recursively, based on the structure of the

command argument. Note that the procedure call clause includes ; this

inclusion causes the veri�cation conditions generated to verify not only the partial

correctness of the command, but also the call progress claims present in .

The function is presented in Figure 7.2. This function has type

( ) . takes a precondition, a command,

a calls progress environment, a postcondition, and a procedure environment, and

returns a list of veri�cation conditions that must be proved in order to verify that

command with respect to the precondition, postcondition, and environments.

The veri�cation condition generator function to analyze declarations is .

The function is presented in Figure 7.3. This function has type

( ) . takes a declaration and a procedure environment, and

returns a list of veri�cation conditions that must be proved in order to verify that

138



^

vcgd

0

0

1 2 1 1

2 2

1 2

proc

let in

let in

let in

let in

empty

7.1.3 Veri�cation of Call Graph

vcgd p vars vals glbs pre post calls rec c �

x vars vals glbs

x logicals x

vcgc x x pre c calls post �

vcgd d d � h vcgd d �

h vcgd d �

h h

vcgd �

vcgg

extend graph vcs fan out graph vcs

SL

CONS MAP

FLAT

( ) =
= & &
=

( = )

( ; ) = =
=

&

( ) = [ ]

Figure 7.3: De�nition of , VCG function for declarations.

declaration with respect to the procedure environment.

The next several functions deal with the analysis of the structure of the procedure

call graph. We will begin with the lowest level functions, and build up to the

main VCG function for the procedure call graph, .

There are two mutually recursive functions at the core of the algorithm to an-

alyze the procedure call graph, and . They

are presented together in Figure 7.4. Each yields a list of veri�cation conditions

to verify progress across parts of the graph. In the de�nitions, converts a list

to a set, and adds an element to a list. applies a function to each

element of a list, and gathers the results of all the applications into a new list

which is the value yielded. takes a list of lists and appends them together,

to \
atten" the structure into a single level, a list of elements from all the lists.

The purpose of the graph analysis is to verify that the progress speci�ed in the

139



0

0

0

0 0

0 0

j

^ )

j 2 )

j

0

1

1

0

0

1

1

0 1 1

0

0

0

let in

true

let in

recurses with

extend graph vcs fan out graph vcs

backwards

extend graph vcs p ps p q pcs � all ps n p

q call progress p p q �

q >

p p >

vars; vals; glbs; pre; post; calls; rec; c � p

pre induct pre rec q

p SL CONS p ps > pcs p q

fan out graph vcs p CONS p ps p q pcs q =p � all ps n

fan out graph vcs p ps p q pcs � all ps n

FLAT MAP extend graph vcs p ps p q pcs � all ps n all ps

fan out graph vcs p ps p q pcs � all ps

call progress

call progress

=
=

( = = [ ]
= =

( ) =
[ ]

( ) = [ ]
( ) ( [ ])

)

( + 1) =
( ( ) )

0 = [ ]

Figure 7.4: De�nition of and .

clause for each procedure is achieved for every possible recursive

call of the procedure. The general process is to begin at a particular node of

the call graph, and explore through the directed arcs of the graph.

We associate with that starting node the recursion expression for that procedure,

and this is the starting path expression. For each arc traversed backwards, the

current path expression is transformed using the function de�ned

in Table 6.11, and we associate the result yielded by with the new

node reached along the arc. At each point we keep track of the path of nodes

from the current node to the starting node. This backwards exploration continues

recursively, until we reach a \leaf" node. A leaf node is one which is a duplicate of

one already in the path of nodes to the starting node. This duplicate may match

the starting node itself, or it may match one of the other nodes encountered in

140



0

!

0

HOL

p

ps

p

q

pcs

�

all ps

n

p

n

n

n

all ps ps

n all ps ps

string

string list

string

aexp

string aexp

env

string list

num

string

undiverted recursion

diversion

extend graph vcs

fan out graph vcs

fan out graph vcs

extend graph vcs

fan out graph vcs fan out graph vcs

fan out graph vcs

extend graph vcs

the path of the exploration.

When a leaf node is reached, a veri�cation condition is generated. These

will be explained in more detail later; for now it su�ces to note that there are

two kinds of veri�cation conditions generated, depending on which node the leaf

node duplicated. If the leaf node matched the starting node, then we generate an

veri�cation condition. If the leaf node matched any other

node, then we generate a veri�cation condition.

performs the task of tracing backwards across a particular

arc of the procedure call graph. traces backwards across all

incoming arcs of a particular node in the graph. The arguments to these functions

have the following types and meanings:

: : current node (procedure name)
: ( ) : path (list of procedure names)
: : starting node (procedure name)
: : current path condition
: : prior path conditions
: : procedure environment
: ( ) : all declared procedures (list of names)
: : depth counter
: : source node of arc being explored

The depth counter was a necessary artifact to be able to de�ne these func-

tions in ; �rst was de�ned as a single primitive recursive

function on combining the functions of Figure 7.4. Then was

de�ned as a mutually recursive part of , and

resolved to the remainder. For calls of , should be equal to

the di�erence between the lengths of and . For calls of ,

should be equal to the di�erence between the lengths of and , minus

one.

141



2

all ps

calls

�p:

call progress

call progress

calls p

call progress

fan out graph vcs extend graph vcs

extend graph vcs

not

extend graph vcs

calls with

calls with

false

calls with

false

calls with

false

false

false

The de�nition of maps across all de�ned

procedures, as listed in . It is expected that practically speaking, most

programs will have relatively sparse call graphs, in that there will be many pro-

cedures in the program, but each individual procedure will only be called by

a small fraction of all de�ned. Therefore it is important for the application of

described above to terminate quickly for applications across an

arc which does not actually exist in the procedure call graph. The lack of an arc

is represented by the lack of a corresponding . . . clause in the header

of the procedure which would be the source of the arc. When assembing the

calls progress environment from the . . . clauses of a procedure,

each clause produces a binding onto an initial default calls progress environment.

This default calls progress environment is . Then all references to target

procedures speci�ed in the . . . clauses yield the default value of

this default calls progress environment, . This indicates that there is no

relationship at all possible between the values in the states before and after such

a call, and therefore signi�es that such calls cannot occur. As a side bene�t,

this ensures that any omission of a . . . clause from the header of a

procedure whose body does indeed contain a call to the target procedure will gen-

erate veri�cation conditions that require proving , and these will be quickly

identi�ed as untrue.

An invocation of will at its beginning call the

function. According to its de�nition in the last chapter, will evalu-

ate to extract the progress expression. For a nonexistent arc, this will be

, as described above. The de�nition of then tests whether the

progress expression is equal to . For such a nonexistent arc in the procedure

142



0

true

true

true

let in

true

extend graph vcs

extend graph vcs

extend graph vcs

graph vcs

call progress

graph vcs all ps � p

vars; vals; glbs; pre; post; calls; rec; c � p

fan out graph vcs p p rec �p : � all ps LENGTH all ps

fan out graph vcs graph vcs

graph vcs

call graph, it is, and then immediately terminates with value .

The invocation of then receives as the current path

condition. The next step of is to test whether the path condition

is equal to . Since it is, the de�nition of then immediately

terminates, yielding an empty list with no veri�cation conditions as its result.

In theory, these functions could have been designed more simply and homo-

geneously to yield equivalent results just using the parts of each de�nition which

handle the general case. However, this would not have been a practical solution.

All these functions are designed with particular attention to as quickly as pos-

sible dismiss all nonexistent arcs of the procedure call graph. This is critical in

practice, because of the potentially exponential growth of the time involved in

exploring a large graph. This rapid dismissal limits the exponential growth to a

factor depending more on the average number of incoming arcs for nodes in the

graph, than on the total number of declared procedures.

=
( ) =

[ ] ( ) ( )

Figure 7.5: De�nition of .

The function is called initially by the function .

is presented in Figure 7.5. It analyzes the procedure call graph, begin-

ning at a particular node, and generates veri�cation conditions for paths in the

graph to that node to verify its recursive progress, as designated in its recursion

expression declared in the procedure's header.

143



odd even

b

vcgg

7.1.3.1 Example of Veri�cation of Call Graph

vcgg all ps � FLAT MAP graph vcs all ps � all ps

graph vcs vcgg vcgg

all ps

even

even

even n < n even

even odd even

= ( ( ) )

Figure 7.6: De�nition of , the VCG function to analyze the call graph.

The function is called by the function . is presented in

Figure 7.6. It analyzes the entire procedure call graph, beginning at each node

in turn, and generates veri�cation conditions for paths in the graph, to verify the

recursive progress declared for each procedure in .

Figure 7.7: Procedure Call Graph for Odd/Even Example.

As an example of this graph traversal algorithm, consider the odd/even pro-

gram in Table 6.1. We repeat its procedure call graph in Figure 7.7. We wish to

explore this call graph, beginning at the node corresponding to procedure .

In this process, we will trace part of the structure of the procedure call tree

rooted at , which is given in Figure 7.8. We take the recursion expression of

, , and attach that to the node. This becomes the current path

expression. Examining the call graph, we see that there are two arcs coming into

the node, one from and one from itself, as a self-loop. These will

form two paths, which we will explore as two cases.

144



even

even

odd

even

n < n̂

∀a1 n1. (n1 < n) ⇒ (n1 < n̂)

∀a1 n1. (n1 < n) ⇒ (n1 < n̂)

∀a1 n1. (n1 < n) ⇒ (∀a2, n2. (n2 < n1) ⇒ (n2 < n̂))

odd ∀a1 n1. (n1 < n) ⇒ (∀a2, n2. (n2 < n1) ⇒ (n2 < n̂))

b
b

!

8 )1 1 1 1

Case 1:

true

true

extend graph vcs

extend graph vcs

odd even

odd even

even odd call progress

call progress odd even n < n �

a ; n : n < n n < n

odd

odd even call progress

Figure 7.8: Procedure Call Tree for Odd/Even Example.

Path .

The call graph arc goes from to . We push the current path expression

backwards across the arc from to , using the function . We

previously described that

( )

= ( ) ( )

We attach this path expression to the node. According to the de�nition of

, we then go through a series of tests. We �rst test to see if this

path expression is , which it clearly is not. If, however, there had been no

arc in the procedure call graph from to , then the function

would have returned , and would terminate, yielding an

empty list of veri�cation conditions for this path.

145



b
b

! !

8 )

8 ) 8 )

Case 1.1:

true

1 1 1 1

1 1 1 2 2 2 1 2

extend graph vcs

extend graph vcs

fan out graph vcs

extend graph vcs

odd even

odd

even odd

odd

odd odd

even

odd odd even

odd

odd call progress

call progress odd odd a ; n : n < n n < n �

a ; n : n < n a ; n : n < n n < n

odd

The second test we encounter in the de�nition of is whether

the node just reached backwards across the arc is the same as the starting node.

In this case, the node just reached is and the starting node is , so this

test is not satis�ed.

The third test we encounter is whether the node just reached, , is a dupli-

cate of one of the nodes in the path to the starting node. In this case the path

only consists of the starting node itself, and is not a duplicate of any

member.

The choice �nally arrived at in the de�nition of is to continue

the graph exploration recursively, by calling . Considering the

node in the procedure call graph in Figure 7.7, we see there are two arcs of

the procedure call graph which enter the node , one from itself and one

from . These will form two paths, which we will explore as two cases.

Path .

We push the current path expression backwards across the arc from to

, using the function . We previously described that

( ( ) ( ))

= ( ) ( ( ) ( ))

This becomes the current path expression. We then go through the series of tests

in the de�nition of . We �rst test to see if this path expression

is , which it clearly is not.

The second test is whether the node just reached backwards across the arc is

the same as the starting node. In this case, the node just reached is and the

146



0

b b

b
b

Case 1.2:

true

!

)

8 ) )

8 ) 8 )

! !

8 )

8 ) 8 )

1

1 1 1 1

1 1 1 2 2 2 1 2

1 1 1 1

1 1 1 2 2 2 1 2

is

extend graph vcs

diversion veri�cation condition

extend graph vcs

even

odd

odd even

odd

pcs p q

a ; n : n < n n < n

a ; n : n < n a ; n : n < n n < n

even odd even

odd

even call progress

call progress even odd a ; n : n < n n < n �

a ; n : n < n a ; n : n < n n < n

even

even

starting node is , so this test is not satis�ed.

The third test is whether the node just reached, , is a duplicate of one of

the nodes in the path to the starting node. In this case this path is ,

so a duplicate, and this test succeeds.

According to the de�nition of , for satisfying this test, we

generate a veri�cation condition of the form , which in this case is

( ( ) ( ))
( ( ) ( ( ) ( )))

We call this kind of veri�cation condition a , which

we will describe more later.

This terminates this exploration of this path (Case 1.1) through the procedure

call graph.

Path .

We push the current path expression backwards across the arc from to

, using the function . We previously described that

( ( ) ( ))

= ( ) ( ( ) ( ))

This becomes the current path expression. We then go through the series of tests

in the de�nition of . We �rst test to see if this path expression

is , which it clearly is not.

The second test is whether the node just reached backwards across the arc is

the same as the starting node. In this case, the node just reached is and

the starting node is , so this test succeeds.

147



b b

b
b

^ )

^ )

8 ) 8 )

!

8 )

0

1

1 1 1 2 2 2 1 2

1

1 1 1 1

let in

true

Case 2:

true

extend graph vcs

undiverted recursion veri�cation

condition

extend graph vcs

vars; vals; glbs; pre; post; calls; rec; c � p

pre induct pre rec q ;

n n

a ; n : n < n a ; n : n < n n < n :

even even

even even

even even call progress

call progress even even n < n �

a ; n : n < n n < n

even

even

According to the de�nition of , for satisfying this test, we

generate a veri�cation condition of the form

( ) =
[ ]

which in this case is

( = )
( ( ) ( ( ) ( )))

We call this kind of veri�cation condition an

, which we will describe more later.

This terminates this exploration of this path (Case 1.2) through the procedure

call graph. Since this is also the last case for expanding the path of Case 1, this

also terminates the exploration of that path.

Path .

The call graph arc goes from to . We push the current path expres-

sion backwards across the arc from to , using the function .

We previously described that

( )

= ( ) ( )

This becomes the current path expression. We then go through the series of tests

in the de�nition of . We �rst test to see if this path expression

is , which it clearly is not.

The second test is whether the node just reached backwards across the arc is

the same as the starting node. In this case, the node just reached is and

the starting node is , so this test succeeds.

148



b b

decl

env env

0

1

1 1 1 1

1 2 2 1

^ )

^ )

8 )

h i

!

!

let in

true

7.1.4 Veri�cation of Programs

proc

empty

extend graph vcs

undiverted recursion veri�cation condition

mkenv

vars; vals; glbs; pre; post; calls; rec; c � p

pre induct pre rec q ;

n n

a ; n : n < n n < n :

even

mkenv p vars vals glbs pre post calls rec c �

� vars; vals; glbs; pre; post; calls; rec; c =p

mkenv d d � mkenv d mkenv d �

mkenv � �

mkenv

mkenv

According to the de�nition of , for satisfying this test, we

generate a veri�cation condition of the form

( ) =
[ ]

which in this case is

( = )
( ( ) ( ))

This is another .

This terminates this exploration of this path (Case 2) through the procedure

call graph. Since this is also the last case, this also terminates the exploration of

the procedure call graph for paths rooted at .

This ends the example.

( ) =
[ ]

( ; ) = ( )
( ) =

Figure 7.9: De�nition of .

The function is presented in Figure 7.9. This function has type

. takes a declaration and an environment, and returns a

new environment containing all of the declarations of procedures present in the

declaration argument, overriding the declarations of those procedures already

present in the environment.

149



!

proc names

vcg

1 2 1 2

0

1

2

3 0

1 2 3

0

0

decl string list

proc

empty

program end program

let in

let in

let in

let true in

true

proc names p vars vals glbs pre post calls rec c p

proc names d d proc names d proc names d

proc names

proc names

proc names

vcg d c q

� mkenv d �

h vcgd d �

h vcgg proc names d �

h vcgc c g q �

h h h

vcg vcg vcgd

vcgg vcgc

vcg

mkenv

�

g �p:

( ) = [ ]
( ; ) = &
( ) = [ ]

Figure 7.10: De�nition of .

The function is presented in Figure 7.10. This function has type

( ) . takes a declaration, and returns the list of

procedure names that are declared in the declaration.

( ; ) =
=
=
= ( )
=

& &

Figure 7.11: De�nition of , the main VCG function.

is the main VCG function, presented in Figure 7.11. calls to

analyze the declarations, to analyze the call graph, and to analyze

the main body of the program. takes a program and a postcondition as

arguments, analyzes the entire program, and generates veri�cation conditions

whose proofs are su�cient to prove the program totally correct with respect to the

given postcondition. creates the procedure environment that corresponds

to a declaration using the empty procedure environment (with all procedures

undeclared), and is the \empty" call progress environment .

150



Principle

Principle

7.2 Veri�cation Conditions

proof

and these solutions are �tted together in a speci�ed way

In the functions presented above, the essential task is constructing a proof of the

program, but this proof is implicit and not actually produced as a result. Rather,

the primary results are veri�cation conditions, whose proof veri�es the construct

analyzed.

In [Gri81], Gries gives an excellent presentation of a methodology for devel-

oping programs and proving them correct. He lists many principles to guide and

strengthen this process. The �rst and primary principle he lists is

: A program and its proof should be developed hand-in-

hand, with the usually leading the way.

In [AA78], Alagi�c and Arbib establish the following method of top-down de-

sign of an algorithm to solve a given problem:

: Decompose the overall problem into precisely speci�ed

subproblems, and prove that if each subproblem is solved correctly

then the orig-

inal problem will be solved correctly. Repeat the process of \decom-

pose and prove correctness of the decomposition" for the subproblems;

and keep repeating this process until reaching subproblems so simple

that their solution can be expressed in a few lines of a programming

language.

We would like to summarize these in our own principle:

151



ad hoc

vcg vcgc vcgd

vcg vcgc vcgd

Principle

7.2.1 Program Structure Veri�cation Conditions

: The structure of the proof should match the structure of

the program.

In the past, veri�cation condition generators have concentrated exclusively on

the structure of the syntax of the program, decomposing commands into their

subcommands, and constructing the proof with the same structure based on the

syntax, so that the proof and the program mirror each other.

We continue that tradition in this work, but we also recognize that an addi-

tional kind of structure exists in programs with procedures, the structure of the

procedure call graph. This is a perfectly valid kind of structure, and it provides

an opportunity to structure part of the proof of a program's correctness. In par-

ticular, it is the essential structure we use to prove the recursive progress claims

of procedures.

In our opinion, wherever a natural and inherent kind of structure is recognized

in a class of programs, it is worth examining to see if it may be useful in struc-

turing proofs of properties about those programs. Such structuring regularizes

proofs and reduces their quality. In addition, it may provide opportunities

to prove general results about all programs with that kind of structure, moving

a part of the proof e�ort to the meta-level, so that it need not be repeated for

each individual program being proven.

The functions 1, , and are de�ned recursively, based on the recursive

syntactic structure of the program constructs involved. An examination of the

de�nitions of 1, , and (Figures 7.1, 7.2, 7.3) reveals several instances

152



^

vcg

vcgc

vcg

vcg vcgd vcgc

vcg

pre calls p pre calls p

vcg vcgc vcgd

calls vcgd

�

where veri�cation conditions are generated in this analysis of the syntactic struc-

ture. The thrust of the work done by 1 is to transform the postcondition

argument into an appropriate precondition, but it also generates two veri�ca-

tion conditions for the iteration command. takes the veri�cation conditions

generated by 1, and adds one new one, making sure the given precondition

implies the precondition computed by 1. invokes on the body of

each procedure declared, and collects the resulting veri�cation conditions into

a single list. All of these veri�cation conditions were generated at appropriate

places in the syntactic structure of the program.

Principally, the purpose of these veri�cation conditions is to establish the

partial correctness of the constructs involved, with respect to the preconditions

and postconditions present. In addition, however, a careful examination of the

procedure call clause in the de�nition of 1 in Figure 7.1 discloses that the

phrase occuring there ensures that both and must be

true upon entry to the procedure being called. Thus the preconditions generated

by 1, and incorporated by and , carry the strength of being able

to ensure both that the preconditions of any called procedures are ful�lled, and

that the call progress speci�ed in the argument is ful�lled. For , this

means that that the preconditions of declared procedures are ful�lled, and the call

progress claimed in the header of each procedure declared has been veri�ed. From

the partial correctness that they imply, it is then possible to prove for each of these

VCG functions that the command involved terminates if all of its immediate calls

terminate. Thus it is possible to reason simply from the veri�cation conditions

generated by this syntactic analysis and conclude four essential properties of the

procedure environment :

153



envp

env pre

env calls

env term

WF � �

WF � �

WF � �

WF � �

v < x v

x

x

v

v

v < x

<

v

v

7.2.2 Call Graph Structure Veri�cation Conditions

recurses with

false

is well-formed for partial correctness
is well-formed for preconditions
is well-formed for calls progress
is well-formed for conditional termination

In this dissertation, we have introduced functions as part of the veri�cation con-

dition generator to analyze the structure of the procedure call graph. The goal

of this graph analysis is to prove that every recursive call, reentering a proce-

dure that had been called before and has not yet �nished, demonstrates some

measurable degree of progress. This progress is quanti�ed in the

clause in the procedure declaration's header. The expression given in this clause

is either , signifying that no recursion is allowed, or , where is an

assertion language numeric expression, and where is a logical variable. The

exact choice of is not vital, merely that it serve as a name for the prior value of

at the �rst call of the procedure, so that it may be compared with the eventual

value of at the recursive call.

The progress described by is the decrease of an integer expression. In

the Sunrise language, this is restricted to nonnegative integer values. The non-

negative integers form a well-founded set with as its ordering. By the de�nition

of well-founded sets, there does not exist any in�nite decreasing sequence of val-

ues from a well-founded set. Hence there cannot be an in�nite number of times

that the expression decreases before it reaches 0, and thus we will eventually

be able to argue that any call of the procedure must terminate. However, at

this point we are only trying to establish the recursive progress between recursive

invocations of the procedure, that has strictly decreased.

154



undiverted recursion veri�cation

conditions diversion veri�cation conditions

recursion

single recursion

multiple recursion

To prove this recursive progress, we need to consider every possible path of

procedure calls from the procedure to itself. Given the possible presence of cycles

in the procedure call graph, there may be an in�nite number of such paths, all

of which cannot be examined in �nite time. However, in our research, we have

discovered a small, �nite number of veri�cation conditions which together cover

every possible path, even if the paths are in�nite in number. These veri�ca-

tion conditions are of two kinds, which we call

and .

To understand the intent of these veri�cation conditions, as a �rst step con-

sider the possibility of exploring the procedure call graph to �nd paths that

correspond to recursive calls. Starting from a designated procedure and explor-

ing backwards across arcs in the graph yields an expanding tree of procedure

calls, where the root of the tree is the starting procedure. If cycles are present in

the graph, this tree will grow to be in�nite in extent. An example of such a tree

is presented in Figure 7.12.

Now examine this in�nite tree of procedure calls. Some of the nodes in the

tree duplicate the root node, that is, they refer to the same procedure. We call

these occurrences instances of . Of these duplicate nodes, consider the

paths from each node to the root. Some of these paths will themselves contain

internally another duplicate of the root, and some will not. Those that do not

contain another duplicate of the root we call instances of . The

other paths, that do contain additional duplicates of the root, we call instances

of . Observe that each instance of multiple recursion is a chain-

ing together of multiple instances of single recursion. In addition, if the progress

155



even

evenodd

evenodd evenodd

Multiple recursion

Single recursion

even odd

Figure 7.12: Procedure Call Tree for Recursion for Odd/Even Example.

claimed by the recursion expression for the root procedure is achieved for each in-

stance of single recursion, then the progress achieved for each instance of multiple

recursion will be the accumulation of the progresses of each constituent instance

of single recursion, and thus should also satisfy the progress claim even more

easily.

So the problem of proving the recursive progress for all recursive paths simpli-

�es to proving it for all singly recursive paths. Now, there still may be an in�nite

number of singly recursive paths in the procedure call tree. For instance, in the

odd/even program example, if we consider all singly recursive paths with root at

, the presence of the self-loop at means that there are an in�nite number

of paths with di�erent numbers of times around that self-loop involved. This tree

is presented in Figure 7.13. Singly recursive paths traverse the call graph from

156



even

evenodd

evenodd

evenodd

even

Undiverted recursion

Diversion

Diverted recursion

even odd odd

even

p

to , then to via an inde�nite number of times around the self-loop,

and �nally to .

Figure 7.13: Procedure Call Tree for Single Recursion for Odd/Even Example.

Consider the procedure call tree as before but limited now in its expansion to

singly recursive paths, so that the only occurrences of the root node are at the

root and as leaves. None of the internal nodes of the tree duplicate the root node.

However, for any particular leaf node and the path from that leaf to the root,

there may be duplicates within that list, not involving the root node. If there are

duplicates, say two occurences of a procedure not the root, then we call this

157



p

p

p p p

p

p

diverted recursion

diversion

undiverted recursion

diversion veri�cation conditions

bending

connecting

an instance of , and we call the part of the path between the

two occurrences of a . Intuitively this name suggests that the search

for recursive paths from the root procedure to itself became diverted from that

goal when the search reached . For a while the search followed the cycle from

to , and only when it returned to did it resume again to head for the root

procedure. In contrast, we call a path from a leaf to the root which does not have

any examples of diversion an instance of . These instances of

undiverted recursion would be the occasions of generating veri�cation conditions

to verify the recursion expression claim, except that the tree is still in�nite.

Now, given a diversion involving the procedure , we observe that the sub-

trees of the procedure call tree rooted at the two instances of are identical

in their branching structure. The only things that change are the path condi-

tions attached to the various nodes. Except for these, one could copy one of

the subtrees, move it so that it was superimposed on the other subtree, and the

two would look identical. This provides the motivation for the �nal simpli�ca-

tion here, the introduction of . We can implicitly

cover the in�nite expansion of the procedure call tree for single recursion by look-

ing for cases of diversion as we expand the tree, and then for each case,

the endpoint of the diversion farthest from the root around and it to

the near endpoint of the diversion. The connection we establish is the generation

of a veri�cation condition, that the path condition at the near endpoint implies

the path condition at the far endpoint. Compare Figures 7.13 and 7.14 to see an

example of this for the odd/even program.

At �rst, this may seem counter-intuitive, or even bizzare, and we confess this

158



even

evenodd

even

odd

Undiverted recursion

verification conditions

Diversion

verification

condition

Figure 7.14: Diverted and Undiverted Veri�cation Conditions for Odd/Even.

was how the idea struck us initially. Since the far endpoint is previous in time to

the near endpoint, one would normally expect any implication to 
ow from the

prior to the later. However, in this case what the diversion veri�cation condition is

saying is that the changes to the path expressions imposed by moving around the

diversion cycle in the graph do not interfere with justifying the recursive progress

claim for the root procedure. In other words, we do not lose ground by going

around a diversion cycle, but instead the cycle either has no e�ect or a positive

e�ect. In terms of the procedure call tree, making this connection between the

endpoints of a diversion is tantamount to copying the entire subtree rooted at

the nearer endpoint and attaching the root of the copy at the farther endpoint.

Since the copied subtree includes the farther endpoint within it, this creates an

in�nite expansion, fully covering the in�nite singly recursive procedure call tree.

However, since there is only one veri�cation condition per diversion required

to achieve this, we have reduced the proof burden imposed on the programmer

159



to a �nite number of veri�cation conditions, which now consist of a mixture

of undiverted recursion veri�cation conditions for leaves of the expansion which

match the root, and diversion veri�cation conditions for leaves of the expansion

which match another node along the path to the root.

160



HOL

envp

staged

vcg

vcg

WF �

vcg

calls

�

7.3 VCG Soundness Theorems

vcg1 0 THM vcg1 k THM

vcg1p THM

vcg1 PRE PROGRESS vcg1 BODY PROGRESS

vcg1 TERM

The veri�cation condition generator functions de�ned in the �rst section of this

chapter are simple syntactic manipulations of expressions as data. For this to

have any reliable use, we must establish the semantics of these syntactic manip-

ulations. We have done this in this dissertation by proving theorems within the

system that describe the relationship between the veri�cation conditions

produced by these functions and the correctness of the programs with respect to

their speci�cations. These theorems are proven at the meta-level, which means

that they hold for all programs that may be submitted to the VCG.

The VCG theorems that have been proven related to the 1 function are

listed in Table 7.1. There are seven theorems listed, which correspond to seven

ways that the results of the 1 function are used to prove various kinds of cor-

rectness about commands. and are the proof of

versions of the partial correctness of commands, necessary steps in proving the

full partial correctness. These stages and the process of proving the partial cor-

rectness of every procedure, , is described in Section 10.5 on Semantic

Stages. Given these two theorems, it is possible to prove , which veri-

�es that if the veri�cation conditions produced by 1 are true, then the partial

correctness of the command analyzed follows. Furthermore, it is possible to prove

and , which state that if the veri�cation

conditions are true, then the preconditions of all called procedures hold, and the

progress conditions contained in also hold. Beyond this, shows

that the command conditionally terminates if all immediate calls terminate. Fi-

nally, if the environment has been shown to be completely well formed, then

161



env syntax c

envk c

envp c

envp c

envp calls

c

envp c

env c

8 ^ )

) f g f g

8 ^ )

) f g f g

8 ^ )

) f g f g

8 ^ )

) f g !

8 ^

^ )

) f g !

8 ^ )

) #

8 ^ )

)

vcg1 0 THM

vcg1 k THM

vcg1p THM

vcg1 PRE PROGRESS

vcg1 BODY PROGRESS

vcg1 TERM

vcg1 THM

let in

all el close

let in

all el close

let in

all el close

let in

all el close pre

let in

all el close

let in

all el close

let in

all el close

( ) = 1
( 0)

( ) = 1
( + 1)

( ) = 1
( )

( ) = 1
( )

( ) = 1
( )

( ) = 1
( [ ] )

( ) = 1
( [ ] [ ] )

Table 7.1: Theorems of veri�cation of commands using the 1 function.

162

c calls q �: WF � WF c calls �

p; h vcg c calls q �

h p c q =�;

c calls q � k: WF � k WF c calls �

p; h vcg c calls q �

h p c q =�; k

c calls q �: WF � WF c calls �

p; h vcg c calls q �

h p c q =�

c calls q �: WF � WF c calls �

p; h vcg c calls q �

h p c =�

c calls q �: WF � WF calls �

WF c calls �

p; h vcg c calls q �

h p c calls =�

c calls q �: WF � WF c calls �

p; h vcg c calls q �

h p c =�

c calls q �: WF � WF c calls �

p; h vcg c calls q �

h p c q =�

vcg



envp

staged

vcgc

vcg

vcgc

WF �

vcgc

calls

�

vcg1 THM

vcgc 0 THM vcgc k THM

vcgcp THM

vcgc PRE PROGRESS

vcgc BODY PROGRESS

vcgc TERM

vcgc THM

states that if all the veri�cation conditions are true, then the com-

mand is totally correct with respect to the computed precondition and the given

postcondition.

The VCG theorems that have been proven related to the function are

listed in Table 7.2. These are similar to the theorems proven for 1. There

are seven theorems listed, which correspond to seven ways that the results of the

function are used to prove various kinds of correctness about commands.

and are the proof of versions of the partial cor-

rectness of commands, necessary steps in proving the full partial correctness.

These stages and the process of proving the partial correctness of every proce-

dure, , is described in Section 10.5 on Semantic Stages. Given these two

theorems, it is possible to prove , which veri�es that if the veri�cation

conditions produced by are true, then the partial correctness of the com-

mand analyzed follows. Furthermore, it is possible to prove

and , which state that if the veri�cation conditions are true,

then the preconditions of all called procedures hold, and the progress conditions

contained in also hold. Beyond this, shows that the command

conditionally terminates if all immediate calls terminate. Finally, if the environ-

ment has been shown to be completely well formed, then states that

if all the veri�cation conditions are true, then the command is totally correct

with respect to the given precondition and postcondition.

163



env syntax c

envk c

envp c

envp c

envp c

envp c

env c

8 ^ )

)

f g f g

8 ^ )

)

f g f g

8 ^ )

)

f g f g

8 ^ )

)

f g !

8 ^ )

)

f g !

8 ^ )

)

#

8 ^ )

)

vcgc 0 THM

vcgc k THM

vcgcp THM

vcgc PRE PROGRESS

vcgc BODY PROGRESS

vcgc TERM

vcgc THM

all el close

all el close

all el close

all el close

pre

all el close

all el close

all el close

( )
0

( )
+ 1

( )

( )

( )

( )
[ ]

( )
[ ] [ ]

Table 7.2: Theorems of veri�cation of commands using the function.

164

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c q =�;

c p calls q � k: WF � WF c calls �

vcgc p c calls q �

p c q =�; k

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c q =�

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c =�

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c calls =�

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c =�

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c q =�

vcgc



envp

staged

vcgd

vcg vcgc

vcgd

vcgd

WF �

vcgd

fan out graph vcs

fan out graph vcs

vcgd syntax THM

vcgd 0 THM vcgd k THM

vcgd THM

vcgd PRE PROGRESS

vcgd BODY PROGRESS

vcgd TERM

The VCG theorems that have been proven related to the function for

declarations are listed in Table 7.3. These are similar in purpose to the theorems

proven for 1 and . There are seven theorems listed, which correspond to

seven ways that the results of the function are used to prove various kinds

of correctness about declarations. shows that if a declaration

is well-formed syntactically and the veri�cation conditions returned by are

true, then the corresponding procedure environment is well-formed syntactically.

and are the proof of versions of the partial cor-

rectness of declarations, necessary steps in proving the full partial correctness.

These stages and the process of proving the partial correctness of every proce-

dure, , is described in Section 10.5 on Semantic Stages. Given these

two theorems, it is possible to prove , which veri�es that if the veri�-

cation conditions produced by are true, then the partial correctness of the

environment follows. Furthermore, it is possible to prove

and , which state that if the veri�cation conditions are true,

then the environment is well-formed for preconditions and for calls progress. Fi-

nally, shows that if all the veri�cation conditions are true, then every

procedure in the environment conditionally terminates if all immediate calls from

its body terminate.

The VCG theorems that have been proven related to the graph exploration

functions for the procedure call graph are given in the following tables. The the-

orem about is listed in Table 7.4. It essentially states that if

the veri�cation conditions returned by are true, then for every

possible extension of the current path to a leaf node, if it is a leaf corresponding

to an instance of undiverted recursion, then the undiverted recursion veri�ca-

165



0

0

0

0

0

0

0

8 ^ ^

)

8 ^ ^

)

8 ^ ^

)

)

8 ^ ^

)

8 ^ ^

)

8 ^ ^

)

8 ^ ^

)

d

env syntax

d

envk

d

envk

envk

d

envp

d

env pre

d

env calls

d

env term

all el close

all el close

all el close

all el close

all el close

all el close

all el close

vcgd syntax THM

vcgd 0 THM

vcgd k THM

vcgd THM

vcgd PRE PROGRESS

vcgd BODY PROGRESS

vcgd TERM

=
( )

=
( )

0

=
( )

( + 1)

=
( )

=
( )

=
( )

=
( )

Table 7.3: Theorems of veri�cation of declarations using the function.

166

d �: � mkenv d � WF d �

vcgd d �

WF �

d �: � mkenv d � WF d �

vcgd d �

WF �

d � k: � mkenv d � WF d �

vcgd d �

WF � k

WF � k

d �: � mkenv d � WF d �

vcgd d �

WF �

d �: � mkenv d � WF d �

vcgd d �

WF �

d �: � mkenv d � WF d �

vcgd d �

WF �

d �: � mkenv d � WF d �

vcgd d �

WF �

vcgd



fan out graph vcs

graph vcs

graph vcs

graph vcs

graph vcs

graph vcs

call path progress

ps

call path progress

induct pre rec

rec rec v < x

induct pre rec v x

tion condition is true, and if the leaf corresponds to an instance of diversion,

then the diversion veri�cation condition is true. In brief, this theorem says that

produces all the veri�cation conditions previously described

as arising from the current point on in the exploration of the call graph.

The theorem about the veri�cation of is listed in Table 7.5. It

essentially states that if the veri�cation conditions returned by are

true, then for every instance of undiverted recursion, the undiverted recursion

veri�cation condition is true, and for every instance of diversion, the diversion

veri�cation condition is true. In brief, this theorem says that produces

all the veri�cation conditions previously described as arising from a particular

starting node in the exploration of the call graph.

Given that collects the proper set of veri�cation conditions, we can

now prove that for all instances of single recursion, if the veri�cation conditions

returned by are true, then the initial value of the recursion expression

for a procedure implies the precondition computed by the

function (de�ned in Table 6.12), as shown in Table 7.6. The proof proceeds by

well-founded induction on the length of the path .

Now, in the previous chapter a rule was presented that

returned appropriate preconditions for path entrance speci�cations. We can now

prove path entrance speci�cations for all possible paths starting from a procedure

to a recursive call of the same procedure, where the precondition at the original

entrance of the procedure is , and the entrance condition at all the

eventual recursive entrances of the procedure is . If is of the form ,

then is = , and these path entrance speci�cations declare

167



all el close

close

close

env syntax

env pre

env calls

a

0

0

0

0

0

0

0

0

2 1 2 1 0

1 0

0

0

1 1 2

1 0

2 1 1 0

1 1 0

1 2 1 1 0

0 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0

0 0

0

0 0 0

0

0 0

0

0 0

0

0

0

0

0

8

^

^

^

h i ^

2 ^

8 62 ) ^

^

2 ^

� ^

^

h i ^

^

� ^

) ^

8 )

^

8 2 ^ 6 )

8 )

^

)

8

^ )

^ )

^

8

6 ^

^

^

)

)

=

( ( ) ( = ))
= +

( )
( )
( )
=

= & &
( & )

(( = [ ]) ( = ))
( ( = & [ ])

( = ))
( ( ) =

( ( = & ( ( & [ ])))
( = )))

( )

(
( ) ( ( ))

(
))

(
( = )

( ) ( ( ))
( & ( ) = & ( ( & [ ])))

(
( & ( )) ))

Table 7.4: Theorem of veri�cation condition collection by .

168

n p ps p q pcs � all ps y z

vars vals glbs pre post calls rec c

vars vals glbs pre post calls rec c :

WF �

WF �

WF �

� p vars; vals; glbs; pre; post; calls; rec; c

p SL all ps

p : p SL all ps � p � p

LENGTH all ps LENGTH ps n

p SL CONS p ps

SL CONS p ps SL all ps

DL CONS p ps

� p vars ; vals ; glbs ; pre ; post ; calls ; rec ; c

y vars vals glbs

FV q SL y logicals z

ps q rec

ps : ps ps p

q call path progress p ps p rec �

p : p SL CONS p ps p p

ps ps : CONS p ps ps CONS p ps p

pcs p call path progress p ps p rec �

fan out graph vcs p ps p q pcs � all ps n

ps :

DL ps DISJOINT SL ps SL CONS p ps

pre induct pre rec

call path progress p ps p q �

p ps ps ps :

p p

DL ps

DISJOINT SL ps SL CONS p ps

ps CONS p ps ps CONS p ps p

call path progress p ps p rec �

call path progress p ps CONS p ps p rec �

fan out graph vcs



0

1 2

2 1

1

2 1

0 0 0 0

0

0

0

0

0 0

all el close

close

close

env syntax

env pre

env calls

8

^

^

^

8 62 ) ^

2 ^

h i ^

)

8

)

^ )

^

8

6 ^

^

62 ^

)

)

( ( ) ( = ))

=
( )

(
( & [ ])

(
))

(
( = )

= & ( )
(

( & ( )) ))

Table 7.5: Theorem of veri�cation condition collection by .

169

p � all ps vars vals glbs pre post calls rec c:

WF �

WF �

WF �

p : p SL all ps � p � p

p SL all ps

� p vars; vals; glbs; pre; post; calls; rec; c

graph vcs all ps � p

ps:

DL ps p

pre induct pre rec

call path progress p ps p rec �

p ps ps ps :

p p

DL ps

p SL ps

ps ps CONS p ps

call path progress p ps p rec �

call path progress p ps CONS p ps p rec �

graph vcs



0
0 0 0 0

all el close

close

8

^

^

^

8 62 ) ^

^

2 ^

62 ^

h i ^

)

^ )

env syntax

env pre

env calls

n ps p � all ps vars vals glbs pre post calls rec c:

WF �

WF �

WF �

p : p SL all ps � p � p

LENGTH ps n

p SL all ps

p SL ps

� p vars; vals; glbs; pre; post; calls; rec; c

graph vcs all ps � p

pre induct pre rec

call path progress p ps p rec �

call path progress

v

<

ps

graph vcs

vcgg

vcgg

( ( ) ( = ))
=

=
( )

(
)

Table 7.6: Theorem of veri�cation of single recursion by .

that the recursive expression strictly decreases across every possible instance

of single recursion of that procedure. This theorem is shown in Table 7.7.

Using the transitivity of , we can now prove the veri�cation of all recursion,

single and multiple, by well-founded induction on the length of the path . This

theorem is shown in Table 7.8.

We can now describe the veri�cation of recursion given the veri�cation con-

ditions returned by , in Table 7.9.

This allows us to verify the recursion of all declared procedures by the main

call graph analysis function, , as described in Table 7.10.

Finally, this allows us to verify the main call graph analysis function, ,

as described in Table 7.11.

We will show later how the progress described in the recursive progress claims

enables the proof of the termination of procedures. This is a particularly inter-

170



0

0

0 0 0 0

0 0 0 0

all el close

all el close

env syntax

env pre

env calls

env syntax

env pre

env calls

8

^

^

^

8 62 ) ^

2 ^

62 ^

h i ^

)

f ^ g ! f g

8

^

^

^

8 62 ) ^

^

2 ^

h i ^

)

f ^ g ! f g

( ( ) ( = ))

=
( )

|

Table 7.7: Theorem of veri�cation of all single recursion.

( ( ) ( = ))
=

=
( )

|

Table 7.8: Theorem of veri�cation of all recursion, single and multiple.

171

ps p � all ps vars vals glbs pre post calls rec c:

WF �

WF �

WF �

p : p SL all ps � p � p

p SL all ps

p SL ps

� p vars; vals; glbs; pre; post; calls; rec; c

graph vcs all ps � p

pre induct pre rec p ps p rec =�

n ps p � all ps vars vals glbs pre post calls rec c:

WF �

WF �

WF �

p : p SL all ps � p � p

LENGTH ps n

p SL all ps

� p vars; vals; glbs; pre; post; calls; rec; c

graph vcs all ps � p

pre induct pre rec p ps p rec =�



0

0

0

0 0 0 0

0 0 0 0

all el close

all el close

let in

all el close

8

^

^

^

8 62 ) ^

2 ^

h i ^

)

f ^ g  f g

8

^

^

^

8 62 ) ^

)

8 h i

f ^ g  f g

8

^

^

^

^

)

env syntax

env pre

env calls

env syntax

env pre

env calls

env syntax

env pre

env calls

env rec

( ( ) ( = ))

=
( )

Table 7.9: Theorem of veri�cation of recursion by .

( ( ) ( = ))
( )

( =
)

Table 7.10: Theorem of veri�cation of recursion by .

=

( ( ) )

Table 7.11: Theorem of veri�cation of .

172

p � all ps vars vals glbs pre post calls rec c:

WF �

WF �

WF �

p : p SL all ps � p � p

p SL all ps

� p vars; vals; glbs; pre; post; calls; rec; c

graph vcs all ps � p

pre induct pre rec p - rec =�

graph vcs

� all ps:

WF �

WF �

WF �

p : p SL all ps � p � p

vcgg all ps �

p: vars; vals; glbs; pre; post; calls; rec; c � p

pre induct pre rec p - rec =�

vcgg

d �:

� mkenv d �

WF �

WF �

WF �

vcgg proc names d �

WF �

vcgg



p

HOL

8 ^ )all el close

sound

complete

� q: WF � vcg � q � q

vcg

vcg

vcg

esting part of the veri�cation of the VCG, and possibly the deepest theoretically.

It is described in Section 11.2.

At last, we come to the main theorem of the correctness of the veri�cation

condition generator. This is our ultimate theorem and our primary result. It is

given in Table 7.12.

( ) [ ]

Table 7.12: Theorem of veri�cation of veri�cation condition generator.

This veri�es the veri�cation condition generator. It shows that the func-

tion is , that the correctness of the veri�cation conditions it produces su�ce

to establish the total correctness of the annotated program. This does not show

that the function is , namely that if a program is correct, then the

function will produce a set of veri�cation conditions su�cient to prove the

program correct from the axiomatic semantics. However, this soundness result

is quite useful, in that we may directly apply these theorems in order to prove

individual programs totally correct within , as seen in the next chapter.

173



174



vcg

vcg

VCG TAC

HOL

HOL

VCG

HOL

VCG

CHAPTER 8

Example Runs

\By their fruits you shall know them."

| Matthew 7:20

\Imitate those who through faith and patience inherit the promises."

| Hebrews 6:12

In this chapter we take the veri�cation condition generator for the Sunrise

programming language presented in the last chapter, and apply it to prove several

example programs. We prove these programs totally correct within the

theorem prover, and thus complete soundness is assured.

Given the function de�ned in the last chapter and its associated correct-

ness theorem, proofs of program correctness may now be partially automated with

security. This has been implemented as an tactic, called , which uses

the soundness theorem to transform a given program correctness goal to be

proved into a set of subgoals which are the veri�cation conditions returned by the

function. These subgoals are then proved within the theorem proving

system, using all the power and resources of that theorem prover, directed by the

user's ingenuity. The reliance on the soundness theorem is the \faith" re-

175



VCG TAC

HOL

VCG

VCG HOL

8.1 Quotient/Remainder

ferred to above, and the completion of the proofs within by the programmer

is the \patience." The \promise" is veri�ed programs.

The tactic has the ability to print a trace of its processing while

it works, which provides both a running commentary on its construction of the

implicit proof of the program's correctness, and also provides the expressions

which serve as the annotations between commands in a skeleton of the program's

proof. This trace may be turned on or o� at the user's will, by setting a global


ag. If it is turned o�, nothing is printed until the veri�cation condition subgoals

are displayed.

As a �rst example, we consider a program to compute the integer quotient and

remainder of a pair of numbers. We do not have division or remainder operators

present in the Sunrise programming language, so we will simulate them by an

algorithm of repeated subtraction. This example has no recursion; its purpose is

to demonstrate the syntactic analysis of the .

Here is an expression of the quotient/remainder procedure, o�ered as a goal

for the . The following is the actual text submitted to :

176



quotient_remainder

quotient_remainder

[[ ]]

HOL

HOL

quotient remainder

g [[ program

procedure quotient_remainder (var q,r; val x,y);

pre 0 < y;

post ^x = q * ^y + r /\ r < ^y;

r := x;

q := 0;

assert ^x = q * ^y + r /\ 0 < y /\ ^y = y

with r < ^r

while ~(r < y) do

r := r - y;

q := ++q

od

end procedure;

quotient_remainder(q,r;7,3)

end program

[ q = 2 /\ r = 1 ]

]];;

The double square brackets (\ " and \ ") enclose program text which is

parsed into an term containing the syntactic constructors that form the

program speci�cation. This parser was made using the parser library of .

Figure 8.1: Procedure Call Graph for Quotient/Remainder Program.

Figure 8.2: Procedure Call Tree for root procedure .

This program's call graph is very simple, consisting of one procedure with no

177



VCG TAC

quotient remaindercalls at all; it is shown in Figure 8.1. The call tree rooted at

is equally simple, shown in Figure 8.2.

Applying to the program correctness goal with the tracing turned on

produces the following.

178

#e(VCG_TAC);;

OK..

For procedure `quotient_remainder`,

By the "ASSIGN" rule, we have

[[ {(^x = (q + 1) * ^y + r /\ 0 < y /\ ^y = y) /\ r < ^r}

q := ++q

{(^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ r < ^r} ]]

By the "ASSIGN" rule, we have

[[ {(^x = (q + 1) * ^y + (r - y) /\ 0 < y /\ ^y = y) /\ r - y < ^r}

r := r - y

{(^x = (q + 1) * ^y + r /\ 0 < y /\ ^y = y) /\ r < ^r} ]]

By the "SEQ" rule, we have

[[ {(^x = (q + 1) * ^y + (r - y) /\ 0 < y /\ ^y = y) /\ r - y < ^r}

r := r - y; q := ++q

{(^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ r < ^r} ]]

By the "WHILE" rule, we have

[[ {^x = q * ^y + r /\ 0 < y /\ ^y = y}

assert ^x = q * ^y + r /\ 0 < y /\ ^y = y

with r < ^r

while ~(r < y) do

r := r - y; q := ++q

od

{^x = q * ^y + r /\ r < ^y} ]]

with verification conditions

"[[[ {((^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ ~(r < y)) /\

r = ^r ==>

(^x = (q + 1) * ^y + (r - y) /\ 0 < y /\ ^y = y) /\

r - y < ^r} ]];

[[ {(^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ ~(~(r < y)) ==>

^x = q * ^y + r /\ r < ^y} ]]]"



179

By the "ASSIGN" rule, we have

[[ {^x = 0 * ^y + r /\ 0 < y /\ ^y = y}

q := 0

{^x = q * ^y + r /\ 0 < y /\ ^y = y} ]]

By the "ASSIGN" rule, we have

[[ {^x = 0 * ^y + x /\ 0 < y /\ ^y = y}

r := x

{^x = 0 * ^y + r /\ 0 < y /\ ^y = y} ]]

By the "SEQ" rule, we have

[[ {^x = 0 * ^y + x /\ 0 < y /\ ^y = y}

r := x; q := 0

{^x = q * ^y + r /\ 0 < y /\ ^y = y} ]]

By the "SEQ" rule, we have

[[ {^x = 0 * ^y + x /\ 0 < y /\ ^y = y}

r := x; q := 0; assert ^x = q * ^y + r /\ 0 < y /\ ^y = y

with r < ^r

while ~(r < y) do

r := r - y; q := ++q

od

{^x = q * ^y + r /\ r < ^y} ]]

with verification conditions

"[[[ {((^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ ~(r < y)) /\

r = ^r ==>

(^x = (q + 1) * ^y + (r - y) /\ 0 < y /\ ^y = y) /\

r - y < ^r} ]];

[[ {(^x = q * ^y + r /\ 0 < y /\ ^y = y) /\ ~(~(r < y)) ==>

^x = q * ^y + r /\ r < ^y} ]]]"

By precondition strengthening, we have

[[ {(^q = q /\ ^r = r /\ ^x = x /\ ^y = y /\ true) /\ 0 < y}

r := x; q := 0; assert ^x = q * ^y + r /\ 0 < y /\ ^y = y

with r < ^r

while ~(r < y) do

r := r - y; q := ++q

od

{^x = q * ^y + r /\ r < ^y} ]]

with additional verification condition



180

[[ {(^q = q /\ ^r = r /\ ^x = x /\ ^y = y /\ true) /\ 0 < y ==>

^x = 0 * ^y + x /\ 0 < y /\ ^y = y} ]]

Examining the structure of the procedure call graph:

Traversing the call graph back from the procedure quotient_remainder:

By the call graph progress from procedure quotient_remainder

to quotient_remainder, we have

[[ {0 < y /\ true}

quotient_remainder-<>->quotient_remainder

{false} ]]

For the main body,

By the "CALL" rule, we have

[[ {(0 < 3 /\ true) /\

(!q r x1 y1. 7 = q * 3 + r /\ r < 3 ==> q = 2 /\ r = 1)}

quotient_remainder(q,r;7,3)

{q = 2 /\ r = 1} ]]

By precondition strengthening, we have

[[ {true} quotient_remainder(q,r;7,3) {q = 2 /\ r = 1} ]]

with additional verification condition

[[ {true ==> (0 < 3 /\ true) /\

(!q r x1 y1. 7 = q * 3 + r /\ r < 3 ==>

q = 2 /\ r = 1)} ]]

4 subgoals

"0 < 3 /\

(!q r x1 y1. (7 = (q * 3) + r) /\ r < 3 ==> (q = 2) /\ (r = 1))"

"!^x q ^y r y.

((^x = (q * ^y) + r) /\ 0 < y /\ (^y = y)) /\ r < y ==>

(^x = (q * ^y) + r) /\ r < ^y"

"!^x q ^y r y ^r.

(((^x = (q * ^y) + r) /\ 0 < y /\ (^y = y)) /\

~r < y) /\ (r = ^r) ==>

((^x = ((q + 1) * ^y) + (r - y)) /\ 0 < y /\ (^y = y)) /\

(r - y) < ^r"



HOL

�

�

�

�

"!^q q ^r r ^x x ^y y.

((^q = q) /\ (^r = r) /\ (^x = x) /\ (^y = y)) /\ 0 < y ==>

(^x = (0 * ^y) + x) /\ 0 < y /\ (^y = y)"

() : void

|- [[ program

procedure quotient_remainder(q,r;x,y);

global ;

pre 0 < y;

post ^x = q * ^y + r /\ r < ^y;

recurses with false;

r := x; q := 0;

assert ^x = q * ^y + r /\ 0 < y /\ ^y = y

with r < ^r

while ~(r < y) do

r := r - y; q := ++q

od

end procedure;

quotient_remainder(q,r;7,3)

end program

[q = 2 /\ r = 1] ]]

These four subgoals, in this order, roughly correspond to the following claims:

The main body is partially correct.

The loop invariant is su�ciently powerful.

The loop invariant is maintained, and the progress expression decreases.

The procedure's body is partially correct.

Of these four subgoals, all are readily solved. This proof has been completed

in , yielding the following theorem. There are slight di�erences with the

original text, as this was prettyprinted according to a standard template.

181



� j

� j

�

VCG HOL

8.2 McCarthy's \91" Function

f

f �y: y > > y f f y :

f

f �y: y > > y ;

f y;

As a second example, we consider McCarthy's \91" function. The purpose of this

example is to introduce recursion in a single procedure which calls itself, and also

to show a nontrivial veri�cation condition.

We de�ne the function 91 as

91 = 100 = 10 91( 91( + 11))

We claim that the behavior of 91 is such that

91 = 100 = 10 91

which is not immediately obvious. Not only is this an interesting partial correct-

ness statement, but the termination of this function is also not easily transparent.

We claim that the behavior of 91 is such that the value of the expression 101

where subtraction is restricted to yielding nonnegative values, strictly decreases

for every (recursive) call, measured from the state at time of an entrance, to the

state at time of recursive entrance.

Here is an expression of the \91" function as a procedure, o�ered as a goal

for the . The following is the actual text submitted to :

182



p91 101 – y < 101 – ŷ

p

VCG TAC

g [[ program

procedure p91(var x; val y);

pre true;

post 100 < ^y => x = ^y - 10 | x = 91;

calls p91 with 101 - y < 101 - ^y;

recurses with 101 - y < ^z;

if 100 < y then x := y - 10

else

p91(x; y + 11);

p91(x; x)

fi

end procedure;

p91(a; 77)

end program

[ a = 91 ]

]];;

#e(VCG_TAC);;

OK..

For procedure `p91`,

Figure 8.3: Procedure Call Graph for McCarthy's \91" Program.

Now the procedure call graph is given in Figure 8.3. Applying the graph

traversal algorithm, beginning at the node 91, we generate the call tree in Figure

8.4, with the undiverted recursion veri�cation condition VC1.

Applying to the program correctness goal with the tracing turned on

produces the following.

183



p91

p91

101 – y < ẑ

∀x y1. (101 – y1 < 101 – y) ⇒ (101 – y1 < ẑ)

VC 1

pFigure 8.4: Procedure Call Tree for root procedure 91.

184

By the "ASSIGN" rule, we have

[[ {(100 < ^y => y - 10 = ^y - 10 | y - 10 = 91)}

x := y - 10

{(100 < ^y => x = ^y - 10 | x = 91)} ]]

By the "CALL" rule, we have

[[ {(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91))}

p91(x;x)

{(100 < ^y => x = ^y - 10 | x = 91)} ]]

By the "CALL" rule, we have

[[ {(true /\ 101 - (y + 11) < 101 - ^y) /\

(!x y1. (100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>

(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91)))}

p91(x;y + 11)

{(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91))} ]]



185

By the "SEQ" rule, we have

[[ {(true /\ 101 - (y + 11) < 101 - ^y) /\

(!x y1. (100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>

(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91)))}

p91(x;y + 11); p91(x;x)

{(100 < ^y => x = ^y - 10 | x = 91)} ]]

By the "IF" rule, we have

[[ {(100 < y => (100 < ^y => y - 10 = ^y - 10 | y - 10 = 91)

| (true /\ 101 - (y + 11) < 101 - ^y) /\

(!x y1. (100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>

(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91))))}

if 100 < y then x := y - 10 else p91(x;y + 11); p91(x;x) fi

{(100 < ^y => x = ^y - 10 | x = 91)} ]]

By precondition strengthening, we have

[[ {(^x = x /\ ^y = y /\ true) /\ true}

if 100 < y then x := y - 10 else p91(x;y + 11); p91(x;x) fi

{(100 < ^y => x = ^y - 10 | x = 91)} ]]

with additional verification condition

[[ {(^x = x /\ ^y = y /\ true) /\ true ==>

(100 < y => (100 < ^y => y - 10 = ^y - 10 | y - 10 = 91)

| (true /\ 101 - (y + 11) < 101 - ^y) /\

(!x y1.

(100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>

(true /\ 101 - x < 101 - ^y) /\

(!x1 y1. (100 < x => x1 = x - 10 | x1 = 91) ==>

(100 < ^y => x1 = ^y - 10 | x1 = 91))))} ]]

Examining the structure of the procedure call graph:

Traversing the call graph back from the procedure p91:

By the call graph progress from procedure p91 to p91, we have

[[ {true /\ (!x y1. 101 - y1 < 101 - y ==> 101 - y1 < ^z)}

p91-<>->p91

{101 - y < ^z} ]]



These three subgoals, in this order, roughly correspond to the following claims:

186

Generating the undiverted recursion verification condition

[[ {true /\ 101 - y = ^z ==>

(!x y1. 101 - y1 < 101 - y ==> 101 - y1 < ^z)} ]]

For the main body,

By the "CALL" rule, we have

[[ {(true /\ true) /\

(!a y1. (100 < 77 => a = 77 - 10 | a = 91) ==> a = 91)}

p91(a;77)

{a = 91} ]]

By precondition strengthening, we have

[[ {true} p91(a;77) {a = 91} ]]

with additional verification condition

[[ {true ==> (true /\ true) /\

(!a y1. (100 < 77 => a = 77 - 10 | a = 91) ==>

a = 91)} ]]

3 subgoals

"!a y1. (100 < 77 => (a = 77 - 10) | (a = 91)) ==> (a = 91)"

"!y ^z.

(101 - y = ^z) ==> (!x y1. (101 - y1) < (101 - y) ==>

(101 - y1) < ^z)"

"!^x x ^y y.

(^x = x) /\ (^y = y) ==>

(100 < y =>

(100 < ^y => (y - 10 = ^y - 10) | (y - 10 = 91)) |

((101 - (y + 11)) < (101 - ^y) /\

(!x' y1.

(100 < (y + 11) => (x' = (y + 11) - 10) | (x' = 91)) ==>

(101 - x') < (101 - ^y) /\

(!x1 y1'.

(100 < x' => (x1 = x' - 10) | (x1 = 91)) ==>

(100 < ^y => (x1 = ^y - 10) | (x1 = 91))))))"

() : void



�

�

�

�

VCG TAC

y < y < y

y > HOL

VCG

HOL

8.3 Odd/Even Mutual Recursion

|- [[ program procedure p91(x;y);

global ;

pre true;

post (100 < ^y => x = ^y - 10 | x = 91);

calls p91 with 101 - y < 101 - ^y;

recurses with 101 - y < ^z;

if 100 < y

then x := y - 10

else p91(x;y + 11); p91(x;x)

fi

end procedure; p91(a;77) end program

[a = 91] ]]

The main body is partially correct.

The value of the recursion expression of the procedure strictly decreases

across an undiverted recursion call (VC1).

The procedure's body is partially correct.

Of these three subgoals, the �rst two are readily solved. The last veri�cation

condition is proven by taking four cases: 90; 90 100, = 100, and

100. This proof has been completed in , yielding the following theorem:

As a third example, we consider the odd/even program presented originally in

Table 6.1. The purpose of this example is to demonstrate mutual recursion. We

have analyzed this program fairly extensively in the last two chapters in terms of

its procedure call graph. Now we will prove it totally correct using .

Here is the odd/even program as a goal for the . The following is the

actual text submitted to :

187



odd

Now the procedure call graph is given in Figure 8.5. Applying the graph

traversal algorithm, beginning at the node , we generate the call tree in Figure

8.6, with two undiverted recursion veri�cation conditions, VC1 and VC2, and one

diversion veri�cation condition, VC3.

188

g [[ program

procedure odd(var a; val n);

pre true;

post (?b.^n = 2*b + a) /\ a < 2 /\ n = ^n;

calls odd with n < ^n;

calls even with n < ^n;

recurses with n < ^n;

if n = 0 then a:=0

else if n = 1 then even(a; n-1)

else odd (a; n-2)

fi

fi

end procedure;

procedure even(var a; val n);

pre true;

post (?b.^n + 1 = 2*b + a) /\ a < 2 /\ n = ^n;

calls even with n < ^n;

calls odd with n < ^n;

recurses with n < ^n;

if n = 0 then a:=1

else if n = 1 then odd (a; n-1)

else even(a; n-2)

fi

fi

end procedure;

odd(a; 5)

end program

[ a = 1 ]

]];;



odd even n < n̂n < n̂

n < n̂

n < n̂

VC 3

odd

odd

even

n < n̂

∀n1. (n1 < n) ⇒ (n1 < n̂)

∀n1. (n1 < n) ⇒

            (∀n2. (n2 < n1) ⇒

                      (n2 < n̂))

VC 2

∀n1. (n1 < n) ⇒ (∀n2. (n2 < n1) ⇒ (n2 < n̂))odd

evenVC 1

∀n1. (n1 < n) ⇒ (n1 < n̂)

odd

Figure 8.5: Procedure Call Graph for Odd/Even Program.

Figure 8.6: Procedure Call Tree for root procedure .

189



n < n̂

∀n1. (n1 < n) ⇒ (n1 < n̂)

∀n1. (n1 < n) ⇒

            (∀n2. (n2 < n1) ⇒ (n2 < n̂))

∀n1. (n1 < n) ⇒ (n1 < n̂)

even

VC 4

∀n1. (n1 < n) ⇒

            (∀n2. (n2 < n1) ⇒ (n2 < n̂))

VC 5

VC 6

even

even

odd

odd

evenFigure 8.7: Procedure Call Tree for root procedure .

190



even

VCG TAC

Examining the structure of the

procedure call graph:

#e(VCG_TAC);;

OK..

For procedure `odd`,

By the "ASSIGN" rule, we have

[[ {(?b. ^n = 2 * b + 0) /\ 0 < 2 /\ n = ^n}

a := 0

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n} ]]

By the "CALL" rule, we have

[[ {(true /\ n - 1 < ^n) /\

(!a n2.

(?b. (n - 1) + 1 = 2 * b + a) /\ a < 2 /\ n2 = n - 1 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)}

even(a;n - 1)

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n} ]]

By the "CALL" rule, we have

[[ {(true /\ n - 2 < ^n) /\

(!a n2. (?b. n - 2 = 2 * b + a) /\ a < 2 /\ n2 = n - 2 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)}

odd(a;n - 2)

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n} ]]

Applying the graph traversal algorithm, beginning at the node , we gen-

erate the call tree in Figure 8.7, with one diversion veri�cation condition, VC4,

and two undiverted recursion veri�cation conditions, VC5 and VC6.

Applying to the program correctness goal with the tracing turned on

produces the following output. In this example, we are primarily interested in

the proof of termination by analyzing the structure of the procedure call graph.

This section of the trace follows the line \

" in the following transcript.

191



192

By the "IF" rule, we have

[[ {(n = 1

=> (true /\ n - 1 < ^n) /\

(!a n2.

(?b. (n - 1) + 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 1 ==> (?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2.

(?b. n - 2 = 2 * b + a) /\ a < 2 /\ n2 = n - 2 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n))}

if n = 1 then even(a;n - 1) else odd(a;n - 2) fi

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n} ]]

By the "IF" rule, we have

[[ {(n = 0 => (?b. ^n = 2 * b + 0) /\ 0 < 2 /\ n = ^n

| (n = 1 => (true /\ n - 1 < ^n) /\

(!a n2. (?b. (n - 1) + 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 1 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2. (?b. n - 2 = 2 * b + a) /\

a < 2 /\

n2 = n - 2 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)))}

if n = 0

then a := 0

else if n = 1 then even(a;n - 1) else odd(a;n - 2) fi

fi

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n} ]]

By precondition strengthening, we have

[[ {(^a = a /\ ^n = n /\ true) /\ true}

if n = 0

then a := 0

else if n = 1 then even(a;n - 1) else odd(a;n - 2) fi

fi

{(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n} ]]



193

with additional verification condition

[[ {(^a = a /\ ^n = n /\ true) /\ true ==>

(n = 0 => (?b. ^n = 2 * b + 0) /\ 0 < 2 /\ n = ^n

| (n = 1

=> (true /\ n - 1 < ^n) /\

(!a n2. (?b. (n - 1) + 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 1 ==>

(?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2. (?b. n - 2 = 2 * b + a) /\

a < 2 /\

n2 = n - 2 ==>

(?b. ^n = 2 * b + a) /\

a < 2 /\

n = ^n)))} ]]

For procedure `even`,

By the "ASSIGN" rule, we have

[[ {(?b. ^n + 1 = 2 * b + 1) /\ 1 < 2 /\ n = ^n}

a := 1

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n} ]]

By the "CALL" rule, we have

[[ {(true /\ n - 1 < ^n) /\

(!a n2. (?b. n - 1 = 2 * b + a) /\ a < 2 /\ n2 = n - 1 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)}

odd(a;n - 1)

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n} ]]

By the "CALL" rule, we have

[[ {(true /\ n - 2 < ^n) /\

(!a n2.

(?b. (n - 2) + 1 = 2 * b + a) /\ a < 2 /\ n2 = n - 2 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)}

even(a;n - 2)

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n} ]]



194

By the "IF" rule, we have

[[ {(n = 1 => (true /\ n - 1 < ^n) /\

(!a n2.

(?b. n - 1 = 2 * b + a) /\ a < 2 /\ n2 = n - 1 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2. (?b. (n - 2) + 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 2 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n))}

if n = 1 then odd(a;n - 1) else even(a;n - 2) fi

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n} ]]

By the "IF" rule, we have

[[ {(n = 0 => (?b. ^n + 1 = 2 * b + 1) /\ 1 < 2 /\ n = ^n

| (n = 1 => (true /\ n - 1 < ^n) /\

(!a n2.

(?b. n - 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 1 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2.

(?b. (n - 2) + 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 2 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)))}

if n = 0

then a := 1

else if n = 1 then odd(a;n - 1) else even(a;n - 2) fi

fi

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n} ]]

By precondition strengthening, we have

[[ {(^a = a /\ ^n = n /\ true) /\ true}

if n = 0

then a := 1

else if n = 1 then odd(a;n - 1) else even(a;n - 2) fi

fi

{(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n} ]]



195

with additional verification condition

[[ {(^a = a /\ ^n = n /\ true) /\ true ==>

(n = 0 => (?b. ^n + 1 = 2 * b + 1) /\ 1 < 2 /\ n = ^n

| (n = 1 => (true /\ n - 1 < ^n) /\

(!a n2.

(?b. n - 1 = 2 * b + a) /\

a < 2 /\

n2 = n - 1 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)

| (true /\ n - 2 < ^n) /\

(!a n2.

(?b. (n - 2) + 1 = 2 * b + a) /\

a < 2 /\ n2 = n - 2 ==>

(?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n)))} ]]

Examining the structure of the procedure call graph:

Traversing the call graph back from the procedure even:

By the call graph progress from procedure even to even, we have

[[ {true /\ (!a n1. n1 < n ==> n1 < ^n)} even-<>->even {n < ^n} ]]

Generating the undiverted recursion verification condition

[[ {true /\ n = ^n ==> (!a n1. n1 < n ==> n1 < ^n)} ]]

By the call graph progress from procedure odd to even, we have

[[ {true /\ (!a n1. n1 < n ==> n1 < ^n)} odd-<>->even {n < ^n} ]]

By the call graph progress from procedure even to odd, we have

[[ {true /\ (!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}

even-<>->odd

{!a n1. n1 < n ==> n1 < ^n} ]]

Generating the undiverted recursion verification condition

[[ {true /\ n = ^n ==>

(!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))} ]]

By the call graph progress from procedure odd to odd, we have

[[ {true /\ (!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}

odd-<>->odd

{!a n1. n1 < n ==> n1 < ^n} ]]



196

Generating the diversion verification condition

[[ {(!a n1. n1 < n ==> n1 < ^n) ==>

(!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))} ]]

Traversing the call graph back from the procedure odd:

By the call graph progress from procedure even to odd, we have

[[ {true /\ (!a n1. n1 < n ==> n1 < ^n)} even-<>->odd {n < ^n} ]]

By the call graph progress from procedure even to even, we have

[[ {true /\ (!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}

even-<>->even

{!a n1. n1 < n ==> n1 < ^n} ]]

Generating the diversion verification condition

[[ {(!a n1. n1 < n ==> n1 < ^n) ==>

(!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))} ]]

By the call graph progress from procedure odd to even, we have

[[ {true /\ (!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))}

odd-<>->even

{!a n1. n1 < n ==> n1 < ^n} ]]

Generating the undiverted recursion verification condition

[[ {true /\ n = ^n ==>

(!a n1. n1 < n ==> (!a n2. n2 < n1 ==> n2 < ^n))} ]]

By the call graph progress from procedure odd to odd, we have

[[ {true /\ (!a n1. n1 < n ==> n1 < ^n)} odd-<>->odd {n < ^n} ]]

Generating the undiverted recursion verification condition

[[ {true /\ n = ^n ==> (!a n1. n1 < n ==> n1 < ^n)} ]]

For the main body,

By the "CALL" rule, we have

[[ {(true /\ true) /\

(!a n1. (?b. 5 = 2 * b + a) /\ a < 2 /\ n1 = 5 ==> a = 1)}

odd(a;5)

{a = 1} ]]



197

By precondition strengthening, we have

[[ {true} odd(a;5) {a = 1} ]]

with additional verification condition

[[ {true ==>

(true /\ true) /\

(!a n1. (?b. 5 = 2 * b + a) /\ a < 2 /\ n1 = 5 ==> a = 1)} ]]

9 subgoals

"!a n1. (?b. 5 = (2 * b) + a) /\ a < 2 /\ (n1 = 5) ==> (a = 1)"

"!n ^n. (n = ^n) ==> (!a n1. n1 < n ==> n1 < ^n)"

"!n ^n. (n = ^n) ==> (!a n1. n1 < n ==> (!a' n2. n2 < n1 ==> n2 < ^n))"

"!n ^n.

(!a n1. n1 < n ==> n1 < ^n) ==>

(!a n1. n1 < n ==> (!a' n2. n2 < n1 ==> n2 < ^n))"

"!n ^n.

(!a n1. n1 < n ==> n1 < ^n) ==>

(!a n1. n1 < n ==> (!a' n2. n2 < n1 ==> n2 < ^n))"

"!n ^n. (n = ^n) ==> (!a n1. n1 < n ==> (!a' n2. n2 < n1 ==> n2 < ^n))"

"!n ^n. (n = ^n) ==> (!a n1. n1 < n ==> n1 < ^n)"

"!^a a ^n n.

(^a = a) /\ (^n = n) ==>

((n = 0) =>

((?b. ^n + 1 = (2 * b) + 1) /\ 1 < 2 /\ (n = ^n)) |

((n = 1) =>

((n - 1) < ^n /\

(!a' n2.

(?b. n - 1 = (2 * b) + a') /\ a' < 2 /\ (n2 = n - 1) ==>

(?b. ^n + 1 = (2 * b) + a') /\ a' < 2 /\ (n = ^n))) |

((n - 2) < ^n /\

(!a' n2.

(?b. (n - 2) + 1 = (2 * b) + a') /\ a' < 2 /\ (n2 = n - 2) ==>

(?b. ^n + 1 = (2 * b) + a') /\ a' < 2 /\ (n = ^n)))))"



�

�

!

�

! !

� ! !

� ! !

�

! !

odd

odd odd

odd

odd even odd

even even even odd

odd

odd odd odd even

even

even

even odd even

"!^a a ^n n.

(^a = a) /\ (^n = n) ==>

((n = 0) =>

((?b. ^n = (2 * b) + 0) /\ 0 < 2 /\ (n = ^n)) |

((n = 1) =>

((n - 1) < ^n /\

(!a' n2.

(?b. (n - 1) + 1 = (2 * b) + a') /\ a' < 2 /\ (n2 = n - 1) ==>

(?b. ^n = (2 * b) + a') /\ a' < 2 /\ (n = ^n))) |

((n - 2) < ^n /\

(!a' n2.

(?b. n - 2 = (2 * b) + a') /\ a' < 2 /\ (n2 = n - 2) ==>

(?b. ^n = (2 * b) + a') /\ a' < 2 /\ (n = ^n)))))"

() : void

These nine subgoals, in this order, roughly correspond to the following claims:

The main body is partially correct.

The value of the recursion expression of the procedure strictly decreases

across the undiverted recursion path (VC1).

The value of the recursion expression of the procedure strictly decreases

across the undiverted recursion path (VC2).

The diversion of in does not interfere with the

recursive progress of the procedure (VC3).

The diversion of in does not interfere with the

recursive progress of the procedure (VC4).

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC5).

198



HOL

�

!

�

�

even

even even

even

odd

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC6).

The body of procedure is partially correct.

The body of procedure is partially correct.

Of these nine subgoals, three have to do with syntactic structure partial cor-

rectness, four have to do with undiverted recursion, and two have to do with

diversions.

All of these subgoals are readily solved. This proof has been completed in

, yielding the following theorem:

199



200

|- [[ program

procedure odd(a;n);

global ;

pre true;

post (?b. ^n = 2 * b + a) /\ a < 2 /\ n = ^n;

calls odd with n < ^n;

calls even with n < ^n;

recurses with n < ^n;

if n = 0

then a := 0

else if n = 1

then even(a;n - 1)

else odd(a;n - 2)

fi

fi

end procedure;

procedure even(a;n);

global ;

pre true;

post (?b. ^n + 1 = 2 * b + a) /\ a < 2 /\ n = ^n;

calls even with n < ^n;

calls odd with n < ^n;

recurses with n < ^n;

if n = 0

then a := 1

else if n = 1

then odd(a;n - 1)

else even(a;n - 2)

fi

fi

end procedure;

odd(a;5)

end program

[a = 1] ]]



every

8.4 Pandya and Joseph's Product Procedures

In 1986, Pandya and Joseph described a new rule for the total correctness of

procedure calls, improving on the earlier proposal of Soko lowski. Soko lowski used

a recursion depth counter to track the current depth of each call, and required

the counter to decrease by exactly one for every call of every procedure. This

supported the proof of the termination of procedures, because it did not allow

in�nite recursive descent. However, Pandya and Joseph showed how even for

simple programs, the use of Soko lowski's rule could lead to the use of predicates

which were complex and non-intuitive. They eased Soko lowski's requirement that

the recursion depth counter decrease by one for call, by choosing a subset

of the procedures as \header" procedures. Then the recursion depth counter was

required to decrease by one only for calls of header procedures, not the others.

Pandya and Joseph state that this leads to proofs which are simpler and more

intuitive, reducing the programmer's burden of encoding information about the

number of iterations into the recursion depth counter. This does not eliminate

the burden, however, but simply reduces the number of procedures whose calls

must be counted.

The new rule they proposed they classi�ed as syntax-directed, as opposed to

data-directed. A data-directed rule reasons about the full semantics of the state of

the program, and the values of all variables. A syntax-directed rule, on the other

hand, reasons about an object which is syntactically built of subcomponents

by assembling the proofs about the components. Syntax-directed reasoning is

signi�cantly simpler than data-directed reasoning, if it is semantically valid.

We have taken this idea further, and have introduced rules that deal with the

201



div

even odd

a b z

product y evenproduct oddproduct

oddproduct

y x z

structure of the procedure call graph, and not only the syntax of the program.

This provides even more structure to organize the proof of termination of the

procedures, and eliminates the need for recursion depth counters.

To illustrate their arguments, Pandya and Joseph have presented an algorithm

using three procedures to compute the product of two numbers. In this section,

we will present the program (see Figure 8.8) and their proof, and then show how

we would prove the program in our system with equal ease. Actually, the proof

they present is not complete, but takes the form of a proof skeleton, where the

program is shown annotated with assertions between commands that show the

conditions that are true at each point in the control structure. We will likewise

present such a proof skeleton. We had originally hoped to present an automated

proof like the other examples in this chapter, but the example program that

Pandya and Joseph present contains several operators, predicates and

and binary operator to compute integer division, which we have not yet

included in the Sunrise language. In the future we expect to add these, and

then run the example completely through. For now we o�er a proof skeleton

constructed by hand.

In Figure 8.8 we see the three procedures of this program. The purpose of this

program is to multiply two numbers and and leave the result in variable .

None of these procedures takes any parameters, but instead they communicate

through global variables, as Pandya and Joseph designed them. The procedure

tests to see if it is even or odd, and calls or

accordingly to perform the multiplication. reduces the problem to an

\even" situation by subtracting one from and simultaneously adding to ,

202



� �

�

� � ^

�

�

� � ^

�

�

(; );
;

+ = ;
= ;

( ) (; )
(; )

;

(; );
;

+ = ( );
= ;

:= 1;
:= + ;

(; )
;

(; );
;

+ = ( );
= ;

= 0
:= 2 ;
:= 2;

(; )

;

Figure 8.8: Pandya and Joseph's Product Procedures.

203

procedure

global

pre

post

if then

else

�

end procedure

procedure

global

pre

post

end procedure

procedure

global

pre

post

if then skip

else

div

�

end procedure

product

x; y; z; a; b

z x y a b

z a b

even y evenproduct

oddproduct

oddproduct

x; y; z; a; b

z x y a b odd y

z a b

y y

z z x

evenproduct

evenproduct

x; y; z; a; b

z x y a b even y

z a b

y

x x

y y

product



p

e

o

� � ^ �

�

� � ^ � ^

�

� � ^ � ^

�

procedure

global

pre

post

if then

else

�

end procedure

evenproduct evenproduct

y

y evenproduct

y x

evenproduct product

product

product

x; y; z; a; b

q i z x y a b y i

z a b

even y z x y a b y i even y q i

evenproduct

z a b

z x y a b y i odd y q i

oddproduct

z a b

product

and then calls to complete the multiplication. in turn

tests to see if it is zero; if it is, then the multiplication is complete and the

procedure terminates; otherwise, if is not zero, then reduces the

problem to a \lesser" situation by dividing by 2 and multiplying by 2, at

which point calls on the \lesser" situation.

Using one of the more traditional approaches such as Soko lowski's, Pandya

and Joseph have shown that one would need to encode the depth of recursion in

a predicate which was quite complex, even for this simple example. They could

only �nd a recursive form for it, and even that was only an approximate estimate

of the depth of recursion. They then presented their method of only requiring

the depth counter to decrease for header procedures. Taking in this example the

header procedures to consist solely of the procedure , they present the

proof skeleton given in Figures 8.9 and 8.10, with boxes enclosing assertions.

(; );
;

( ) : + = ;
= ;

( ) + = ( ) . . . ( )

(; )

=

+ = ( ) . . . ( )

(; )

=

;

Figure 8.9: Pandya and Joseph's Proof Skeleton for procedure .

204



o

e

e

p

� � ^ � ^

�

�

� � ^ � ^

�

� � ^ � ^

�

� � ^

�

� � ^ � ^

� � ^ � �

�

� � ^ � � �

�

procedure

global

pre

post

end procedure

procedure

global

pre

post

if

then

skip

else

div

div

�

end procedure

(; );
;

( ) : + = ( );
= ;

:= 1;
:= + ;

+ = ( ) . . . ( )

(; )

=
;

(; );
;

( ) : + = ( );
= ;

= 0

+ = = 0

=

+ = 0 ( )

+ = ( 2) 1

:= 2 ;
:= 2;

+ = 1 . . . ( 1)

(; )

=

;

Figure 8.10: Pandya and Joseph's Proof Skeletons for procedures and

.

205

oddproduct

x; y; z; a; b

q i z x y a b y i odd y

z a b

y y

z z x

z x y a b y i even y q i

evenproduct

z a b

evenproduct

x; y; z; a; b

q i z x y a b y i even y

z a b

y

z x y a b y

z a b

z x y a b < y i even y

z x y a b y i

x x

y y

z x y a b y i q i

product

z a b

oddproduct

evenproduct



�

k

div

product y

y product

product y

product y

product

product

i

q i i

product

y i

i

i

To motivate this proof, Pandya and Joseph state

On each successive call to the procedure the value of be-

comes 2. Thus we can argue that the procedure ter-

minates because on each successive call to , the value of

decreases, and if a call to is made with = 0 then no further

recursive call to is made. It is possible to give a simple total

correctness proof based on the above argument using induction over

the number of calls to active at any instant.

Pandya and Joseph leave it to the reader to verify this annotated proof skeleton,

and we will do the same. They presented a proof of its termination, using a

mathematical induction argument based on the value of . Their rule depended

on the existence of predicates ( ), for which the variable is the recursion

depth counter, here only counting calls to the header procedure . Pandya

and Joseph's argument is that one can prove , which is far more natural

and a great improvement over the expression which would arise from making a

counter of all procedure calls. However, in our version we can eliminate the use

of entirely, and thus our system is even simpler and more natural, and at the

same time more general.

We present our annotated proof skeleton of this program in Figures 8.11 and

8.12. Since this is a hand proof, we have performed some obvious simpli�cations

to clarify the formulas.

206



bbb
bb

b

b

bb
b

b

� �

�

� � ^ ^

j � � ^ ^

� � ^ ^

�

� � ^ ^

�

� � ^

�

� � � ^ � ^ �

�

� � ^ ^

�

procedure

global

pre

post

calls with

calls with

recurses with

if then

else

�

end procedure

procedure

global

pre

post

calls with

recurses with

end procedure

(; );
;

+ = ;
= ;

= ;
= ;

;

( ) = + = ( ) =
+ = ( ) =

( ) + = ( ) =

(; )

=

+ = ( ) =

(; )

=

;

(; );
;

+ = ( );
= ;

;
;

( + ) + ( 1) = ( 1) 1

:= 1;
:= + ;

+ = ( )

(; )

=
;

Figure 8.11: Sunrise Proof Skeletons for procedures and .

207

product

x; y; z; a; b

z x y a b

z a b

evenproduct y y

oddproduct y y

y < y

even y > z x y a b even y y y

z x y a b odd y y y

even y z x y a b even y y y

evenproduct

z a b

z x y a b odd y y y

oddproduct

z a b

oddproduct

x; y; z; a; b

z x y a b odd y

z a b

evenproduct y < y

y < y

z x x y a b even y y < y

y y

z z x

z x y a b even y y < y

evenproduct

z a b

product oddproduct



bb

b

b

b

� � ^

�

�

j � � � ^

�

�

� � � ^

�

� � ^

�

procedure

global

pre

post

calls with

recurses with

div div

if

then

skip

else div div

div

�

end procedure

(; );
;

+ = ( );
= ;

;
;

= 0 = =
+ (2 ) ( 2) = 2

= 0

=

=

+ (2 ) ( 2) = 2

:= 2 ;
:= 2;

+ =

(; )

=

;

Figure 8.12: Sunrise Proof Skeleton for procedure .

208

evenproduct

x; y; z; a; b

z x y a b even y

z a b

product y < y

y < y

y > z a b

z x y a b y < y

y

z a b

z a b

z x y a b y < y

x x

y y

z x y a b y < y

product

z a b

evenproduct



oddproduct evenproduct

product

y = ŷ
y = ŷ

y < ŷ

y < ŷ

div div

b bb
b b
b

b

� � ^ )

� � ^ ^

j � � ^ ^

� � ^ ^ )

� � � ^ � ^ �

� � ^ ^ )

�

j � � � ^

z x y a b y y

even y > z x y a b even y y y

z x y a b odd y y y

z x y a b odd y y y

z x x y a b even y y < y

z x y a b even y y y

y > z a b

z x y a b y < y

product oddproduct evenproduct

The analysis of the syntax of these three procedures generates three veri�-

cation conditions, for the partial correctness of each body. These veri�cation

conditions are

1. + = =
( ( ) = + = ( ) =

+ = ( ) = )

2. + = ( ) =
( + ) + ( 1) = ( 1) 1

3. + = ( ) =
( = 0 = =

+ (2 ) ( 2) = 2 )

for the partial correctness of the bodies of , , and ,

respectively.

The procedure call graph for Pandya and Joseph's product program is given

in Figure 8.13.

Figure 8.13: Procedure Call Graph for Pandya and Joseph's Product Program.

209



product

evenproduct

product

oddproduct

product

y < ŷ

∀y1. (y1 < y) ⇒ (y1 < ŷ)

∀y1. (y1 < y) ⇒

            (∀y2. (y2 < y1) ⇒ (y2 < ŷ))

∀y1. (y1 = y) ⇒ (∀y2. (y2 < y1) ⇒ (y2 < ŷ))

∀y1. (y1 < y) ⇒ (∀y2. (y2 < y1) ⇒

            (∀y3. (y3 < y2) ⇒ (y3 < ŷ)))

VC 2VC 1

b b
b b

1 1 2 2 1 2

1 1 2 2 1 3 3 2 3

� � ^ )

8 ) 8 )

� � ^ )

8 ) 8 ) 8 )

product

product

z x y a b y y

y : y y y : y < y y < y

z x y a b y y

y : y y y : y < y y : y < y y < y

Applying the graph traversal algorithm, beginning at the node , we

generate the call tree in Figure 8.14, with the following two undiverted recursion

veri�cation conditions, VC1 and VC2.

Figure 8.14: Procedure Call Tree for root procedure .

VC1: + = =
( = ( ))

VC2: + = =
( = ( ( )))

210



product

evenproduct

product

oddproduct

y < ŷ

∀y1. (y1 = y) ⇒ (y1 < ŷ)

∀y1. (y1 < y) ⇒ (∀y2. (y2 < y1) ⇒

            (∀y3. (y3 = y2) ⇒ (y3 < ŷ)))

oddproduct

∀y1. (y1 < y) ⇒ (∀y2. (y2 = y1) ⇒ (y2 < ŷ))

VC 3 VC 4

∀y1. (y1 = y) ⇒ (∀y2. (y2 < y1) ⇒ (∀y3. (y3 = y2) ⇒ (y3 < ŷ)))

b b
b b

8 ) )

8 ) 8 ) 8 )

� � ^ ^ )

8 ) 8 ) 8 )

1 1 1

1 1 2 2 1 3 3 2 3

1 1 2 2 1 3 3 2 3

oddproduct

oddproduct

y : y y y < y

y : y y y : y < y y : y y y < y

z x y a b odd y y y

y : y < y y : y < y y : y y y < y

Applying the graph traversal algorithm, beginning at the node ,

we generate the call tree in Figure 8.15, generating one diversion veri�cation

condition, VC3, and one undiverted recursion veri�cation condition, VC4:

Figure 8.15: Procedure Call Tree for root procedure .

VC3: ( = )
( = ( ( = )))

VC4: + = ( ) =
( ( ( = )))

211



evenproduct

product

oddproduct

y < ŷ

∀y1. (y1 < y) ⇒ (y1 < ŷ)

∀y1. (y1 < y) ⇒ (∀y2. (y2 = y1) ⇒

            (∀y3. (y3 < y2) ⇒ (y3 < ŷ)))

∀y1. (y1 = y) ⇒

            (∀y2. (y2 < y1) ⇒ (y2 < ŷ))

VC 6VC 5

product

evenproduct

∀y1. (y1 = y) ⇒ (y1 < ŷ)

evenproduct ∀y1. (y1 < y) ⇒ (∀y2. (y2 = y1) ⇒ (y2 < ŷ))

bb
b b

1 1 2 2 1 2

1 1 2 2 1 3 3 2 3

� � ^ ^ )

8 ) 8 )

� � ^ ^ )

8 ) 8 ) 8 )

evenproduct

evenproduct

z x y a b even y y y

y : y < y y : y y y < y

z x y a b even y y y

y : y < y y : y y y : y < y y < y

Applying the graph traversal algorithm, beginning at the node ,

we generate the call tree in Figure 8.16, generating the following two undiverted

recursion veri�cation conditions, VC5 and VC6.

Figure 8.16: Procedure Call Tree for root procedure .

VC5: + = ( ) =
( ( = )))

VC6: + = ( ) =
( ( = ( )))

All of these veri�cation conditions are readily proved. This completes our

proof of Pandya and Joseph's Product Procedures example.

212



1

1

8.5 Cycling Termination

We are grateful to Prof. D. Stott Parker for his recollection of such a damaged bicycle.

As a �fth example, we choose a program speci�cally to show the strengths of our

approach to proving programs correct. The program has two mutually recursive

procedures, like the odd/even program, but here there is a di�erence in the

measurable progress across the various arcs of the call graph. In particular,

across one of the arcs of the call graph, there is no progress at all, in that the

state does not change. This would pose di�culties for the other methods of

proving termination, because they expect that a recursion depth counter would

decrease for every call. Even Pandya and Joseph's system, which we believe to

be the strongest of the previous systems, would not help here, as there is no

identi�able set of header procedures as a proper subset of all procedures. In

Pandya and Joseph's system, we must then take all procedures as the header

procedures, and thus we would devolve essentially to Soko lowski's method.

We call this example \Cycling Termination," �rst because the only issue is

termination (no interesting result is computed), and second because the structure

of the call graph reminds us of a bicycle, with its two wheels and the chain that

transfers power from the pedals to the rear wheel. This is not an inappropriate

analogy for this program, if one might imagine a bicycle with one pedal damaged

so that it could not support any pressure. When pedaling such a bicycle, one

would need to thrust hard when the good pedal was moving downward, but then

would exert no force while it was moving upwards again, and in fact would coast

during this period, depending solely on the momentum generated by the other

phase to propel you to the goal. This corresponds to the progress we will see

213



VCG

attached to the various arcs of the procedure call graph for this program.

Here is the text of the Cycling Termination program as a goal for the .

214

g [[ program

procedure pedal (;val n,m);

pre true;

post true;

calls pedal with n < ^n /\ m = ^m;

calls coast with n < ^n /\ m < ^m;

recurses with n < ^n;

if 0 < n then

if 0 < m then

coast(;n - 1,m - 1)

else skip

fi;

pedal(;n - 1,m)

else skip

fi

end procedure;

procedure coast (;val n,m);

pre true;

post true;

calls pedal with n = ^n /\ m = ^m;

calls coast with n = ^n /\ m < ^m;

recurses with m < ^m;

pedal(;n,m);

if 0 < m then

coast(;n,m - 1)

else skip

fi

end procedure;

pedal(;7,12)

end program

[ true ]

]];;



coast pedal

p

p coast p

pedal n m p

p

p

p

pedal

Like the odd/even program, the two procedures of this program call each

other and themselves recursively. However, unlike the odd/even program, the

progress across each of the four arcs of the graph is di�erent. In particular, the

progress across a call from to does not change any variables in the

program.

We do not mean to imply that this program could not be proven by prior

methods. We only suggest that our system can generate a more natural proof,

easier to create and understand. This program's termination can be proven using,

say, Soko lowski's method, by creating a new value parameter which is passed

in each call, where = 1 if the call is to , and where = 0 if the call is

to . Then the expression + + becomes a workable recursion depth

counter, and it reliably decreases by exactly one for every call. However, we

feel that this solution is not truly natural. The introduction of a new variable

unrelated to the program's purpose draws the user into a search for artifacts to

prove termination. This variable essentially serves as a kind of program counter,

determining which procedure we are in at any moment. This represents control

using data, an inherent confusion of concepts. Finally, the introduction of means

adding a quantity of new code to the program, concerned with maintaining the

proper value of . This code is unrelated to the original purpose of the program,

and obscures that purpose on surface reading of the code.

The procedure call graph is given in Figure 8.17. Applying the graph traversal

algorithm, beginning at the node , we generate the call tree in Figure 8.18,

with two undiverted recursion veri�cation conditions, VC1 and VC2, and one

diversion veri�cation condition, VC3.

215



pedal coast n = n̂  ∧  m < m̂n < n̂  ∧  m = m̂

n < n̂  ∧  m < m̂

n = n̂  ∧  m = m̂

VC 3

pedal

pedal

coast

n < n̂

∀n1 m1. (n1 = n  ∧  m1 = m) ⇒ (n1 < n̂)

VC 2

∀n1 m1. (n1 < n  ∧  m1 < m) ⇒

              (∀n2 m2. (n2 = n1  ∧  m2 = m1) ⇒ (n2 < n̂))

pedal

coastVC 1

∀n1 m1. (n1 < n  ∧  m1 = m)

                ⇒ (n1 < n̂)

∀n1 m1. (n1 = n  ∧  m1 < m) ⇒

              (∀n2 m2. (n2 = n1  ∧  m2 = m1) ⇒

                             (n2 < n̂))

pedal

Figure 8.17: Procedure Call Graph for Cycling Termination Program.

Figure 8.18: Procedure Call Tree for root procedure .

216



m < m̂

∀n1 m1. (n1 = n  ∧  m1 < m)

                ⇒ (m1 < m̂)

∀n1 m1. (n1 = n  ∧  m1 = m) ⇒

            (∀n2 m2. (n2 < n1  ∧  m2 < m1)

                                ⇒ (m2 < m̂))

∀n1 m1. (n1 < n  ∧  m1 < m) ⇒ (m1 < m̂)

coast

VC 4

∀n1 m1. (n1 < n  ∧  m1 = m) ⇒

            (∀n2 m2. (n2 < n1  ∧  m2 < m1)

                                ⇒ (m2 < m̂))

VC 5

VC 6

coast

coast

pedal

pedal

coast

coast

VCG TAC

Examining the structure of the

procedure call graph:

Applying the graph traversal algorithm, beginning at the node , we gen-

erate the call tree in Figure 8.19, with one diversion veri�cation condition, VC4,

and two undiverted recursion veri�cation conditions, VC5 and VC6.

Figure 8.19: Procedure Call Tree for root procedure .

Applying to the program correctness goal with the tracing turned on

produces the following output. In this example, we are primarily interested in

the proof of termination by analyzing the structure of the procedure call graph.

This section of the trace follows the line \

" in the following transcript.

217



218

#e(VCG_TAC);;

OK..

For procedure `pedal`,

By the "CALL" rule, we have

[[ {(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true)}

pedal(;n - 1,m)

{true} ]]

By the "CALL" rule, we have

[[ {(true /\ n - 1 < ^n /\ m - 1 < ^m) /\

(!n1 m1.

true ==>

(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true))}

coast(;n - 1,m - 1)

{(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true)} ]]

By the "SKIP" rule, we have

[[ {(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true)}

skip

{(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true)} ]]

By the "IF" rule, we have

[[ {(0 < m => (true /\ n - 1 < ^n /\ m - 1 < ^m) /\

(!n1 m1. true ==> (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true))

| (true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true))}

if 0 < m then coast(;n - 1,m - 1) else skip fi

{(true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true)} ]]

By the "SEQ" rule, we have

[[ {(0 < m => (true /\ n - 1 < ^n /\ m - 1 < ^m) /\

(!n1 m1. true ==> (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true))

| (true /\ n - 1 < ^n /\ m = ^m) /\ (!n m. true ==> true))}

if 0 < m then coast(;n - 1,m - 1) else skip fi; pedal(;n - 1,m)

{true} ]]

By the "SKIP" rule, we have

[[ {true} skip {true} ]]



219

By the "IF" rule, we have

[[ {(0 < n

=> (0 < m

=> (true /\ n - 1 < ^n /\ m - 1 < ^m) /\

(!n1 m1. true ==> (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true))

| (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true)) | true)}

if 0 < n then if 0 < m then coast(;n - 1,m - 1) else skip fi;

pedal(;n - 1,m) else skip fi

{true} ]]

By precondition strengthening, we have

[[ {(^n = n /\ ^m = m /\ true) /\ true}

if 0 < n then if 0 < m then coast(;n - 1,m - 1) else skip fi;

pedal(;n - 1,m) else skip fi

{true} ]]

with additional verification condition

[[ {(^n = n /\ ^m = m /\ true) /\ true ==>

(0 < n => (0 < m => (true /\ n - 1 < ^n /\ m - 1 < ^m) /\

(!n1 m1.

true ==> (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true))

| (true /\ n - 1 < ^n /\ m = ^m) /\

(!n m. true ==> true)) | true)} ]]

For procedure `coast`,

By the "CALL" rule, we have

[[ {(true /\ n = ^n /\ m - 1 < ^m) /\ (!n m. true ==> true)}

coast(;n,m - 1)

{true} ]]

By the "SKIP" rule, we have

[[ {true} skip {true} ]]

By the "IF" rule, we have

[[ {(0 < m => (true /\ n = ^n /\ m - 1 < ^m) /\

(!n m. true ==> true) | true)}

if 0 < m then coast(;n,m - 1) else skip fi

{true} ]]



220

By the "CALL" rule, we have

[[ {(true /\ n = ^n /\ m = ^m) /\

(!n1 m1. true ==> (0 < m => (true /\ n = ^n /\ m - 1 < ^m) /\

(!n m. true ==> true) | true))}

pedal(;n,m)

{(0 < m => (true /\ n = ^n /\ m - 1 < ^m) /\

(!n m. true ==> true) | true)} ]]

By the "SEQ" rule, we have

[[ {(true /\ n = ^n /\ m = ^m) /\

(!n1 m1. true ==> (0 < m => (true /\ n = ^n /\ m - 1 < ^m) /\

(!n m. true ==> true) | true))}

pedal(;n,m); if 0 < m then coast(;n,m - 1) else skip fi

{true} ]]

By precondition strengthening, we have

[[ {(^n = n /\ ^m = m /\ true) /\ true}

pedal(;n,m); if 0 < m then coast(;n,m - 1) else skip fi

{true} ]]

with additional verification condition

[[ {(^n = n /\ ^m = m /\ true) /\ true ==>

(true /\ n = ^n /\ m = ^m) /\

(!n1 m1. true ==> (0 < m => (true /\ n = ^n /\ m - 1 < ^m) /\

(!n m. true ==> true) | true))} ]]

Examining the structure of the procedure call graph:

Traversing the call graph back from the procedure coast:

By the call graph progress from procedure coast to coast, we have

[[ {true /\ (!n1 m1. n1 = n /\ m1 < m ==> m1 < ^m)}

coast-<>->coast

{m < ^m} ]]

Generating the undiverted recursion verification condition

[[ {true /\ m = ^m ==> (!n1 m1. n1 = n /\ m1 < m ==> m1 < ^m)} ]]

By the call graph progress from procedure pedal to coast, we have

[[ {true /\ (!n1 m1. n1 < n /\ m1 < m ==> m1 < ^m)}

pedal-<>->coast

{m < ^m} ]]



221

By the call graph progress from procedure coast to pedal, we have

[[ {true /\ (!n1 m1. n1 = n /\ m1 = m ==>

(!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))}

coast-<>->pedal

{!n1 m1. n1 < n /\ m1 < m ==> m1 < ^m} ]]

Generating the undiverted recursion verification condition

[[ {true /\ m = ^m ==>

(!n1 m1. n1 = n /\ m1 = m ==>

(!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))} ]]

By the call graph progress from procedure pedal to pedal, we have

[[ {true /\ (!n1 m1. n1 < n /\ m1 = m ==>

(!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))}

pedal-<>->pedal

{!n1 m1. n1 < n /\ m1 < m ==> m1 < ^m} ]]

Generating the diversion verification condition

[[ {(!n1 m1. n1 < n /\ m1 < m ==> m1 < ^m) ==>

(!n1 m1. n1 < n /\ m1 = m ==>

(!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))} ]]

Traversing the call graph back from the procedure pedal:

By the call graph progress from procedure coast to pedal, we have

[[ {true /\ (!n1 m1. n1 = n /\ m1 = m ==> n1 < ^n)}

coast-<>->pedal

{n < ^n} ]]

By the call graph progress from procedure coast to coast, we have

[[ {true /\ (!n1 m1. n1 = n /\ m1 < m ==>

(!n2 m2. n2 = n1 /\ m2 = m1 ==> n2 < ^n))}

coast-<>->coast

{!n1 m1. n1 = n /\ m1 = m ==> n1 < ^n} ]]

Generating the diversion verification condition

[[ {(!n1 m1. n1 = n /\ m1 = m ==> n1 < ^n) ==>

(!n1 m1. n1 = n /\ m1 < m ==>

(!n2 m2. n2 = n1 /\ m2 = m1 ==> n2 < ^n))} ]]



222

By the call graph progress from procedure pedal to coast, we have

[[ {true /\ (!n1 m1. n1 < n /\ m1 < m ==>

(!n2 m2. n2 = n1 /\ m2 = m1 ==> n2 < ^n))}

pedal-<>->coast

{!n1 m1. n1 = n /\ m1 = m ==> n1 < ^n} ]]

Generating the undiverted recursion verification condition

[[ {true /\ n = ^n ==>

(!n1 m1. n1 < n /\ m1 < m ==>

(!n2 m2. n2 = n1 /\ m2 = m1 ==> n2 < ^n))} ]]

By the call graph progress from procedure pedal to pedal, we have

[[ {true /\ (!n1 m1. n1 < n /\ m1 = m ==> n1 < ^n)}

pedal-<>->pedal

{n < ^n} ]]

Generating the undiverted recursion verification condition

[[ {true /\ n = ^n ==> (!n1 m1. n1 < n /\ m1 = m ==> n1 < ^n)} ]]

For the main body,

By the "CALL" rule, we have

[[ {(true /\ true) /\ (!n m. true ==> true)} pedal(;7,12) {true} ]]

By precondition strengthening, we have

[[ {true} pedal(;7,12) {true} ]]

with additional verification condition

[[ {true ==> (true /\ true) /\ (!n m. true ==> true)} ]]

8 subgoals

"!m ^m n. (m = ^m) ==> (!n1 m1. (n1 = n) /\ m1 < m ==> m1 < ^m)"

"!m ^m n.

(m = ^m) ==>

(!n1 m1.

(n1 = n) /\ (m1 = m) ==> (!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))"

"!n m ^m.

(!n1 m1. n1 < n /\ m1 < m ==> m1 < ^m) ==>

(!n1 m1.

n1 < n /\ (m1 = m) ==> (!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < ^m))"



�

!

�

! !

� ! !

pedal

pedal pedal

pedal

pedal coast pedal

coast coast coast pedal

These eight subgoals, in this order, roughly correspond to the following claims:

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC1).

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC2).

The diversion of in does not interfere with

223

"!n m ^n.

(!n1 m1. (n1 = n) /\ (m1 = m) ==> n1 < ^n) ==>

(!n1 m1.

(n1 = n) /\ m1 < m ==> (!n2 m2. (n2 = n1) /\ (m2 = m1) ==>

n2 < ^n))"

"!n ^n m.

(n = ^n) ==>

(!n1 m1.

n1 < n /\ m1 < m ==> (!n2 m2. (n2 = n1) /\ (m2 = m1) ==> n2 < ^n))"

"!n ^n m. (n = ^n) ==> (!n1 m1. n1 < n /\ (m1 = m) ==> n1 < ^n)"

"!^n n ^m m.

(^n = n) /\ (^m = m) ==>

((n = ^n) /\ (m = ^m)) /\

(!n1 m1. (0 < m => ((n = ^n) /\ (m - 1) < ^m) | T))"

"!^n n ^m m.

(^n = n) /\ (^m = m) ==>

(0 < n =>

(0 < m =>

(((n - 1) < ^n /\ (m - 1) < ^m) /\

(!n1 m1. (n - 1) < ^n /\ (m = ^m))) |

((n - 1) < ^n /\ (m = ^m))) |

T)"

() : void



HOL

� ! !

�

! !

�

!

�

�

pedal

pedal pedal pedal coast

coast

coast

coast pedal coast

coast

coast coast

coast

pedal

the recursive progress of the procedure (VC3).

The diversion of in does not interfere with

the recursive progress of the procedure (VC4).

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC5).

The value of the recursion expression of the procedure strictly de-

creases across the undiverted recursion path (VC6).

The body of procedure is partially correct.

The body of procedure is partially correct.

Of these eight subgoals, two have to do with syntactic structure partial cor-

rectness, four have to do with undiverted recursion, and two have to do with

diversions.

All of these subgoals are readily solved. This proof has been completed in

, yielding the following theorem:

224



225

|- [[ program

procedure pedal(;n,m);

global ;

pre true;

post true;

calls pedal with n < ^n /\ m = ^m;

calls coast with n < ^n /\ m < ^m;

recurses with n < ^n;

if 0 < n

then if 0 < m then coast(;n - 1,m - 1) else skip fi;

pedal(;n - 1,m)

else skip

fi

end procedure;

procedure coast(;n,m);

global ;

pre true;

post true;

calls pedal with n = ^n /\ m = ^m;

calls coast with n = ^n /\ m < ^m;

recurses with m < ^m;

pedal(;n,m);

if 0 < m then coast(;n,m - 1) else skip fi

end procedure;

pedal(;7,12)

end program

[true] ]]



226



HOL

HOL

CHAPTER 9

Source Code

ftp.cs.ucla.edu /pub/homeier/sunrise

ind defs

\A garden enclosed

Is my sister, my spouse,

A spring shut up,

A fountain sealed. . . .

A fountain of gardens,

A well of living waters,

And streams from Lebanon."

| Song of Solomon 4:12, 15

The source code for the Sunrise system may be retrieved by anonymous ftp

from Internet site , in directory . It is

based on version 2.02 of Higher Order Logic ( ). It contains a modi�ed version

of one library, , revised to work in version 2.02.

There are altogether twenty-two theories. Their sizes are given in Table 9.1.

The column headings have the following meanings:

227



HOL

Column: Meaning

Theory Name: the name of the theory
Typs: the number of new types declared in the theory
Defs: the number of new constants declared in the theory

Thms: the number of theorems proven and stored in the theory
ALL: the sum of the preceeding three columns

TLen: the length of the listing of the theory, in lines
ATL: the average length of a theorem (def., etc.) as listed, in lines
SLen: the length of the source �le of the theory, in lines
ASL: the avg. length of source for a theorem (def., etc.), in lines

Theory Name Typs Defs Thms ALL TLen ATL SLen ASL

more �nite sets 0 1 37 38 160 4.2 1003 26.4
bindings 0 5 88 93 432 4.6 3107 33.4
variables 1 5 7 13 66 5.1 106 8.2
variants 0 13 54 67 273 4.1 1536 22.9
assert syntax 2 23 10 35 601 17.2 85 2.4
assert semantics 0 7 14 21 149 7.1 710 33.8
substitutions 0 7 56 63 355 5.6 2096 33.3
var substitutions 0 4 93 97 573 5.9 4020 41.4
prog syntax 5 33 25 63 622 9.9 105 1.7
prog substitutions 0 7 25 32 208 6.5 651 20.3

prog semantics 0 9 13 22 457 20.8 409 18.6
free variables 0 6 36 42 249 5.9 2916 69.4
translations 0 16 21 37 213 5.8 805 21.8
progress 0 15 15 30 427 14.2 845 28.2
well formed 0 34 79 113 916 8.1 4139 36.6

cmd semantics 0 0 21 21 290 13.8 3382 161.0
hoare rules 0 1 100 101 1030 10.2 8841 87.5
progress rules 0 2 46 48 362 7.5 2925 60.9
semantic stages 0 6 26 32 400 12.5 3803 118.8
stage semantics 0 0 32 32 481 15.0 5427 169.6
termination 0 12 53 65 579 8.9 3085 47.5
vcg 0 11 55 66 702 10.6 7516 113.9

TOTALS 8 217 906 1131 9545 8.4 57512 50.9

Table 9.1: Sunrise Theory Sizes.

228



229

Part III

Tour of Interesting Aspects



230



! !

VCG

10.1 Variants

var

string num var

CHAPTER 10

Partial Correctness

V AR

Base V AR str n str

Index V AR str n n

\Finally, brethren, whatever things are true, whatever things are

notable, whatever things are just, whatever things are pure, what-

ever things are lovely, whatever things are of good report; if there is

any virtue and if there is anything praiseworthy|meditate on these

things."

| Philippians 4:8

In this chapter we present various interesting aspects of the system,

which support the proof of partial correctness of commands and the environment.

A variable is represented by a new concrete type , with one constructor func-

tion, : . We de�ne two deconstructor functions:

( ) =

( ) =

231



HOL

! !

2 j

num

^

var var set varvariant variant x s

x

s x s variant

variant

variant x s x s > variant mk variant x s x ; :

mk variant V AR str n k V AR str n k :

s variant

s

The number attribute eases the creation of variants of a variable, which are made

by (possibly) increasing the number.

All possible variables are considered predeclared of type . In future ver-

sions, we hope to treat other data types, by introducing a more complex state and

a static semantics for the language which performs type-checking. We distinguish

between program variables and logical variables; the latter cannot be changed by

program control. In the Sunrise language, we denote logical variables by begin-

ning its name with a caret character (` '), as part of its string. A \well-formed"

variable, such as used in normal program code, will not have this pre�x.

The function has type ( ) . returns a

variable which is a variant of , which is guaranteed not to be in the \exclusion"

set . If is not in the set , then it is its own variant. is used in de�ning

proper substitution on quanti�ed expressions.

The de�nition of is somewhat deeper than might originally appear.

To have a constructive function for making variants in particular instances, we

wanted

= ( = ( 1) ) (10 1)

where

( ) = ( + )

For any �nite set , this de�nition of will terminate, but unfortunately, it

is not primitive recursive on the set , and so does not conform to the requirements

of s recursive function de�nition. As a substitute, we wanted to de�ne the

232



HOL

var num var set

62

8 ^ 62 )

�

^ �

! !

variant

variant x s is variant x;

variant x s s;

z: z is variant x z s

Index variant x s Index z ;

is variant

y is variant x Base y Base x Index x Index y :

x s

z

variant set variant set x n

n x

n

CARD variant set x n n:

variant set

variant set x EMPTY

variant set x n mk variant x n INSERT variant set x n ;

EMPTY INSERT

variant set x CARD s s

function by specifying its properties, as

( ) and (10.2)

and (10.3)

( ) ( )
(10.4)

where is an in�x binary predicate, de�ned as

= ( ( ) = ( ) ( ) ( ))

But even the above speci�cation did not easily support the proof of the ex-

istence theorem, that such a variant existed for any and , because the set of

values for satisfying the antecedent of property 10.4 is in�nite, and we were

working strictly with �nite sets. The solution was to introduce the function

of type ( ) , where returns the

set of the �rst variants of , all di�erent from each other. Then the cardinality

of the set is , i.e.,

( ) =

The de�nition of is

0 =

( + 1) = ( ) ( )

where is the empty set and is the in�x binary operator to

add an element to a set, prede�ned in .

Then by the pigeonhole principle, we are guaranteed tha there must be at

least one variable in ( + 1) which is not in the set . This

233



0

0 0

let in

2

62

8 2 ^ 62 )

�

62 ^

10.2 Substitution

variant

variant x s variant set x CARD s ;

variant x s s;

z: z variant set x CARD s z s

Index variant x s Index z :

variant

variants s

variants CONS x xs s x variant x s

CONS x variants xs x INSERT s :

DL

DL

DL CONS x xs x SL xs DL xs

SL

SL EMPTY

SL CONS x xs x INSERT SL xs

led to the needed existence theorem. We then de�ned with the following

properties:

( ) ( + 1) and (10.5)

and (10.6)

( + 1)
( ) ( )

(10.7)

From this de�nition, we then proved both the original set of properties (10.2{

10.4), and also the constructive function de�nition 10.1, as theorems.

Finally, given the de�nition of , we de�ned a similar operator on lists:

[ ] = [ ]

( ) = =
( ( ))

This de�nition has the property that the resulting list has no duplicates. We say

it is a \distinct list", according to the predicate , which is de�ned as follows.

[ ] = T

( ) = ( )

Here is simply an operator to convert a list into a set, de�ned as follows.

[ ] =

( ) = ( )

The concept of substitution at �rst appears very simple, but it actually can be a

mine �eld of subtlety and misdirection. This subtlety arises primarily from the

234



!

j

HOL

subst var

aexp

simultaneous substitutions

�

v=x

v=x �y: y x > v AV AR y :

< a < ss

ss a

10.2.1 Assertion Language Expression Substitution

need to avoid the capture of free variables by bindings imposed by quanti�ers in

the expression receiving the substitution. Typically this is accomplished by the

systematic renaming of the bound variables to preclude capturing the free vari-

ables of the expression being inserted. We have found an error in one published

proof of the Substitution Lemma, and other researchers have shared their expe-

rience with the surprising di�culty of this area. The most thorough treatment

we have found is by de Bakker in [dB80].

We de�ne proper substitution on assertion language expressions using the tech-

nique of , following Stoughton [Sto88]. The usual def-

inition of proper substitution is a fully recursive function. Unfortunately,

only supports primitive recursive de�nitions. To overcome this, we use simulta-

neous substitutions, which are represented by functions of type =

. This describes a family of substitutions, all of which are considered to take

place simultaneously. This family is in principle in�nite, but in practice all but

a �nite number of the substitutions are the identity substitution . The virtue

of this approach is that the application of a simultaneous substitution to an as-

sertion language expression may be de�ned using only primitive recursion, not

full recursion, and then the normal single substitution operation of [ ] may be

de�ned as a special case:

[ ] = ( = = )

We apply a substitution by the in�x operator . Thus, denotes the

application of the simultaneous substitution to the expression . Therefore

235



� �

� �

h i h i

1 2 1 2

1 2 1 2

1 2 1 2

vexp

(vexp)list aexp

semantic substitution,

v

vs a

v

v

v v v

v v v

v v v

vs

vs v vs

s

a < v=x v x

x a

<

< <

<

n < ss n

x < ss ss x

v v < ss v < ss v < ss

v v < ss v < ss v < ss

v v < ss v < ss v < ss

< ss

CONS v vs < ss CONS v < ss vs < ss

s < ss �y: V ss y s :

[ ] denotes the single substitution of the expression for the variable

wherever appears free in .

While de�ning substitution on several di�erent kinds of language phrases,

we will add a subscript indicating the kind of phrase on which the substitution

is being performed. For example, we will de�ne for substitutions on ,

for substitutions on , and for substitutions on . However,

outside this chapter we will usually simply use an undecorated operator, relying

on the reader to understand by context which particular substitution operator

is intended. The de�nition of simultaneous substitution for assertion language

expressions appears in Tables 10.1, 10.2, and 10.3.

=
=

( + ) = ( ) + ( )
( ) = ( ) ( )
( ) = ( ) ( )

Table 10.1: Assertion Numeric Expression Simultaneous Substitution.

=
( ) = ( ) ( )

Table 10.2: Assertion Numeric Expression List Simultaneous Substitution.

Finally, there is a dual notion of applying a simultaneous substitution to a

state, instead of to an expression; this is called and is

de�ned as

= ( ( ) )

236



a

a

[

[

2 �f g

2 �f g

� �

^ ^

_ _
� �

) )

j j

8

8

9

9

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 3 1 2 3

( )

( )

true

false

close close

let in

let in

let in

let in

a

a

a v v

a v v

a vs vs

a a a

a a a

a a

a a a

a a a

a a a a

a

a

z FV a x

v

a

a

z FV a x

v

a

= T
= F

( = ) = ( ) = ( )
( ) = ( ) ( )
( ) = ( ) ( )
( ) = ( ) ( )
( ) = ( ) ( )
( ) = ( )
( ) = ( ) ( )
( = ) = ( ) = ( )
( = ) = ( ) = ( ) ( )
( ) =

( ) = = ( )

=
( [( ) ])

( ) = = ( )

=
( [( ) ])

Table 10.3: Assertion Boolean Expression Simultaneous Substitution.

237

< ss

< ss

v v < ss v < ss v < ss

v < v < ss v < ss < v < ss

vs vs < ss vs < ss vs < ss

a a < ss a < ss a < ss

a a < ss a < ss a < ss

a < ss a < ss

a a < ss a < ss a < ss

a a < ss a < ss a < ss

a > a a < ss a < ss > a < ss a < ss

a < ss a

x: a < ss free FV ss z

y variant x free

y: a < ss AV AR y =x

x: a < ss free FV ss z

y variant x free

y: a < ss AV AR y =x



[
a2 �f g

1 2 1 2

( )

let in

let in

^ ^

8

8

` 8

` 8

` 8

a a a

a

a

z FV a x

v

a

v

a

v s

vs s

a s

a a < ss a < ss a < ss

a < ss a

x: a < ss free FV ss z

y variant x free

y: a < ss AV AR y =x

FV

FV

variant x free

x free

v s ss: V v < ss s V v s < ss

vs s ss: V S vs < ss s V S vs s < ss

a s ss: A a < ss s A a s < ss

Most of the cases of the de�nition of the application of a substitution to an

expression are simply the distribution of the substitution over the immediate

subexpressions. For example, the application of a substitution to a conjunction

is

( ) = ( ) ( )

The interesting cases of the de�nition of are where is a quanti�ed

expression, e.g.:

( ) = = ( )

=
( [( ) ])

Here is a function that returns the set of free variables in a numeric

assertion expression, is a function that returns the set of free variables in a

boolean assertion expression, and is a function that yields a new

variable as a variant of , guaranteed not to be in the set .

Once we have de�ned substitution as a syntactic manipulation, we can then

prove the three theorems in Table 10.4 about the semantics of substitution.

( ) = ( )

( ) = ( )

( ) = ( )

Table 10.4: Assertion Language Substitution Lemmas.

This is our statement of the Substitution Lemma of logic, and essentially says

that syntactic substitution is equivalent to semantic substitution.

238



!

� �

� �

h i h i

1 2 1 2

1 2 1 2

1 2 1 2

vsubst var var

vsubst

vv

vv

vv vv vv

vv vv vv

vv vv vv

vsv

vsv vv vsv

10.2.2 Variables-for-Variables Substitution

<

ss

n < ss n

x < ss AV AR ss x

v v < ss v < ss v < ss

v v < ss v < ss v < ss

v v < ss v < ss v < ss

< ss

CONS v vs < ss CONS v < ss vs < ss

ss

ss

x

AV AR

The substitutions discussed above replaced variables by (possibly large) numeric

expressions. There is a potentially simpler version of substitution, which only

replaces variables by variables. We represent these substitutions by functions of

type = .

The application of these substitutions to assertion expressions is de�ned in

Tables 10.5, 10.6, and 10.7, de�ning decorated versions of the operator , like

the simultaneous substitution described above, but where is of type .

=
= ( )

( + ) = ( ) + ( )
( ) = ( ) ( )
( ) = ( ) ( )

Table 10.5: Assertion Numeric Expression Variable-for-Variable Substitution.

=
( ) = ( ) ( )

Table 10.6: Assertion Numeric Expression List Variable-for-Variable Substitu-

tion.

Most of the cases are the distribution of the substitution over the immediate

subexpressions, as before. The application of to an assertion expression which

is a simple variable is di�erent, in that applying as a function to the variable

name will yield another variable, which then must be converted into an assertion

expression using .

239



var var

true

false

close close

� �

^ ^

_ _
� �

) )

j j

8 8

9 9

8 8

!

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 3 1 2 3

av

av

av vv vv

av vv vv

av vsv vsv

av av av

av av av

av av

av av av

av av av

av av av av

av

av av

av av

av av

v

v

v

< ss

< ss

v v < ss v < ss v < ss

v < v < ss v < ss < v < ss

vs vs < ss vs < ss vs < ss

a a < ss a < ss a < ss

a a < ss a < ss a < ss

a < ss a < ss

a a < ss a < ss a < ss

a a < ss a < ss a < ss

a > a a < ss a < ss > a < ss a < ss

a < ss a

x: a < ss ss x : a < ss

x: a < ss ss x : a < ss

x: a < ss ss x : a < ss :

�

�

==

ys=xs

= T
= F

( = ) = ( ) = ( )
( ) = ( ) ( )
( ) = ( ) ( )
( ) = ( ) ( )
( ) = ( ) ( )
( ) = ( )
( ) = ( ) ( )
( = ) = ( ) = ( )
( = ) = ( ) = ( ) ( )
( ) =
( ) = ( ) ( )
( ) = ( ) ( )

Table 10.7: Assertion Boolean Expression Variable-for-Variable Substitution.

More markedly, the cases for the substitution on quanti�ed expressions has

greatly simpli�ed, for example

( ) = ( ) ( )

There is no need here for the avoidance of capture and the selection of new

variables, as the bound variable itself is also substituted, which was impossible

before.

The most common variable substitutions we will use will replace the variables

in one list by those of another list of equal length. We will use to denote

the identity function between variables, : . Then we de�ne the

operator to construct these variables-for-variables substitutions in Table 10.8.

In the rest of this document, we will simply use a single slash to indicate this

substitution-creating operator, as in [ ], relying on the reader to realize from

240



� !

let in

v v

v v

v v

v

v
vsubst

var vexp

ys xs

== xs �

ys == �

CONS y ys == CONS x xs ss ys == xs

ss ss x = z: ss z y y=x

==

== ss

z: ss z y ss x x y

z

ss z y

x y

AV AR ss

the context that since and are lists of variables, that we are referring to

the variables-for-variables substitution creation operator.

[ [ ] ] =

[ [ ] ] =

[ ] = = [ ]
[( ) (@ ( ) = )] [ ]

Table 10.8: Variables-for-Variables Substitution Creation operator .

In this de�nition of , the , which is a mapping from variables to

variables, is updated, �rst binding (@ ( ) = ) to , and then to . @

here is the Hilbert selection operator, choosing and yielding some variable such

that = . The reason for this double binding, rather than simply binding

to , is to preserve the one-to-one property of the mapping; for every variable,

there is exactly one variable that maps to it. This makes each such substitution

one-to-one, onto, and invertible.

Once we have de�ned the application of variable-for-variable substitutions as

a syntactic manipulation, we can then prove the theorems in Table 10.9 about

the semantics of substitution.

These are only some of the shortest and simplest of the theorems proven about

this kind of substitution. The ones shown describe the relationship between this

kind of substitution, and the previous, where the previous kind is used to apply

substitutions of the form , which have type . There are

also three theorems about composing these variable-to-variable substitutions.

241



1 2 2 1 1 2

1 2 2 1 1 2

1 2 2 1 1 2

` 8 �

` 8 �

` 8 � �

` 8 �

` 8 �

` 8 ) �

` 8 �

` 8 �

` 8 �

` 8 �

` 8 �

vv v

vsv vs

s

vv

vsv

av

av

av a

vv vv vv

vsv vsv vsv

av av av

= ( )

= ( )

( ) =

( ) = ( )

( ) = ( )

( ( ) = ( ))

( [ ]) = ( [ ])

( [ ]) = ( ( [ ])

( ) = ( )

( ) = ( )

( ) = ( )

Table 10.9: Assertion Language Var-for-Var Substitution Lemmas.

242

v ss: v < ss v < AV AR ss

vs ss: vs < ss vs < AV AR ss

ss s: s < AV AR ss s ss

v ss s: V v < ss s V v s ss

vs ss s: V S vs < ss s V S vs s ss

a ss s: ONE ONE ss A a < ss s A a s ss

a ys xs s: A a < ys=xs s A a s ys=xs

a ys xs s: A a < ys=xs s A a < AVAR ys=xs s

v ss ss : v < ss ss v < ss < ss

vs ss ss : vs < ss ss vs < ss < ss

a ss ss : a < ss ss a < ss < ss



h i h i

� �

� �

1 2 1 2

1 2 1 2

1 2 1 2

xs

xs xs

e

e

e

e e e

e e e

e e e

programming language

10.2.3 Programming Language Substitution

calls

< ss

CONS x xs < ss CONS ss x xs < ss

n < ss n

x < ss PV AR ss x

x < ss ss x

e e < ss e < ss e < ss

e e < ss e < ss e < ss

e e < ss e < ss e < ss

If we wish to perform substitutions on phrases, instead of

assertion language phrases, we run into the di�culty that since expressions can

have side e�ects, it is no longer immaterial how often an expression is evaluated.

Hence it is not feasible to consider substitutions where expressions are substituted

for variables. However, it turns out that the places where substitutions need to

be performed on programming language phrases only require the substitution

of variables for variables. Hence we only need to de�ne one set of substitution

operators for the Sunrise programming language.

In the following Tables 10.10 through 10.15, we de�ne substitution on lists of

variables, numeric expressions, lists of numeric expressions, boolean expressions,

commands, and even on progress environments (i.e., ).

=
( ) = ( ) ( )

Table 10.10: Program Variable List Substitution.

=
= ( )

(++ ) = ++( )
( + ) = ( ) + ( )
( ) = ( ) ( )
( ) = ( ) ( )

Table 10.11: Program Numeric Expression Substitution.

243



 !

 !

h i h i

� �

^ ^

_ _
� �

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1

2

1

2

es

es e es

b e e

b e e

b es es

b b b

b b b

b b

c

c

c e

c c c

c

b c

c

pr

c

av pr av

b c

c xs es

skip skip

abort abort

if then

else �

if then

else �

assert with

while do od

assert with

while do od

call call

< ss

CONS e es < ss CONS e < ss es < ss

e e < ss e < ss e < ss

e < e < ss e < ss < e < ss

es es < ss es < ss es < ss

b b < ss b < ss b < ss

b b < ss b < ss b < ss

b < ss b < ss

< ss

< ss

x e < ss ss x e < ss

c c < ss c < ss c < ss

b c

c
< ss

b < ss c < ss

c < ss

a a

b c
< ss

a < ss a < ss

b < ss c < ss

p xs es < ss p xs < ss es < ss

=
( ) = ( ) ( )

Table 10.12: Program Numeric Expression List Substitution.

( = ) = ( ) = ( )
( ) = ( ) ( )
( ) = ( ) ( )
( ) = ( ) ( )
( ) = ( ) ( )
( ) = ( )

Table 10.13: Program Boolean Expression Substitution.

=

=

( := ) = ( ) := ( )

( ; ) = ( ) ; ( )

=
( ) ( )

( )

=
( ) ( )
( ) ( )

( ( ; )) = (( ) ; ( ))

Table 10.14: Program Command Substitution.

244



` 8 ^ )

� �

` 8

� �

` 8 ^ )

� �

` 8

� �

` 8 ^ )

� �

` 8

� �

` 8

^ ^ )

� �

` 8

^ ^ )

� �

g av

e

e

es

es

b

b

env syntax c csubst

c

env syntax c csubst

c

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

= ( ( ) )

Table 10.15: Program Progress Environment Substitution.

Table 10.16 has programming language versions of the Substitution Lemma.

( ( ) = ( ) ( ))

( [ ]) = ( [ ]) ( [ ])

( ( ) = ( ) ( ))

( [ ]) = ( [ ]) ( [ ])

( ( ) = ( ) ( ))

( [ ]) = ( [ ]) ( [ ])

( ( ) = ( ) ( ))

[ ]
( ( [ ]) = ( [ ]) ( [ ]))

Table 10.16: Programming Language Substitution Lemmas.

245

g < ss �p: g p < ss

e s n s ss: ONE ONE ss ONTO ss

E e < ss s n s E e s ss n s ss

e s n s ys xs:

E e < ys=xs s n s E e s ys=xs n s ys=xs

es s ns s ss: ONE ONE ss ONTO ss

ES es < ss s ns s ES es s ss ns s ss

es s ns s ys xs:

ES es < ys=xs s ns s ES es s ys=xs ns s ys=xs

b s t s ss: ONE ONE ss ONTO ss

B b < ss s t s B b s ss t s ss

b s t s ys xs:

B b < ys=xs s t s B b s ys=xs t s ys=xs

c g � ss s s :

WF � WF c g � WF c � ss

C c < ss � s s C c � s ss s ss

c g � ys xs s s :

WF � WF c g � WF c � ys=xs

C c < ys=xs � s s C c � s ys=xs s ys=xs



e

e e

es

es es

b

b b

1 2 1 2

1 2

1 2 1 2

1 2

1 2 1 2

1 2

` 8 8 2 ) )

` 8 8 2 ) )

` 8 8 2 ) )

e ss ss : x: x FV e ss x ss x

e < ss e < ss

es ss ss : x: x FV es ss x ss x

es < ss es < ss

b ss ss : x: x FV b ss x ss x

b < ss b < ss

Finally, we exhibit some theorems that declare that if the free variables of an

expression are mapped to the same results by two di�erent variable-for-variable

substitutions, then the result of applying the two substitutions to the expres-

sion must be the same. Thus the results of substitution depend only on the

substitution's e�ect on the expression's free variables.

( ( = ))
( = )

( ( = ))
( = )

( ( = ))
( = )

Table 10.17: Programming Language Substitution Equality Theorems.

246



^

�

�

! ! �

translate

and

10.3 Translation

exp subst aexp subst

p b

p b

e

e

e e

V E

V E n ss n; ss

V E x ss ss x; ss

Expressions have typically not been trated in previous work on veri�cation; there

are some exceptions, notably Soko lowski [Sok84]. Expressions with side e�ects

have been particularly excluded. Since expressions did not have side e�ects they

were often considered to be a sublanguage, common to both the programming

language and the assertion language. Thus one would see expressions such as ,

where was an assertion and was a boolean expression from the programming

language.

One of the key realizations of this work was the need to carefully distinguish

these two languages, and not confuse their expression sublanguages. This then

requires us to programming language expressions into equivalent expres-

sions in the assertion language before the two may be combined as above. In fact,

since we allow expressions to have side e�ects, there are actually two results of

translating a programming language expression :

an assertion language expression, representing the value of in the state

\before" evaluation,

a simultaneous substitution, representing the change in state from \before"

evaluating to \after" evaluating .

For example, the translator for numeric expressions is de�ned using a helper

function 1: ( ):

1 ( ) =

1 ( ) =

247



0 0let in

!

!

� !

! �

� !

! �

!

!

` 8 ^

! ! �

h i

!

!

exp list subst aexp list subst

1 2 1 1

2 2 2 1 2 2

1 2 1 1

2 2 2 1 2 2

1 2 1 1

2 2 2 1 2 2

1 2 1 2 1

2 1

2 2

V E x ss ss x ; ss ss x =x

V E e e ss V E e �v :

V E e �v ss : v v ; ss ss

V E e e ss V E e �v :

V E e �v ss : v v ; ss ss

V E e e ss V E e �v :

V E e �v ss : v v ; ss ss

f k ss v; ss f ss k v ss

V E e FST V E e �

V E state e SND V E e �

� � x AV AR x

e

e s n s : E e s n s n V V E e s

s s < V E state e

V ES

V ES ss ; ss

V E CONS e es ss V E e �v:

V ES es �vs ss : CONS v vs; ss ss

1 (++ ) = ( ) + 1 [(( ) + 1) ]

1 ( + ) = ( 1
( 1 ( + )))

1 ( ) = ( 1
( 1 ( )))

1 ( ) = ( 1
( 1 ( )))

where is a \translator continuation" operator, de�ned as

( ) = ( ) =

Then de�ne

= ( 1 )

= ( 1 )

where is the identity substitution, = . These two functions deliver

the two results itemized above for the translation of .

We can then prove that these translation functions, as syntactic manipula-

tions, are semantically correct, according to the following theorem.

( ) = ( = ( )
= ( ))

In a similar fashion we can translate lists of numeric expressions. The trans-

lator for lists of numeric expressions is de�ned using a helper function

1: ( ) (( ) ):

1 ( ) = [ ]

1 ( ) = ( 1
( 1 ( )))

248



bexp subst aexp subst

` 8 ^

! ! �

!

!

!

!

� !

! �

^ !

! ^

_ !

! _

� ! �

1 2 1 2 1

2 1

1 2 1 1

2 2 2 1 2 2

1 2 1 1

2 2 2 1 2 2

1 2 1 1

2 2 2 1 2 2

1 2 1 1

2 2 2 1 2 2

1 2 1 1

2 2 2 1 2 2

2 2

V ES es FST V ES es �

V ES state es SND V ES es �

es

es s ns s : ES es s ns s ns V S V ES es s

s s < V ES state es

AB

AB e e ss V E e �v :

V E e �v ss : v v ; ss ss

AB e < e ss V E e �v :

V E e �v ss : v < v ; ss ss

AB es es ss V ES es �vs :

V ES es �vs ss : vs vs ; ss ss

AB b b ss AB b �t :

AB b �t ss : t t ; ss ss

AB b b ss AB b �t :

AB b �t ss : t t ; ss ss

AB b ss AB b �t ss : t; ss ss

AB b FST AB b �

AB state b SND AB b �

Then de�ne

= ( 1 )

= ( 1 )

These two functions deliver the two results itemized above for the translation of

.

We can then prove that these translation functions, as syntactic manipula-

tions, are semantically correct, according to the following theorem.

( ) = ( = ( )
= ( ))

In a similar fashion we can translate boolean expressions. The translator for

boolean expressions is de�ned using a helper function

1: ( ):

1 ( = ) = ( 1
( 1 ( = )))

1 ( ) = ( 1
( 1 ( )))

1 ( ) = ( 1
( 1 ( )))

1 ( ) = ( 1
( 1 ( )))

1 ( ) = ( 1
( 1 ( )))

1 ( ) = ( 1 ( ))

Then de�ne

= ( 1 )

= ( 1 )

249



` 8 ^1 2 1 2 1

2 1

v

v

v

vs

vs

vs

a

a

a

vexp

vexp list

aexp

b

b s t s : B b s t s t A AB b s

s s < AB state b

ve pre e v v < V E state e

ves pre es v v < V ES state es

vb pre b v v < AB state b

vse pre e vs vs < V E state e

vses pre es vs vs < V ES state es

vsb pre b vs vs < AB state b

ae pre e a a < V E state e

aes pre es a a < V ES state es

ab pre b a a < AB state b

These two functions deliver the two results itemized above for the translation of

.

We can then prove that these translation functions, as syntactic manipula-

tions, are semantically correct, according to the following theorem.

( ) = ( = ( )
= ( ))

This theorem, along with the corresponding ones for numeric expressions and

lists of numeric expressions, mean that every evaluation of a programming lan-

guage expresssion has its semantics completely captured by the two translation

functions for its type. These are essentially small compiler correctness proofs.

Using these translation functions, we may de�ne functions to compute the

appropriate preconditions to an executable expression, given the postcondition,

as given in Table 10.18.

= ( )
= ( )
= ( )

( )
= ( )
= ( )
= ( )

= ( )
= ( )
= ( )

Table 10.18: Expression Precondition Functions.

250



VCG

10.4 Well-Formedness

x e V E state e V E e =x

xs es V ES state es V ES es =xs :

As a product, we may now de�ne the simultaneous substitution that corre-

sponds to an assignment statement (single or multiple,) overriding the expres-

sion's state change with the change of the expression. We de�ne

[ := ] = ( )[( ) ]

and

[ := ] = ( )[( ) ]

These simultaneous substitutions are used directly in de�ning the func-

tion. The single assignment substitution is used in processing the assignment

command, to compute the appropriate precondition. The multiple assignment

substitution is used in processing the actual value parameters of the procedure

call command, to re
ect their execution's e�ect on the state.

We have found these translation functions to greatly condense and simplify

the handling of expressions with side e�ects. While not an approach that can de-

scribe all possible operators with side e�ects, we believe this translation function

approach is 
exible enough to handle input/output and user-de�ned functions

with side e�ects. These questions are a part of our plans for future research.

In the creation of small languages with simple features, it may be possible to

de�ne the semantics of the language su�ciently cleanly so that every program

which is syntactically valid has a well-de�ned and proper semantics. However,

as more sophisticated features are added to the language under consideration, it

becomes necessary to further restrict the set of \acceptable" programs for which

251



VCG

well-formedness

one's analysis is applicable. We have found that the feature of procedure calls

introduced the need to verify several restrictions on sample programs, for example

that the arity of a call matched that of the de�nition. We have de�ned predicates

to express these restrictions, called predicates. Unless a program

meets these criteria, we do not even consider it in a proof of correctness.

These well-formedness predicates describe a number of conditions, mostly

simple syntactic checks like the arity check mentioned, but also including a num-

ber of semantic checks, such as the total correctness of a procedure's body with

respect to its precondition and postcondition. Generally, the syntactic checks

may be decided by a single, static, compile-time examination of the program.

The semantic checks are satis�ed by the meta-level veri�cation of the veri�cation

condition generator, and by the proofs of the veri�cation conditions generated

by it. Since this veri�cation includes some of the hardest parts of the proof of

well-formedness, it is fortunate that much of it can be decided at the meta level.

For this version of the Sunrise language, we �nd it unnecessary to also include

dynamic checks, to be conjoined to the preconditions computed during the

calculation, along with the static checks instituted for compile-time. This may

change in the future, for example with the introduction of arrays the checks to

prevent aliasing of parameters may require dynamic checks. But for now, the

only checks necessary are static, syntactic checks, that may be performed fully

automatically.

It is interesting to us that there has been very little focus in the past on this

issue of well-formedness. In our work, it became crucial from the beginning of the

work on procedures, because it was not possible to properly relate the operational

252



10.4.1 Informal Description

semantics and the axiomatic semantics without constraining the set of programs

considered to ones that made sense. We hope that this work will exhibit the

issues involved with their proper priority.

The checks that are part of well-formedness vary with the construct being an-

alyzed, but for the most part are simple syntactic tests on the immediate con-

stituent constructs, and so may be de�ned on the structure of the constructs.

One pervasive check is the exclusion of logical variables from normal program

text. Logical variables are restricted from appearing except in assertion language

expressions, as part of the de�nition of the Sunrise language. Yet syntactically,

a logical variable and a program variable are both the same kind of phrase. We

rely on well-formedness checks to ensure that only program variables appear in

normal program text.

For procedure calls, other checks are needed as well. The arity checks are one

example, that the number of actual variable parameters matches the number of

formal variable parameters, and the same for value parameters. In addition, we

must ensure that aliasing does not occur; this can be done by checking that the

combination of the actual variable parameters and the declared globals of the

procedure being called contains no duplicates.

When it comes to procedure de�nitions, there are several checks that must

be satis�ed. These express both syntactic and semantic considerations. The

syntactic considerations include checking that every variable in the parameter

lists or the globals is not logical, that they have no duplicates among them, that

253



VCG

the body of the procedure is well-formed, and constraints on the free variables of

the precondition and postcondition.

A procedure de�nition is fully well-formed if it is syntactically well-formed as

described above, and then satis�es one additional semantic criterion; the body

must be totally correct with respect to the given precondition and postcondition.

It now becomes possible to speak of an entire environment of procedure de�ni-

tons being well-formed, if every individual procedure de�nition in the environ-

ment is itself fully well-formed.

The requirement for total correctness is quite strong. It turns out that it

is quite useful to establish \stepping stones" along the way to proving total

correctness, where less powerful semantic properties are established and then

combined to justify more powerful ones. We have made considerable use of this

approach, and in the veri�cation of the , we prove several properties in order,

as described in Table 10.19.

254



WF � �

WF � k � k

WF � k � k

WF � �

WF � �

WF � �

WF � �

WF � �

WF � �

WF � �

WF � �

WF � �

env syntax

envk partial

envk

envp

env pre

env calls

env term

env rec

env partial

env total

env correct

env

is well-formed for syntax

is well-formed for partial correctness to stage

is well-formed for syntax and partial correct. to stage

is well-formed for syntax and partial correctness

is well-formed for preconditions

is well-formed for calls progress

is well-formed for conditional termination

is well-formed for recursion

is well-formed for partial correctness

is well-formed for termination

is well-formed for total correctness

is well-formed for syntax and total correctness

Table 10.19: Procedure Environment Well-Formedness Predicates.

255



^

^

6

h i

^

s

s

s

x

x s

xs

xs

xs x xs

10.4.2 Well-Formedness Predicate De�nitions

s WF s

WF

WF STRING a s a LOG CHAR

LOG CHAR

x WF x

WF V AR s n WF s

xs WF xs

WF

WF CONS x xs WF x WF xs

A string is well-formed ( ) if the �rst character is not ` '.

` ` = T
( ) = ( = )

where = ` '.

Table 10.20: De�nition of Well-Formedness for Strings.

A variable is well-formed ( ) if its string is well-formed.

( ) =

Table 10.21: De�nition of Well-Formedness for Variables.

A list of variables is well-formed ( ) if every variable in the list is

well-formed.

= T
( ) =

Table 10.22: De�nition of Well-Formedness for Lists of Variables.

256



1 2 1 2

1 2 1 2

1 2 1 2

h i
� ^

^

� ^

� ^

h i

^

xs

xs

xs x xs

e

e

e x

e x

e e e

e e e

e e e

es

es

es e es

xs NOT WF xs

NOT WF

NOT WF CONS x xs WF x NOT WF xs

e WF e

WF n

WF x WF x

WF x WF x

WF e e WF e WF e

WF e e WF e WF e

WF e e WF e WF e

es WF es

WF

WF CONS e es WF e WF es

A list of variables is not-well-formed ( ) if every variable in

the list is not well-formed.

= T
( ) = ( )

Table 10.23: De�nition of Not-Well-Formedness for Lists of Variables.

A numeric expression is well-formed ( ) if every part is well-formed.

( ) = T
( ) = ( )
(++ ) = ( )
( + ) =
( ) =
( ) =

Table 10.24: De�nition of Well-Formedness for Numeric Expressions.

A list of numeric expressions is well-formed ( ) if every expression

in the list is well-formed.

= T
( ) =

Table 10.25: De�nition of Well-Formedness for Lists of Numeric Expressions.

257



1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

^

^

� ^

^ ^

_ ^
�

^

^

^ ^

^ ^

9 ^ � ^ 62 [ ^

8 62

^ ^

j j j j ^ j j j j ^

h i j j

while

skip

abort

if then else �

assert with while do od

call

b

b e e

b e e

b es es

b b b

b b b

b b

c

c

c

c x e

c c c

c b c c

c pr

b c

pr x a v

a

c

xs es

b WF b

WF e e WF e WF e

WF e < e WF e WF e

WF es es WF es WF es

WF b b WF b WF b

WF b b WF b WF b

WF b WF b

c g

� WF c g �

WF g �

WF g �

WF x e g � WF x WF e

WF c c g � WF c g � WF c g �

WF b c c g � WF b WF c g � WF c g �

WF a a b c g �

WF b WF c g �

v x: a v < x WF x x FV a FV v

p: x FV g p

WF p xs es g �

WF xs WF es

vars xs vals es DL xs glbs

� p vars; vals; glbs; pre; post; calls; rec; c xs

A boolean expression is well-formed ( ) if every part is well-formed.

( = ) =
( ) =
( ) =
( ) =
( ) =
( ) =

Table 10.26: De�nition of Well-Formedness for Boolean Expressions.

A command is well-formed in a progress environment and a procedure

environment ( ) if every part is well-formed, if every command's

progress expression avoids other logical variables, if every call supplies the same

number of actual parameters as the procedure has formal parameters, and if there

is no aliasing among the variable parameters and the globals.

( ) = T
( ) = T
( := ) =
( ; ) =
( ) =
( ) =

( = ( ) ( ) ( )
( ( ))

( ( ; )) =

( = ) ( = ) ( & )

Table 10.27: De�nition of Well-Formedness for Commands.

where in the last line, = . Here

258



0

0

0

0 0 0 0 0 0 0 0

0 0 0 0

0

h i

h i

�

�

�

� [

8 h i

�

_

9 ^ � ^ �

let and in

let in

let in

false

proc syntax

xs

c

c

c

a

a

a

x v

proc syntax

xs DL

xs glbs

vars; vals; glbs; pre; post; calls; rec; c

�

WF vars; vals; glbs; pre; post; calls; rec; c �

x vars vals glbs x logicals x

WF x

DL x

WF c calls �

GV c � glbs

FV c � x

FV pre x

FV post x x

s: vars ; vals ; glbs ; pre ; post ; calls ; rec ; c � s

x vars vals glbs

FV calls s SL x x

rec

v y: rec v < y WF y FV v SL x

WF

vars vals glbs

vars vals glbs

c calls �

c glbs

denotes the length of the list , and (\distinct list") is a predicate saying

the variables in and have no duplicates.

A procedure speci�cation is syntacti-

cally well-formed in an environment

( ) if

= & & =

1)
2)
3)
4)
5)
6)
7) ( )
8) ( =

= & &
( ) ( & ))

9) ( = )
( = ( ) ( ) )

Table 10.28: De�nition of Well-Formedness for Procedure Speci�cation Syntax.

The several clauses of the de�nition of are explained as follows:

1. every variable in , , and is well-formed, i.e., not logical,

2. the variables in , , and have no duplicates,

3. is well-formed in calls progress environment and environment ,

4. all globals referenced by procedures called within are in ,

259



0 0

0

0

0

0

0

h i

h i

h i

f ^ g f g

^

false

let and in

proc

proc syntax

c x

pre x

post x x

p

calls p x x x

p

rec rec v < y y

x

vars; vals; glbs; pre; post; calls; rec; c

�

WF vars; vals; glbs; pre; post; calls; rec; c �

x vars vals glbs x logicals x

WF vars; vals; glbs; pre; post; calls; rec; c �

x x pre c post =�

c x x pre

post �

5. all the free variables of are in ,

6. all the free variables of are in ,

7. all the free variables of are in or in ,

8. for each procedure , all the free variables of the progress expression con-

tained in for are in or in , where is the list of the variables

accessible from ,

9. either is , or else has the form , where is a logical

variable not in .

A procedure speci�cation is fully well-

formed (both syntactically and semantically) in an environment

( ) if

= & & =

1)

2) =

Table 10.29: De�nition of Well-Formedness for Procedure Speci�cation.

where

1. the speci�cation is syntactically well-formed, and

2. is partially correct with precondition ( = ) and postcondition

in environment .

260



1 2 1 2

8

8 h i

9 �

h i

^

let in

let in

proc

empty

env

env proc

calls

a

d

d

proc syntax

d d d

d

� WF �

�

WF � p: WF � p �

calls �

p calls p

p

WF calls � p: vars; vals; glbs; pre; post; calls; rec; c � p

x vars vals glbs

z: FV calls p SL x logicals z

d � WF d �

�

WF p vars vals glbs pre post calls rec c �

WF vars; vals; glbs; pre; post; calls; rec; c �

WF d d � WF d � WF d �

WF �

An environment is well-formed ( ) if every procedure declaration is

well-formed in .

= ( )

Table 10.30: De�nition of Well-Formedness for Procedure Environment.

A progress environment is well-formed in a procedure environment

if for every procedure , all the free variables of ( ) are in the variables

accessible from .

= ( =
= & &

( ( ) ( & ))

Table 10.31: De�nition of Well-Formedness for Progress Environment.

A declaration is well-formed in an environment ( ) if every indi-

vidual procedure declaration is syntactically well-formed in .

( ) =

( ; ) =
( ) = T

Table 10.32: De�nition of Well-Formedness for Declarations.

261



0

0

0

0

�

� �p: ; ; ; ; ; �p: ; ;

g

g �p:

false true

false

false

abort

false

false true false false abort

true

calls with

true

The empty procedure environment is an initial environment with each

procedure having no parameters or globals, a precondition and a

postcondition, a progress condition for every procedure (none of which

are called), a recursion expression, and a body consisting solely of the

command . Declarations present in the program override these default

declarations, which should never be invoked. The precondition itself implies

the impossibility of proving any program that calls an undeclared procedure.

= ( [ ] [ ] [ ] ( ) )

Table 10.33: De�nition of Empty Progress Environment.

The empty progress environment is for all procedures. This is the

progress environment used for processing the main body, for which there are no

. . . speci�cations.

= ( )

Table 10.34: De�nition of Empty Progress Environment.

262



^
0

0

VCG

p

p

d c

program end program

let in

� WF �

WF d c

� mkenv d �

WF d � WF c g �

A program is well-formed ( ) if both its declarations and its body are

well-formed in the environment the declarations create.

( ; ) =
=

Table 10.35: De�nition of Well-Formedness for Programs.

These well-formedness predicates were indispensable prerequisites for all the

reasoning of the veri�cation condition generator. They restricted the set of pro-

grams considered to those that were consistent and proper. Without these re-

strictions, no deep theorems about the semantics of the would have been

possible; but with them, principles can be stated and proved about the wide class

of normal programs which are the actual aim.

263



0

VCG

envp c

d

envp

d

8 ^ )

)

f g f g

8 ^ ^

)

10.5 Semantic Stages

all el close

all el close

vcgcp THM vcgd THM

vcgcp THM

vcgd THM

vcgd THM vcgcp THM

vcgd THM

vcgcp THM

vcgcp THM

c p calls q �: WF � WF c calls �

vcgc p c calls q �

p c q =�

d �: � mkenv d � WF d �

vcgd d �

WF �

WF d �

vcgd d �

d

When we began proving partial correctness from the conditions generated by the

, we ran into a di�culty. Two of the correctness properties we wanted to

prove were and , repeated from Chapter 7 in Table 10.36.

( )

=
( )

Table 10.36: Repeated VCG veri�cation theorems.

In order to prove , we wished to use , proven earlier.

is used to prove the well-formedness of an environment for partial

correctness. This has both syntactic and semantic parts. The syntactic well-

formedness is supported by , so we need only add the proof of the

semantic part. For this, we wished to reason from the truth of the veri�cation

conditions produced by to the partial correctness of each procedure body

declared in , with respect to its precondition and postcondition. For this task,

appeared to be the appropriate tool, applying it to each procedure

body in turn. The problem was that itself requires an environment

well-formed for partial correctness as a precondition! Thus it seemed to be nec-

essary to know that the environment was well-formed before we could prove that

it was well-formed, a circular argument.

264



:cmd

k

k

k

k

1 2

1 2

stages

except

C

C c � k s s c �

s s

k

C

C C

k

The solution was to cut the circle by establishing of well-formedness

for the environment, indexed by number, and to show eventually by numeric

induction that all stages hold, and thus the environment is well-formed. Each

increase in the index signi�es an ability to call procedures to one more level of

calling depth. Thus, index 0 designates an environment which is well-formed as

long as no procedure calls are made; index 1 designates an environment which is

well-formed under calls of procedures which do not themselves issue procedure

calls, etc. In pursuing this line of reasoning, it became apparent that in order

to de�ne stages of well-formedness, we needed to establish stages of command

partial correctness speci�cations, and of the command semantic relation itself.

The new staged version of the command semantic relation is described in

Table 10.37.

command evaluated in environment and

state yields state , without ever issuing calls

beyond a nested depth of .

Table 10.37: Staged command semantic relation description.

The de�nition of the new staged command semantic relation is given in

Table 10.38. It is similar to the de�nition of in Table 5.11, but adds one

new argument , which is the stage number, and every rule maintains that the

stage of the resulting tuple is greater than or equal to the stages of all antecedent

tuples, for the procedure call rule, where the stage of the result tuple

(regarding the procedure call) is exactly one greater than that of the antecedent

rule (regarding the procedure's body).

265



0

0 0

0 0

�
�

�

�

h i

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

Skip:

Abort:

Assignment:

Sequence:

Conditional:

Iteration:

Call:

1 2

1 2

1 1 1 2 1

2 2 2 3 2

1 2 1 3

1 2 1 2 3

1 2 1 3

1 2 2 2 3

1 2 1 3

1 2

1 2 3 1

2 3 4 2

1 4

1 2

1 2

1 2

2 3

1 3 2

skip if then else �

if then else �

assert with
while do od

assert with

while do od

assert with
while do od

call map

(no rules)

( := ) [ ]

( ; )

T
( )

F
( )

T

(
)

(
)

F
(

)

=
= ( ( & ))

( [ & & ]) [ ]
( ( ; )) ( + 1) [( ) ]

Table 10.38: Staged Command Structural Operational Semantics.

266

C � k s s

E e s n s
C x e � k s s n=x

C c � k s s ; k k
C c � k s s ; k k

C c c � k s s

B b s s ; C c � k s s
C b c c � k s s

B b s s ; C c � k s s
C b c c � k s s

B b s s
C c � k s s ; k k

C a pr
b c � k s s ; k k

C a pr
b c � k s s

B b s s
C a pr

b c � k s s

ES es s ns s
� p vars; vals; glbs; pre; post; calls; rec; c

vals variants vals SL xs glbs
C c < xs vals =vars vals � k s ns=vals s

C p xs es � k s s s vals =vals



let and in

1 2 1 2 1 1 1 2 2 2

0

0

1 2

1 2 1 2

1 2

1 2 1 2

f g f g 8 ^ )

h i

h i ^

f ^ g f g

8

` 8

^ ^ )

� �

` 8

^ ^ )

� �

k

prock

proc syntax

envk prock

env syntax c csubst

k c k

env syntax c csubst

k c k

a c a =�; k s s : A a s C c � k s s A a s

WF vars; vals; glbs; pre; post; calls; rec; c � k

x vars vals glbs x logicals x

WF vars; vals; glbs; pre; post; calls; rec; c �

x x pre c post =�; k

WF � k p: WF � p � k

c g � k ss s s :

WF � WF c g � WF c � ss

C c < ss � k s s C c � k s ss s ss

c g � k ys xs s s :

WF � WF c g � WF c � ys=xs

C c < ys=xs � k s s C c � k s ys=xs s ys=xs

We de�ne the staged command partial correctness speci�cation in Table 10.39.

= ( )

Table 10.39: Staged command Partial Correctness Speci�cation.

We de�ne the staged version of well-formedness of environments for partial

correctness in Table 10.40.

=
= & & =

(
= )

= ( )

Table 10.40: Staged Well-Formed Environment Predicate for Partial Correctness.

Using these de�nitions, we can prove many staged version of previous theo-

rems about commands, for example the substitution lemmas in Table 10.41.

( ( ) = ( ) ( ))

[ ]
( ( [ ]) = ( [ ]) ( [ ]))

Table 10.41: Staged Command Substitution Lemmas.

267



k envk

k

envp envk

1 2

1 2

1 2 1 2

1 2

1 2 1 2

f g f g

` 8

9

` 8

f g f g 8 f g f g

` 8

8

C a c a =�; k WF � k

c � s s :

C c � s s k: C c � k s s

a c a �:

a c a =� k: a c a =�; k

�:

WF � k: WF � k

k

k k

vcgd THM

vcgd 0 THM vcg1 0 THM

vcgc 0 THM vcgd 0 THM

vcgd THM

vcgd k THM vcg1 k THM

vcgc k THM

vcgd THM

We also prove theorems which relate , , and

to their unstaged original counterparts. These are given in Table 10.42.

= ( )

= ( )

= ( )

Table 10.42: Unstaged-to-Staged Correspondances.

This last theorem gives us the means to prove that an environment is well-

formed for partial correctness. We �rst prove that for = 0, the antecedents

of imply the environment is well-formed to stage 0. This is theorem

of Table 7.3. To prove this, we �rst prove theorem of

Table 7.1, and then of Table 7.2, from which follows.

Then assumming the antecedents of and that the environment is

well-formed to stage , we prove that it is well-formed to stage + 1. This

is theorem , built as before by �rst proving and then

. By induction, the environment is then well-formed for all stages,

and by the above theorem in Table 10.42, the environment is completely well-

formed for partial correctness, which proves theorem .

By proving this induction on stage numbers here at the meta-level, we obviate

the need for the programmer to have to prove veri�cation conditions that deal

with these partial correctness issues of the program's recursion, for all programs.

268



Lord

God

CHAPTER 11

Total Correctness

\For He will �nish the work and cut it short in righteousness,

Because the will make a short work upon the earth."

| Romans 9:28

\For the Lord of hosts

Will make a determined end

In the midst of all the land."

| Isaiah 10:23

The proof of the termination of programs, and hence their total correctness,

is presented in this chapter. We start with the assumptions of partial correct-

ness, precondition maintenance, conditional termination, and most importantly,

recursiveness, and prove the termination of every call of every procedure declared

in the mutually recursive procedure environment. This leads to an environment

which has been veri�ed to be well-formed for total correctness, and thus to be

fully well-formed. The total correctness of the environment becomes the last es-

sential element in the proof of the ultimate theorem of this work, Theorem 7.12,

as presented in Chapter 7, that the veri�cation condition generator has been

269



VCG

calls

veri�ed for total correctness.

Total Correctness has two aspects, partial correctness and termination. In the

past these have sometimes been proven apart from each other, and sometimes

together, often using the same overall proof structure. But there has begun

to appear evidence that there is a more substantial di�erence between partial

correctness and termination than had originally been thought, when recursive

procedures are present. In 1990, America and de Boer reported [AdB90]

. . .we may conclude that reasoning about total correctness di�ers

from partial correctness in a substantial way which has not been rec-

ognized til now.

In the course of this work, this di�erence has been exposed and explored.

It became evident during the construction of the veri�cation of the that

partial correctness was a necessary precursor to even beginning the attack on

total correctness. Many of the rules presented in Chapter 6 in the entrance

logic and in the termination logic contained partial correctness speci�cations as

necessary antecedents. Moreover, to prove the environment was well-formed for

recursion, it was necessary �rst to have the entire environment established to

be well-formed for partial correctness and for calls progress. In a similar way,

we will add the assumption that the environment is well-formed for conditional

termination, and prove from these that the environment is well-formed for total

correctness.

We have already seen a substantial argument was in order to prove the full

recursiveness property for procedures, how it was necessary to introduce the en-

trance logic in order to verify the progress claimed in the progress expressions

270



calls

VCG

VCG

1 2

1 1 2 2

1 2

11.1 Reprise

f g ! f g

f g !

f g !

f g ! f g

f g  f g

11.1.1 Entrance Logic

pre

a c p a =�

a c =�

a c calls =�

a p ps p a =�

a p - a =�

in the headers of procedures, and how it was necessary to introduce the analysis

of the call graph structure to verify that the progress claimed in the recursion

expressions were supported by the progress of the progress expressions. We

also saw it was necessary to introduce the termination logic in order to verify the

conditional termination of commands. Now all of these elements come together

as necessary precursors to the proof of termination of every procedure. This

extended proof, with these layers and stages of development, demonstrates the

depth of reasoning that is necessary to prove termination. The good part of this

is that once done, it need not be repeated when the is applied. The veri�-

cation of the allows it to be used without repeating the intricate arguments

expressed and proven at the meta level here.

We will begin by summarizing the substance of the argument up to this point.

In Section 6.3, we presented an Entrance Logic, including correctness speci�ca-

tions of the forms

entrance speci�cation

precondition entrance speci�cation

calls entrance speci�cation

| path entrance speci�cation

recursive entrance speci�cation

We then presented the rules of the Entrance Logic which supported proofs of

271



#

#

+

calls

VCG

VCG

a c =�

p =�

a c =�

11.1.2 Termination Logic

11.1.3 Recursiveness

these correctness speci�cations for speci�c program fragments. Later we saw how

these rules supported the veri�cation of parts of the , that the truth of the

veri�cation conditions produced by the syntax-directed analysis of a procedure's

body su�ced to guarantee the partial correctness of the body with respect to

the given precondition and postcondition, to guarantee the progress claimed by

the speci�cations, and to guarantee the achievement of the preconditions of

every called procedure at their entrance.

In Section 6.4, we presented a Termination Logic, including correctness speci�-

cations of the forms

[ ] command conditional termination speci�cation

procedure conditional termination speci�cation

[ ] termination speci�cation

We then presented the rules of the Termination Logic which supported proofs

of these correctness speci�cations for speci�c program fragments. Later we saw

how these rules supported the veri�cation of parts of the , that the truth of

the veri�cation conditions produced by the syntax-directed analysis of a proce-

dure's body su�ced to guarantee the conditional termination of that body, given

the termination of every procedure called immediately from that body.

Given the properties proven about the environment of all de�ned procedures,

that it was well-formed for partial correctness, precondition maintenance, calls

272



VCG

calls

11.2 Termination

v < x v

v

terminates Depth calls

terminates

Depth calls

progress, and conditional termination, we showed in Section 7.1.3 a series of

functions de�ned as part of the that analyzed the procedure call graph and

produced a list of veri�cation conditions, whose proof, along with the progress

claimed by the speci�cations previously shown, was su�cient to prove the full

recursiveness property, that every recursive call evidenced the progress claimed

in the recursion expression for that procedure.

That progress expressed in the form , that the value of the expression

strictly decreased from the initial call to the recursive call. This was an example

of an expression whose value was a member of a well-founded set, in this case

the nonnegative integers. Well-founded sets have the property that there are no

in�nitely decreasing sequences of values from the set. This lays the foundation for

the argument for termination, that if there were a procedure call that exhibited

in�nite recursive descent, then taking the sequence of values of at each recursive

entrance of the procedure would exhibit such an in�nitely decreasing sequence.

Since that is excluded by the de�nition of well-founded sets, there cannot be such

a nonterminating procedure call.

We will now present the main points of our proof of the termination of mutually

recursive procedures. We begin by de�ning two more semantic relations.

These semantic relations, and , are de�ned in Tables

11.1 and 11.2. These are related to the semantic relations de�ned in Chapter

5. First, expresses the condition that a particular procedure's body

terminates when started in a given state. Then connects a procedure

273



0 0

h i

9

^

9 ^

1 1 2 2

1 2 1 2

1 1 2 2

3 3 1 1 3 3

3 3 2 2

let in

11.2.1 Sketch of Proof

Depth calls

Depth calls

terminates p s �

vars; vals; glbs; pre; post; calls; rec; c � p

s : C c � s s

terminates

Depth calls p s p s �

p p s s

Depth calls n p s p s �

p s : M calls p s p s �

Depth calls n p s p s �

Depth calls

name and a state to another procedure name and a state, where there is an

execution sequence between the �rst state at the entrance of the �rst procedure

through nested calls to the second state at the entrance of the second procedure.

Of particular interest is that speci�es the length of the chain of calls

as a particular integer. Thus provides a way to describe calls which

are nested a particular number of calls deep from the original point where the

execution began.

=
=

( )

Table 11.1: Termination Semantic Relation .

0 =
= =

( + 1) =
[ ]

Table 11.2: Termination Semantic Relation .

We will �rst give an sketch of our proof of termination, and then develop that

sketch in detail.

274



SKETCH:

n

n

n n

n

n n

p

v

v p

n n

Every command terminates if all of its immediate calls terminate. Hence, it

follows that every procedure body terminates if for any , all of the body's calls

at depth or less terminate. Thus, to show a procedure body terminates, it

su�ces to show there is an such that all of the body's calls of depth or less

terminate.

Assume the opposite, that for some procedure body and initial state, that for

all n, there is some call at depth or less which does not terminate. Then there

is some call at depth which does not terminate, for all . This implies there

exists an in�nite sequence of nested procedure calls issuing from the original

procedure body and state which do not terminate. Consider this sequence of

procedures which are called and the states at their entrances. There must be

some procedure which occurs an in�nite number of times in this sequence, or else

the sequence could not itself be in�nite, since there is only a �nite number of

declared procedures. Let be such a procedure that occurs an in�nite number

of times, and let be its recursion expression. Form the in�nite sequence of

the values of in the states at every occurrence of in the �rst sequence. By

the recursiveness property, we have that every pair of values in this sequence is

strictly decreasing, and hence this sequence is strictly decreasing. This is then an

in�nite sequence of decreasing values. But since the set of nonnegative integers

is a well-founded set, no such in�nite decreasing sequence can exist. Hence our

original assumption was wrong, and we may conclude the opposite, that for some

, all of the original procedure's body's calls at depth or less terminate. As

we have shown above, this then implies that the procedure body terminates,

275



VCG

1 2 1

2

2

End of

env term

vcgd TERM

c

s s s

c s

s c

WF

SKETCH.

11.2.2 Termination of Deep Calls

unconditionally.

The termination of procedure bodies, combined with the termination of com-

mands based on their immediate calls terminating, gives us that all commands

terminate unconditionally. Combining this with the partial correctness of com-

mands gives us the total correctness of commands. The total correctness of com-

mands implies the total correctness of procedure bodies, and hence the entire

environment is proved to be fully well-formed.

We will now elaborate the sketch.

First, we have already shown that every command terminates if all of its imme-

diate calls terminate. That is, consider a command begun execution in a state

. Let be any possible state which is reachable from by being the state

at the entrance of a procedure called immediately from . If for all such , the

body of that procedure when begun in terminates, then must terminate.

This last statement is guaranteed by the de�nition of , which is ver-

i�ed to hold based on the syntax-directed part of the and the veri�cation

conditions it produces, by the theorem , given in Table 7.3. It is the

primary starting point for the rest of this argument.

Since every command terminates if all of its immediate calls terminate, this

also applies to the commands which are the bodies of procedures. Therefore

every procedure body terminates if all of its immediate calls terminate. But

then consider those immediate calls. Each one of those causes the execution

276



its

` 8

^ ^

� � � ^

^

� )

9

env term env pre

1 1 2 2

1 1

1 1 2 2

3 3 1 1 3 3

n n

n

n n n

n m p s p s �:

WF � WF �

A FST SND SND SND � p s

Depth calls n p s p s �

m n

p s :Depth calls m p s p s �

of a procedure body, whose termination is implied by the termination of

immediate calls. We may then restate this, that the original procedure body

would be guaranteed of terminating if all of the procedure calls at the second

level down terminate. More generally, if the original body terminates if all calls

at the th level terminate, then since each one of those calls at the th level

terminates if all their immediate calls terminate, we may say that the original

body terminates if all calls at the ( + 1)th level terminate. Then by induction

on , we say that for any , if the calls at depth terminate, then the original

body terminates.

In Table 11.3, we have proven that a call at one depth implies that there exist

calls at all lesser (more shallow) depths.

(( ) ( ))

( )

Table 11.3: Theorem of existence of shallower calls.

We have as a theorem in Table 11.4 that if all the calls at one depth or less

terminate, then the original procedure call terminates. Since the termination of

all the calls at one depth implies the termination of all the calls at one less depth,

then by induction we can prove the termination of all calls at shallower depth.

Contrariwise, in Table 11.5 we have proven that if a call at one depth from

the original call does not terminate, then for all greater depths, there is a call at

that depth from the original call. This is valuable, but it does not yet give us the

277



env term env pre

env term env pre

` 8 ^ )

8 8 � ^ )

^

h i

)

` 8

^ ^

� � � ^

^
� )

9 ^ �

1 1 2 2 1 1 2 2

2 2

1

1

1 1

1 1 2 2

1 1

1 1 2 2

2 2

3 3 1 1 3 3 3 3

let in

11.2.3 Existence of an In�nite Sequence

�: WF � WF �

n p s : m p s : m n Depth calls m p s p s �

terminates p s �

vars; vals; glbs; pre; post; calls; rec; c � p

A pre s

terminates p s �

m n p s p s �:

WF � WF �

A FST SND SND SND � p s

Depth calls n p s p s �

terminates p s �

p s :Depth calls n m p s p s � terminates p s �

n n n

n

( (
)

( =
)

Table 11.4: Theorem of termination of shallower calls.

existence of an in�nite chain of calls, because it does not include the condition

that every procedure and state in the chain actually arose from a call from the

previous procedure and state.

(( ) ( ))

( )
( ( + ) ( ))

Table 11.5: Theorem of existence of all deeper calls.

In the termination proof sketch, at one point we assume that there does not exists

any such that all calls of depth or less terminate. Then for all there must

be some call at depth or less which does not terminate. This then should imply

the existence of an in�nite sequence of deeper and deeper calls.

278



let

in

let in

0 0

0 0 0 0 0 0

0 0

0 0

env term env pre

1 1

1 1

1 1

2 2 1 1

1 1 2 2 2 2

h i

h i

^
�

` 8

^ ^

� � � ^
� )

^ �

mk sequence

p; s

p ; s

mk sequence � p s p; s

mk sequence i � p s

p ; s p ; s : M calls p s p s �

terminates p s �

mk sequence i � p s

mk sequence

i p s �:

WF � WF �

A FST SND SND SND � p s

terminates p s �

p ; s mk sequence i � p s

Depth calls i p s p s � terminates p s �

mk sequence

We will prove the existence of such an in�nite sequence by actually construct-

ing and exhibiting one. First, we de�ne the function in Table 11.6

as a generator function to take a pair of a procedure name and a state, and

return the next of the in�nite sequence.

0 =

( + 1) =
( ) = @ ( ) [ ]

( )

Table 11.6: Sequence Generator Function .

Here @ is the Hilbert choice operator, which returns some element of its range

type which satis�es the given condition, if any elements do satisfy it. If none do,

then @ still chooses some arbitrary element. This is a total function, so it always

returns the same choice, but all that is known about the element chosen is the

property speci�ed, and that only if there exists such an element.

Given this de�nition, we can prove that it is well-de�ned, in the sense that

every pair of the sequence satis�es the de�nition property, as in Table 11.7.

(( ) ( ))
( )

( ) =
( ( ))

Table 11.7: De�nitional property satis�ed by .

279



num string

env term env pre

` 8

^ ^

� � � ^
� )

8 ^

8 h i

let in

let in

let in

1 1

1 1

1 1

2 2 1 1

3 3 1 1

2 2 3 3

mk sequence

i p s �:

WF � WF �

A FST SND SND SND � p s

terminates p s �

p ; s mk sequence i � p s

p ; s mk sequence i � p s

M calls p s p s �

mk sequence

mk sequence

sequence ps sts ns �

i: M calls ps i sts i ps i sts i �

i: ns i vars; vals; glbs; pre; post; calls; rec; c � ps i

induct start num sts i rec

sequence

ps

Depth calls ps

The most important property we prove about is that the se-

quence it generates is chained together by each consecutive pair being related by

one level of procedure call, as expressed in Table 11.8.

(( ) ( ))
( )

( ) =
( ) = ( + 1)

[ ]

Table 11.8: Chain of calls induced by .

Given this generator function , it is possible to prove that the

sequence of procedure names and states it generates satis�es the properties in

Table 11.9 to be called an in�nite recursive descent sequence.

=
( ( ) ( ) [ ] ( ( + 1)) ( ( + 1)) )
( = ( = ( )

( ) ))

Table 11.9: In�nite Recursive Descent Sequence Predicate .

In this de�nition, is an in�nite sequence of procedure names, represented as

a function from to . The number used as the index is the depth number

from . contains the in�nite sequence of names of procedures called

in the hypothesized in�nite recursive descent; it is the path downward.

280



false

sts

ps

ns

ps

sts

ns

induct start num

induct start num s

induct start num s v < x V v s

induct start num

n n

mk sequence

Likewise, is the corresponding in�nite sequence of states, each one the

state reached in the corresponding procedure in in the process of the in�nite

recursive descent.

Finally, is the corresponding in�nite sequence of the values of the recursion

expressions of each procedure in , evaluated in the corresponding state given

in . Several procedures may be represented in this list; we shall see that

for the subsequences of this sequence for any particular procedure, each such

subsequence will be strictly decreasing. The values in are generated by the

function , de�ned in Table 11.10.

= 0

( ) =

Table 11.10: Recursion Expression Value Function .

This gives the de�nition of an in�nite recursive descent sequence. Such a

sequence is implied by the assumption stated earlier, that there does not exist

any such that all calls of depth or less terminate. We can now prove this

as the theorem listed in Table 11.11, using to create an explicit

witness.

281



0 0

1 1

1 1

2 2 1 1 2 2

2 2

1 1

env term env pre

env pre

` 8

^ ^

� � � ^
� 9 8 � ^ )

)

9 ^ ^

` 8

^ )

9

` 8

^

^

� � � )

� � �

11.2.4 Consequences of an In�nite Sequence

p s �:

WF � WF �

A FST SND SND SND � p s

n: m p s : m n Depth calls m p s p s �

terminates p s �

ps sts ns: sequence ps sts ns � ps p sts s

M calls

� ps sts ns i j:

sequence ps sts ns � i < j

ps : M calls ps i sts i ps ps j sts j �

M calls

i � ps sts ns:

WF �

sequence ps sts ns �

A FST SND SND SND � ps sts

A FST SND SND SND � ps i sts i

(( ) ( ))
(

)
( ( 0 = ) ( 0 = ))

Table 11.11: Existence of In�nite Recursive Descent Sequence.

One consequence of the de�nition of an in�nite recursive descent sequence is that

any two points in the sequence are related by ; this is displayed in Table

11.12.

( ( ) ( ) ( ) ( ) )

Table 11.12: Sequence calls related by .

Preconditions are maintained across points in the sequence, as in Table 11.13.

(( ) ( ( 0))) ( 0)
(( ) ( ( ))) ( )

Table 11.13: Sequence Precondition Maintenance.

282



same

` 8

^

^

^

^

� � � ^

h i ^

^

^

)

11.2.5 Strictly Decreasing Sequences

env rec env rec

env syntax

env pre

env rec

WF WF

ns

� ps sts ns p i j vars vals glbs pre post calls rec c:

WF �

WF �

WF �

sequence ps sts ns �

A FST SND SND SND � ps sts

� p vars; vals; glbs; pre; post; calls; rec; c

ps i p

ps j p

i < j

ns j < ns i

p

Perhaps the most important consequence of an in�nite recursive descent sequence

results from combining it with the knowledge contained in the recursiveness prop-

erty, . says that every recursive call of a procedure exhibits

the strict decrease of the value of its recursion expression. For sequences, this

gives us the ability to prove the theorem in Table 11.14. This says that for any

two points in the in�nite sequence which refer to the procedure, the value

of the recursion expression as stored in strictly decreases.

(( ) ( ( 0))) ( 0)
( = )
( = )
( = )

( )

Table 11.14: Sequence Decreasing Values.

To make use of this strictly decreasing property, we choose a minor variation

on the proof sketch described earlier. Instead of claiming that there must be

some procedure which has an in�nite number of occurrences in the sequence,

we take the approach of proving that every procedure has only a �nite number

of occurrences in the sequence. We �rst prove that given any occurrence of

a procedure in the sequence, there is a maximum limit on the index of the

283



` 8

^

^

^

^

� � � ^

h i ^

^

)

9 8 ) 6

` 8

^

^

^

^

� � � )

9 8 ) 6

env syntax

env pre

env rec

env syntax

env pre

env rec

p

n i p � ps sts ns vars vals glbs pre post calls rec c:

WF �

WF �

WF �

sequence ps sts ns �

A FST SND SND SND � ps sts

� p vars; vals; glbs; pre; post; calls; rec; c

ps i p

ns i n

m: j: m < j ps j p

n

i

p � ps sts ns:

WF �

WF �

WF �

sequence ps sts ns �

A FST SND SND SND � ps sts

m: j: m < j ps j p

elements beyond which none of the elements refer to that same procedure , as

shown in Table 11.15.

(( ) ( ( 0))) ( 0)
( = )
( = )
( = )
( = )

Table 11.15: Sequence Occurrence Implies Limit on Occurrences.

This is proven by well-founded induction on , the value of the recursion

expression at the th procedure in the sequence, making use of the fact that the

values of the recursion expression are members of a well-founded set.

From this we are able to prove that for every procedure, there is a maximum

limit on the index of the elements which refer to it, as shown in Table 11.16.

(( ) ( ( 0))) ( 0)
( = )

Table 11.16: Each Procedure Has Limit on Occurrences.

Next we need to establish that every procedure in the sequence is a member

284



0

all

some

env pre

env syntax

env pre

env rec

` 8

^

8 62 ) ^

^

� � � )

8 2

` 8

^

^

^

^

� � � )

9 8 2 ) 8 ) 6

all ps

all ps � ps sts ns:

WF �

p: p SL all ps � p � p

sequence ps sts ns �

A FST SND SND SND � ps sts

i: ps i SL all ps

all ps

ps

m

all ps

all ps � ps sts ns:

WF �

WF �

WF �

sequence ps sts ns �

A FST SND SND SND � ps sts

m: p: p SL all ps j: m < j ps j p

all ps

of the �nite list of de�ned procedures, , as described in Table 11.17.

( = )

(( ) ( ( 0))) ( 0)
( )

Table 11.17: Each Procedure in Sequence is in .

We can now prove that since for each procedure there is a maximum limit on

its occurrences in , and since there is only a �nite number of procedures, there

must be a maxiumum limit on the sequence as a whole. This means there exists

a single limit which bounds the indices of the occurrences of the procedures

listed in , as in Table 11.18.

(( ) ( ( 0))) ( 0)
( ( = ))

Table 11.18: Limit on All Occurrences in .

This then contradicts the assumption of the in�nite sequence, since there are

many elements beyond the maximum limit, and they must belong to de�ned

procedure. This contradiction is expressed in Table 11.19.

Given this contradiction, implied by the assumption that there did not exist

285



0

0

` 8

^

^

^

8 62 ) ^

� � � )
�

` 8

^

^

^

^

8 62 ) ^

h i ^

)

env syntax

env pre

env rec

env syntax

env pre

env rec

env term

� all ps ps sts ns:

WF �

WF �

WF �

p: p SL all ps � p � p

A FST SND SND SND � ps sts

sequence ps sts ns �

n n

n

� all ps p s vars vals glbs pre post calls rec c:

WF �

WF �

WF �

WF �

p: p SL all ps � p � p

� p vars; vals; glbs; pre; post; calls; rec; c

A pre s

terminates p s �

( = )
(( ) ( ( 0))) ( 0)
( )

Table 11.19: Sequence Contradiction.

any such that all calls of depth or less terminated, we can conclude that such

an must exist, and hence by the theorem in Table 11.4, we can prove that every

procedure terminates, as shown in Table 11.20.

( = )
( = )

Table 11.20: Procedure Termination.

286



0

8

^

^

^

^

)

d �:

� mkenv d �

WF �

WF �

WF �

WF �

WF �

env syntax

env pre

env rec

env term

env total

Finally, given the termination of each procedure when called, we can prove

the total correctness of the entire environment of procedures, as in Table 11.21.

=

Table 11.21: Total Correctness of Procedure Environment.

This completes our proof of termination for the Sunrise language.

287



288



289

Part IV

Conclusions



290



VCG

Lord

ad hoc

CHAPTER 12

Signi�cance

\ , make me to know my end,

And what is the measure of my days,

That I may know how frail I am."

| Psalm 39:4

In this chapter we will re
ect and explore the signi�cance of this work, and

the possibility of its usefulness in the future.

The most novel part of this work is the development of a new methodology for

proving the termination of programs with mutually recursive procedures. This

includes new speci�cations to include in the headers of procedures, an algorithm

for analyzing the procedure call graph to produce veri�cation conditions, and

logics for proving the termination of procedures from those veri�cation conditions.

We feel the approach is easier and simpler to use than previous proposals, while

being more general in the sense of providing natural proofs of termination related

to the program's original purpose. It also regularizes the proofs, making each

example's proof less , and structuring the proof according to the program

logics. Furthermore, this methodology can be automated by a , as we have

done and exhibited in Chapter 8. This methodology should in general translate

291



VCG

VCG

HOL

VCG

HOL

to other programming languages, and we see this as a valuable technology for

proving the termination of programs with procedures.

The most central thing we have learned from this work has been that the

general approach we used was feasible. It was powerful, in that we could prove

meta-theorems about all Sunrise programs, and it was e�ective, in that those

proofs were accomplished once and would not need to be repeated for each ap-

plication of the . It was also quite di�cult, in that there was considerable

e�ort and skill required to accomplish the veri�cation of the .

In addition, the approach is quite solidly sound. Everything was established

from the ground up, without claiming any new axioms, and only extending the

theory by new de�nitions. Because we constructed a deep embedding of the

programming and assertion languages within , the types used to represent

the abstract syntax trees were new types, without connections to or dependencies

on previous parts of the theory. We established the semantics of the syntax trees

ourselves by de�ning the operational semantics of the programming language

and the denotational semantics of the assertion language. These semantics are

simple and easily examined by the community, with their implications more easily

understood than if we had taken an axiomatic semantics as the foundational

de�nition. Then the axioms and rules of the axiomatic semantics were proven as

theorems from the underlying foundational semantics, ensuring their soundness.

Based on these sound axioms and rules, the functions were veri�ed and

proven to be sound, which is our primary result.

The de�nitions and proofs are even more solidly secured by having created

them within the theorem proving environment, which ensures the soundness

292



HOL

HOL

VCG

HOL

VCG

VCG

of any theorems proven using its tools. For a user who is able to �nd the path to

the goal of proving a theorem, presents a powerful con�rmation that that

proof is in fact valid. is generally understood to be weak in automating the

search for a proof, say as compared with the Boyer-Moore theorem prover. Never-

theless, it was powerful and e�ective enough for our purposes here. Therefore, we

can claim with assurance that this proof of soundness of this has no logical

errors. We have great con�dence that the -implemented proof is completely

sound and trustworthy, and by extension, that the proofs of any programs proved

using the are likewise completely sound and trustworthy.

The idea of using a veri�cation condition generator seems a useful and prac-

tical one, but this idea will need to be veri�ed by actual experimentation and

experience. The we de�ned for total correctness seems quite satisfactory

when it comes to the traditional analysis of the syntax of the program; there is

room for improvement in the analysis of the call graph structure, as is discussed

in Chapter 14.

The programming and assertion languages considered were quite small and

not suitable for actual programming. This is because our goal was the exploration

of the ideas behind certain program constructs, principally recursive procedures,

and we included features that supported that goal. Nevertheless, it is not di�cult

to see how the languages could be extended with a more complete assortment of

operators. This will be explored more in the next chapter.

The handling of expressions with side e�ects by the use of translation func-

tions was elegant and surprisingly easy, once we had decided to use simultaneous

substitutions to represent changes to the state. This part of the work has been

293



VCG

VCG

quite successful in handling our simple expressions. Future work will explore the

applicability of this approach to more complex side e�ects.

The entrance and termination logics arose naturally during our work, and

became the most convenient way to establish the veri�cation of programs and the

itself. These are restricted versions of temporal logic, but powerful enough

to accomplish the proofs of the recursiveness properties and the termination of

procedures. It was important for us to develop some constraints on temporal logic,

else it would not have been feasible to write a simple to prove hypotheses

written in such an expressive language.

Several realizations arose during the course of this work, and we present them

here as understandings we have developed. These concern the separation of the

programming and assertion languages, the need for well-formedness predicates,

and the signi�cant gap between partial and total correctness.

We believe that it is important to keep the ideas of the programming and

assertion languages separate, and not confuse them, even if one's language does

not include expressions with side e�ects. These two languages have di�erent

qualities and purposes, as was explored at the end of Section 5.5. One should not

be beguiled by their overlap in appearance into assumming they are the same in

essence.

Despite the relative lack of attention paid to date to well-formedness, we found

this to be an area requiring a signi�cant portion of the total e�ort. Perhaps the

goal of complete formal veri�cation of this system in every detail forced us to

look at issues that previously were easy to dismiss. Just because an issue is

obvious and part of common sense, does not mean that its formal veri�cation

294



VCG

pre post

calls with recurses with

is inconsequential, either in e�ort required or in signi�cance of the results. It

appears to us that well-formedness will need to be a part of any practical

constructed in the future.

Finally, we feel that this work explores in a thorough way the di�erence be-

tween partial and total correctness of programs with mutually recursive proce-

dures. The speci�cations required of the user for each procedure di�ered for

specifying their partial correctness claims, using \ " and \ ", and their

termination claims, using \ . . . " and \ ". A respectable

fraction of the total structure of the proof was principally concerned with prov-

ing total correctness; three out of the �ve program logics used were principally

devoted to proving either termination or total correctness. Also, the structure of

the proofs of partial and total correctness di�ered markedly. The proof of par-

tial correctness worked by stages, proceeding by normal mathematical induction

on the depth of recursive call to prove the entire environment well-formed for

partial correctness. In contrast, the proof of total correctness involved an explo-

ration of the procedure call graph to identify procedure call cycles and produce

veri�cation conditions which established the progress achieved around each cycle.

Termination then followed based on a well-foundedness argument about in�nitely

decreasing sequences.

Clearly our tool would not be suitable for proving programs correct in an

industrial setting. Rather, this has been a theoretical exploration of ideas in

building a solid foundation for program proofs. In the future, these ideas may be

of use to other researchers in building practical veri�cation condition generators

to help prove real programs.

295



296



VCG

VCG

VCG

CHAPTER 13

Ease of Use

13.1 Burden of Annotation

\For My yoke is easy and My burden is light."

| Matthew 11:30

In this chapter we consider the ease of use of the Sunrise system for proving

programs correct. This includes the burdens of the annotations required for while

loops and procedures, and the burdens of proving the veri�cation conditions

created. We also discuss the areas of the proof that the supports.

To prepare a program for submission to the , the Sunrise system requires

the user to attach a number of annotations to the program which have no direct

impact on the program's execution, and serve only to help the and the

proof of the program's correctness. It is reasonable to ask how burdensome these

required annotations are, how much is asked of the user, and how a user might

be expected to generate such annotations in practice.

Most of these questions are similar to the ones raised in the debate over loop

invariants, whether or not the user should be expected to contribute the loop

297



calls

invariants, and the apparent di�culty of such a task. It has been argued that

requiring the user to provide such invariants forces the user to think more clearly

about why they should be true, and that they also provide a very useful form of

documentation. We consider the question of the propriety of requiring invariants,

and other annotations, to be a decision beyond the purview of this work. In this

work, requiring invariants and other annotations is a pragmatic necessity. We

now examine the di�culty of arriving at such annotations, considering each one

in turn.

For while loops, two annotations are generally required, a loop invariant and a

loop progress expression containing an expression whose value strictly decreases

for each iteration of the loop. The invariant is used to prove the partial correctness

of the loop, and the progress expression is used to prove its termination. Gries

has studied the problem of generating loop invariants [Gri81] and arrived at a

number of principles to guide this task. He has also described how to generate

a progress expression (which he calls a bound function) so that each iteration

makes progress towards termination.

For procedure declarations, we require several annotations:

1. Global variables

2. Precondition

3. Postcondition

4. For each procedure called in the body, a progress expression

5. If the procedure recurses, a recursion progress expression.

298



calls

The burden of generating a complete list of global variables is not hard, but

it is not as simple as scanning the body of the procedure. Instead, this should

include all globals accessed from within procedures called from within the body

of this procedure, either directly or indirectly, any number of levels deep. Thus,

the globals list should be a list of all globals that can be read or written during

the execution of the procedure body. If procedures are written in a bottom-up

fashion, then this would be the union of the globals lists of all procedures called

by the body, together with the globals actually used in the body itself.

The speci�cations of the precondition and postcondition are well-discussed in

the literature, and will not be described further here.

The new speci�cation of the progress expressions expresses a connection

between two states, in some ways analogous to the connection expressed by post-

conditions. Here, however, we need to take care to refer to the correct variables

in the two contexts. The choice of these progress expressions is crucial to the

proof of termination, for these are used to generate the path conditions while

traversing the procedure call graph, and in creating the call graph veri�cation

conditions. These may be created by asking the question, \What sort of progress

do I expect to achieve between the entrance of this procedure and the entrance of

another called by this one?" We suggest �rst drawing the procedure call graph

and examining it for cycles, to manually focus one's attention on the need to pro-

vide meaningful progress towards termination around each cycle. This progress is

then expressed in the recursion expression of the procedure. The progress around

each cycle then needs to be broken down into smaller steps of progress, which

are distributed onto the various arcs of the graph. These smaller steps may in

299



calls

fact individually show no progress, or even backwards movement as long as it is

limited, as may be convenient. The requirement is that the accumulation of the

progress of all the arcs around a cycle must show the forward progress of the re-

cursive progress expression. Thus the choice of the recursive progress expression

should precede the choice of the progress expressions.

The need to specify these calls progress expressions and the recursion ex-

pression in each procedure's header is welcome, for it compels the programmer to

think seriously about the issues of termination for his program. For every possible

path of recursion, there must be progress towards termination that can be identi-

�ed and quanti�ed. Usually this progress will be nascent within the programmer,

as part of his design of the program, but the annotation requirements will force

him to make these ideas concrete, and to examine them critically. In cases of

great interaction among procedures, where the procedure call graph has many

interlocking cycles, the expectation of having to prove termination may draw the

programmer toward simpli�ed designs with fewer well-chosen interactions.

This annotation structure was chosen as a compromise between the simple

rigidity of Sokolowski's recursion depth counter, and the extreme 
exibility of

specifying the expected progress individually for each call, at the point of call.

We chose to require every call issuing from one particular procedure to another

to satisfy the same progress condition. This allowed us to partition the proof

of recursion into two stages, where in the �rst stage the calls progress claims

were veri�ed by syntactic analysis of each procedure's body, and in the second

stage, the recursion progress claims were veri�ed from the calls progress claims

by analyzing the structure of the call graph. This followed the compositional

300



VCG

13.2 Burden of Proof

paradigm, where the proof of each individual procedure was accomplished in

relative isolation, and then the results of these proofs were brought together to

verify the entire collection of procedures.

We feel this is a reasonable annotation structure, because if the programmer

wished to prove termination, inherently he would have to describe how to prevent

in�nite recursive descent, and this leads immediately to a consideration of cycles

in the procedure call graph. Each such cycle must be shown to terminate, proba-

bly by some form of a well-founded argument. Inevitably the programmer would

have to supply information similar to what we have asked for in these annota-

tions, and not having considered the issue beforehand, might choose a simple but

overly restrictive system like recursion depth counters. Requiring our annotations

at the beginning brings the programmer's attention to termination issues early,

and clari�es the expectations of progress between procedures. Therefore this an-

notation structure would be a welcome element in good software engineering and

modular design for implementation by a team.

The veri�cation conditions presented by the part of the that deals with

analyzing the syntactic structure of the program appears to be quite satisfac-

tory. However, the production of veri�cation conditions su�cient to establish

termination, created by analyzing the structure of the call graph, may allow for

substantial reduction in the number of veri�cation conditions generated. One

such improvement is discussed in Chapter 14. This may be the subject of a

future upgrade of Sunrise.

301



calls

VCG

VCG

13.3 Areas of VCG Support

To brie
y mention the concepts proven automatically by the without user

involvement, the user need not be concerned with proving

1. well-formedness

2. proof by stages of partial correctness

3. precondition maintenance

4. progress

5. recursive progress

6. termination

7. total correctness

All of these follow from simply proving the veri�cation conditions. We do

not mean to imply that the proof of the veri�cation conditions is trivial or easy.

They may well contain the bulk of the weight of the proof. However, the above

concepts are not themselves trivial, and we contend that this as presented

does accomplish a signi�cant task in reducing the di�culty of proving programs

totally correct.

302



Lord

CHAPTER 14

Future Research

\Thus says the ,

The Holy One of Israel, and his Maker:

`Ask Me of things to come concerning My sons;

And concerning the work of My hands, you command Me.' "

| Isaiah 45:11

\Whatever He hears He will speak; and He will show you things to

come."

| John 16:13

In this chapter we consider possible future developments of the ideas presented

in this work. These fall into four major areas: extensions to the programming

and assertion languages, improvements to the VCG, implementations and tools

to support the methodologies presented here, and proofs of completeness.

303



<

�

VCG

14.1 Language Extensions

There are many areas where we would like to extend the programming and as-

sertion languages described here.

Probably the most immediate need is the inclusion of arrays. It is di�cult

to arrive a general, useful examples without arrays. This topic has been studied

extensively before, so it should pose few theoretical di�culties. Some of the

issues involved concern the inclusion of array bound checks in the preconditions

computed by the , the extension of the concept of aliasing to forbid confusion

between array elements, and the passing of entire arrays as parameters.

The progress expressions currently permitted allow only the use of the op-

erator , implying the well-founded set of nonnegative integers. We expect to

extend this to include the operator , with the well-founded set of lists of non-

negative integers ordered lexicographically, and to include other well-founded sets

and ordering relations. There does not appear to be any fundamental di�culty

in adapting the proofs of recursiveness or termination to these additional forms.

They would provide the ability to prove the termination of a wider variety of pro-

grams in ways that are natural and appropriate to the subjects of the programs.

In order to prove programs that implement certain recursive functions such as

Ackerman's function, it will be necessary to extend the assertion language with

user-de�ned functions, de�ned solely within the assertion language in order to

abstract parts of the speci�cations. Even if no recursive functions are needed,

such user-de�ned functions will be very practically useful in clearly expressing

complex and layered speci�cations.

304



HOL

HOL

Many new operators can be added in a similar style to those already present.

For example, if we add operators to perform integer division and check whether

a number is odd or even, we can run Pandya and Joseph's example. In general,

this seems to be one of the simplest and easiest extensions to accomplish, needing

no theoretical additions. Nevertheless, we have not at this time expanded the

language unnecessarily because of the great time and space issues that arise when

de�ning new types in which have many cases to represent the syntax trees.

One area of particular interest is the area of typing. A �rst extension would

focus on adding valuable new base types, such as characters, strings, or bounded

integers, for which there already exists support in the logic. Further exten-

sions could explore the creation of structured types such as records and arrays.

Input and output are important in bringing these systems closer to reality.

We can model these as undetermined assignments to particular global variables,

with assertions to act as preconditions restricting the possible input sequences.

We would like to explore if the same translation techniques now used for the

increment operator will also support input as an undetermined assignment.

One of the greatest challenges facing program veri�cation is scaling up the

theory to handle large, or even medium-sized programs, say of several tens of

thousands of lines long. Possibly the only means will be through a form of

modularization, where some program construct like Ada packages or Modula-

2 modules will be used to encapsulate a section of the program with a well-

de�ned interface. In the past these interfaces have incorporated only a syntactic

speci�cation, of the arity of each procedure and the types of its parameters. In

the future we envision interfaces specifying the behavior and meaning of each

305



n

Modularity

module, just as preconditions and postconditions express that for procedures in

this work. The point of the encapsulation is to modularize the proof of correctness

of the program as well. Following the structure of the program, the proof should

be structured so that each module can be independently veri�ed apart from the

rest of the program, perhaps with some required context as a precondition. Then

the proofs of the veri�ed modules should be adaptable for completing proofs of

other parts of the program that use the modules. This situation is analogous on

a larger scale to the speci�cation and use of procedures in this work.

One of the most intriguing aspects of programming languages is nondetermin-

ism, where either the order of subexpressions or the value of the operator itself

may vary from one execution to the next. We would like to introduce an oper-

ator which nondeterministically selects an integer from 1 to , so as to explore

nondeterminism from the level of expressions up. Dijkstra's guarded conditional

and repetition commands would be included as well. Nondeterminism may be

handled by the same type of predicates for the operational semantics as are cur-

rently used; the �nal state will simply no longer be uniquely determined, but in

fact these predicates will become true relations.

Finally, we hope someday to investigate the theoretically di�cult area of

concurrency. Concurrency raises a host of new issues, ranging from the level

of structural operational semantics (\big-step" versus \small-step"), to dealing

with assertions describing temporal sequences of states instead of single states,

to issues of fairness. We believe that a proper treatment of concurrency will

exhibit qualities of modularity and compositionality. means that a

speci�cation for a process should state both (a) the assumptions under which it

306



VCG

Compositionality

14.2 VCG Improvements

14.3 Implementations

should operate, and (b) the task (or commitment) which it should meet, given

those assumptions. means that the speci�cation of a system

of processes should be veri�able in terms of the speci�cations of the individual

constituent processes.

We intend to continue to examine and improve the functions for greater

e�ciency and ease of use, for example to reduce the number of veri�cation condi-

tions generated, especially those created through the analysis of the procedure call

graph. One immediate improvement may be found by generating the veri�cation

conditions for each procedure in order. When the termination of a procedure was

thus established, it would be deleted from the procedure call graph along with

all incident arcs. This smaller call graph would then be the one used in generat-

ing veri�cation conditions for the next procedure in order. Since there would be

fewer arcs, there would be fewer cycles, and we anticipate far fewer veri�cation

conditions produced.

We envision the theory developed in this work and others being supported by a

variety of tools to ease the process of creating veri�ed software. Proving programs

correct is su�ciently di�cult and full of details that mechanizing the task is a

natural goal.

One tool would be a program editor, which would act as a structured editor

307



VCG

HOL

14.4 Completeness

relative completeness

for creating programs, but when a su�ciently substantial part was created (for

example, a procedure) it would then automatically invoke the on it. Then

the veri�cation conditions it produced would be collected and presented to the

user to solve. The system could enforce the constraint that until all veri�cation

conditions were proven by the user, the code would not be submitted to the

compiler, and thus could not be run.

In order to aid the user in proving these veri�cation conditions, substan-

tial theorem proving systems will have to be presented. We anticipate powerful

graphical user interfaces to pictorially diagram the user's search for the correct

proof. These would complement semi-automatic theorem provers running in the

background, which would search for proofs of simple veri�cation conditions or

simple subgoals of a larger proof. This would eliminate the lower branches of

the proof tree from the user's attention; and for most trees the lower branches

contain the bulk of the tree's structure.

Although we have not attempted any proof of completeness of this proof system,

that does not mean that we think that unimportant. In the future we hope to

create a proof of the system's , in the sense of Cook [Coo78].

To some degree this will induce modi�cations of this approach, for completeness

is a statement of what can be proven about a true program, and this would

require encapsulating a proof system inside .

308



know,

VCG

VCG

HOL

ginosko oce

Ginosko

CHAPTER 15

Conclusions

* \ (ghin- -koe); Strong's #1097: To perceive, understand, rec-

ognize, gain knowledge, realize, come to know. is the knowledge that

has an inception, a progress, and an attainment. It is the recognition of truth by

personal experience."

| The Spirit-Filled Life Bible, Thomas Nelson Publishers, 1991, page 1589.

\You shall know* the truth, and the truth shall make you free."

| John 8:32

\But now having been set free from sin, and having become slaves of

God, you have your fruit to holiness, and the end, everlasting life."

| Romans 6:22

We have presented in this dissertation a veri�cation condition generator tool

for proving programs totally correct. We have veri�ed the , proving it sound

from a foundation of a structural operational semantics. From this operational

semantics we derived an axiomatic semantics, as theorems whose soundness was

established by proof. From these we proved the correctness of the . The

entire proof has been conducted within the mechanical theorem proving

309



VCG

ad hoc

environment, guaranteeing the soundness of the reasoning and the veri�cation

result.

As part of this process, we developed �ve program logics, three of which

were fundamental new inventions in this work, namely the expression logic, the

entrance logic, and the termination logic. These regularized the process of proving

termination for a program with mutually recursive procedures, and formed a

structure less than previous proposals.

This work has now provided a tool which can substantially decrease the dif-

�culty of proving programs correct. It does not eliminate that di�culty, and

even the use of this tool requires training and expertise. However, it points the

direction towards mechanical assistance of the proof process which we believe is

essential to the practical realization of the dream of widespread program veri�-

cation. Such tools must not only be powerful and e�cient, but it is vital that

they themselves be trustworthy, for the proofs constructed using those tools can

be no more reliable than the tools themselves.

This trustworthiness is now demonstrated to be feasible, by the presentation

of this tool. We believe that the annotation structure described is not

onerous, but reasonable and intuitive. It is extremely important that whatever

structure is imposed aids, and does not obstruct, the creation process. We have

attempted to craft the annotation structures described in this work to be simple

and structurally well placed, so as to provide the maximum strength with the

minimum constraint. Extending this work to new language features and styles

will require new annotation and proof structures. We look forward to further

developments for greater strength in days to come.

310



+

References

The Design of Well-Structured

and Correct Programs

Information and Computation

Pro-

ceedings of the 1991 International Workshop on the HOL Theorem

Proving System and its Applications

An Introduction to Mathematical Logic and Type

Theory: To Truth Through Proof

Veri�cation of Sequen-

tial and Concurrent Programs

ACM Trans-

actions on Programming Languages and Systems

Theorem Provers in Circuit Design

The Correctness Problem in Computer Science

A Computational Logic Hand-

book

Journal

of Symbolic Logic

[AA78] Suad Alagi�c and Michael A. Arbib.

. Springer-Verlag, 1978.

[AdB90] Pierre America and Frank de Boer. Proving total correctness of re-

cursive procedures. , 84(2):129{162,

February 1990.

[Age91] Sten Agerholm. Mechanizing program veri�cation in HOL. In

M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley, editors,

, pages 208{222. IEEE Computer

Society Press, August 1991.

[And86] Peter B. Andrews.

. Academic Press, 1986.

[AO91] Krzysztof R. Apt and Ernst-R�udiger Olderog.

. Springer-Verlag, New York, 1991.

[Apt81] K. R. Apt. Ten years of hoare logic: A survey|part 1.

, 3(4):431{483, 1981.

[BGG 92] Richard Boulton, Andrew Gordon, Mike Gordon, John Harrison, John

Herbert, and John Van Tassel. Experience with embedding hardware

description languages in HOL. In V. Stavridou, T. F. Melham, and

T. T. Boute, editors, , pages 129{

156. Elsevier Science Publishers B.V. (North Holland), 1992.

[BM81] Robert S. Boyer and J Strother Moore. A veri�cation condition gen-

erator for FORTRAN. In Robert S. Boyer and J Strother Moore, edi-

tors, . Academic Press,

London, 1981.

[BM88] Robert S. Boyer and J Strother Moore.

. Academic Press, 1988.

[Chu40] Alonzo Church. A formulation of the simple theory of types.

, 5(2):56{68, June 1940.

311



SIAM Journal on Computing

Veri�able Programming

Mathematical Theory of Program Correctness

Structured Programming

A Discipline of Programming

Mathematical Aspects of Computer Science, Proceedings of the

American Mathematical Society Symposia in Applied Mathematics

Program Veri�cation

Introduction to HOL:

A Theorem Proving Environment for Higher-Order Logic

Programming Language Theory and its Imple-

mentation

Current

Trends in Hardware Veri�cation and Automated Theorem Proving

[CM92] Juanito Camilleri and Tom Melham. Reasoning with inductively de-

�ned relations in the HOL theorem prover. Technical Report 265,

University of Cambridge Computer Laboratory, August 1992.

[Coo78] Stephen A. Cook. Soundness and completeness of an axiom system

for program veri�cation. , 7(1):70{90,

February 1978.

[Dah92] Ole-Johan Dahl. . Prentice Hall International

Series in Computer Science. Prentice Hall, London, 1992.

[dB80] Jaco de Bakker. . Pren-

tice Hall International, London, 1980.

[Dij72] Edsger W. Dijkstra. Notes on structured programming. In O.-J. Dahl,

E. W. Dijkstra, and C. A. R. Hoare, editors, .

Academic Press, 1972.

[Dij76] E. W. Dijkstra. . Prentice Hall, 1976.

[Flo67] R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz,

editor,

,

volume 19, pages 19{31, Providence, R.I., 1967. American Mathe-

matical Society.

[Fra92] Nissim Francez. . Addison-Wesley, Wokingham,

England, 1992.

[GM93] Michael J. C. Gordon and Thomas F. Melham.

. Cambridge

University Press, Cambridge, 1993.

[Gor88] Michael J. C. Gordon.

. Prentice Hall International Series in Computer Science.

Prentice Hall, London, 1988.

[Gor89] Michael J. C. Gordon. Mechanizing programming logics in higher or-

der logic. In P. A. Subrahmanyam and G. Birtwistle, editors,

,

pages 387{489. Springer-Verlag, New York, 1989.

312



The Com-

puter Journal

The Science of Programming

The Semantics of Programming Languages

Proceedings of

the 1994 International Workshop on the HOL Theorem Proving Sys-

tem and its Applications

Com-

munications of the ACM

Proceedings of Symposium on Semantics of Al-

gorithmic Languages Lecture Notes in Mathematics

Acta Informatica

Proceedings

of PSTV XIII, Liege, Belgium

Current

Trends in Hardware Veri�cation and Automated Theorem Proving

Proceedings of the 1991 International Workshop on the HOL

[Gra87] D. Gray. A pedagogical veri�cation condition generator.

, 30(3):239{248, June 1987.

[Gri81] David Gries. . Springer-Verlag, 1981.

[Hen90] Matthew Hennessy. . Wi-

ley, 1990.

[HM94] Peter V. Homeier and David F. Martin. Trustworthy tools for trust-

worthy programs: A veri�ed veri�cation condition generator. In

Thomas F. Melham and Juanito Camilleri, editors,

, pages 269{284. Springer-Verlag, September

1994. LNCS 859.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.

, 12(10):576{581, October 1969.

[Hoa71] C. A. R. Hoare. Procedures and parameters: an axiomatic approach.

In E. Engeler, editor,

, volume 188 of ,

Berlin, 1971. Springer-Verlag.

[ILL75] Shigeru Igarashi, Ralph L. London, and David C. Luckham. Auto-

matic program veri�cation: A logical basis and its implementation.

, 4:145{182, 1975.

[Kau94] Matt Kaufmann. Combining an interpreter-based approach to soft-

ware veri�cation with veri�cation condition generation. Technical Re-

port 97, Computational Logic, Inc., April 1994.

[Lin93] H. Lin. A veri�cation tool for value-passing processes. In

, May 1993.

[Mel89] Thomas F. Melham. Automating recursive type de�nitions in higher-

order logic. In G. Birtwistle and P. Subrahmanyam, editors,

,

pages 341{386. Springer-Verlag, 1989.

[Mel91] Thomas F. Melham. A package for inductive relation de�nitions in

HOL. In M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley,

editors,

313



�

+

Theorem Proving System and its Applications

Proceedings of the HUG'93 6th Inter-

national Workshop on Higher Order Logic Theorem Proving and Its

Applications

The Computer Journal

Proceedings, 6th Symposium on the Mathematical Foundations of

Computer Science

Sci-

ence of Computer Programming

Theoretical Computer Science

Proceedings of the

6th International Workshop on Higher Order Logic Theorem Proving

, pages 350{357. IEEE

Computer Society Press, August 1991.

[Mel92] Thomas F. Melham. A mechanized theory of the -calculus in HOL.

Technical Report 244, University of Cambridge Computer Laboratory,

January 1992.

[Nes93] Monica Nesi. Value-passing CCS in HOL. In Je�rey J. Joyce and

Carl-Johan H. Seger, editors,

, pages 352{365. Springer-Verlag, August 1993. LNCS

780.

[PJ86] P. Pandya and M. Joseph. A structure-directed total correctness proof

rule for recursive procedure calls. , 29(6):531{

537, 1986.

[Plo81] Gordon Plotkin. A structured approach to operational semantics.

Technical Report DAIMI FN-19, Aarhus University Computer Science

Department, September 1981.

[Rag73] Larry Calvin Ragland. A veri�ed program veri�er. Technical Re-

port 18, Department of Computer Sciences, The University of Texas

at Austin, Austin, May 1973.

[Sok77] Stefan Soko lowski. Total correctness for procedures. In J. Gruska, ed-

itor,

, pages 475{483. Springer-Verlag, September 1977.

LNCS 53.

[Sok84] Stefan Soko lowski. Partial correctness: The term-wise approach.

, 4:141{157, 1984.

[Sto88] A. Stoughton. Substitution revisited. ,

59:317{325, 1988.

[ZSO 93] Cui Zhang, Rob Shaw, Ronald A. Olsson, Karl Levitt, Myla Archer,

Mark R. Heckman, and Gregory D. Benson. Mechanizing a program-

ming logic for the concurrent programming language microSR in HOL.

In Je�rey J. Joyce and Carl-Johan H. Seger, editors,

314



and its Applications, number 780 in LNCS, pages 29{42. Springer-

Verlag, August 1993.

315


