
Infrastructure for Proof-Referencing Code

Carl A. Gunter

gunter@cis.upenn.edu

Peter Homeier

homeier@cs.ucla.edu

Scott Nettles

nettles@cis.upenn.edu

February 26, 1997

Abstract

We discuss ideas for using the Higher-Order Logic (HOL)
theorem-proving system as an infrastructure for programs
that reference or carry proofs of their correctness. Such pro-
grams, which we call Proof-Referencing Code (PRC), could
be useful or even essential for applications where security of
mobile code is important, but where authentication is im-
practical and runtime checking is expensive. We propose an
experiment to determine if PRC can be used to provide a

exible approach to providing security and performance in a
more general context than has been shown before. Our goal
is to develop a new kind of runtime system based on PRC.

1 Trust but Verify

A key collection of trade-o�s for mobile code concerns the
over-head involved in locally executing programs that are
potentially untrusted. There are three possible approaches:
(1) trust anyone, (2) trust only your friends, and (3) (trust
but) verify. In general the �rst option will make sense only
when a community is small (for instance, users in a sin-
gle administrative domain) or cases where trust is not re-
ally an issue because the capabilities supplied to the mo-
bile program by the host are too minimal to generate any
security concerns (postscript for printers is an example of
this, `ping' is a more debatable example, especially given
recent events). Hence the interesting cases are the second
and third ones. The second approach will typically involve
some form of authentication fashioned from cryptographic
techniques. There are numerous impediments to using this
approach, such as government regulations on the export of
security protocols (limiting international use) and propri-
etary claims to some of the best-tested techniques (leading
to burdensome contract negotiations over royalties). This
suggests that the third approach, veri�cation, is an impor-
tant avenue to explore.

One major advantage to veri�cation as a way to ensure
safety of mobile code arises from the fact that the basic
technology for doing this has been considerably developed
in other contexts. In particular, one may draw on experi-
ence from operating systems, some of which provide mem-
ory protection which veri�es at a very low level that certain
memory accesses are safe, and from programming languages,
where type systems provide safety guarantees. The second
of these is especially well illustrated in the design philoso-
phy of the Java programming language [3], which runs on a
virtual machine [7] that employs a dynamic `veri�er' to en-
force host security policies for the execution of the compiled

bytecode of web applets. This technology is supported by
advances in runtime systems (especially garbage collection)
and the speci�cation of programming languages (providing
precise machine-independent semantic descriptions).

2 Static or Dynamic?

The design space where one assumes a `veri�cation' philos-
ophy o�ers two principal alternatives: (1) ensure that the
program is safe before running it and (2) run the program
but check its actions to see that none are unsafe. Let us
call these approaches static and dynamic checking. Each
is widely used. For instance, OS memory protection is
based on dynamic checking, whereas many programming
languages rely on static type-checking to provide runtime
behavior guarantees. An extreme case is the SML pro-
gramming language [8], whose origins as a theorem-proving
meta-language were based on static type safety of that lan-
guage. On the other hand, most Lisp-family programming
languages rely on dynamic checks to ensure controlled errors
on type-incorrect programs.

The tradeo� between static and dynamic checking is
driven by e�ciency and information. Since more is known
at runtime (for instance, the actual values passed in a pro-
cedure call), it is possible to carry out a more detailed check
of safety on the known arguments, but this check may need
to be done many times. If the needed information could be
obtained before running the program, a single check at that
time might save repeated runtime checks. Here's a family
metaphor: a child in a child-safe room requires less super-
vision than one in an child-unsafe room. Hence having a
child-safe room can enhance e�ciency by reducing the e�ort
devoted to supervision. However, it can be di�cult or im-
possible to make a room child-safe, so monitoring may be
necessary or less costly.

3 Verifying More

One of the drawbacks to the existing technologies for static
and dynamic veri�cation coming from operating systems and
programming languages is that these techniques are limited
to a small range of properties they are actually capable of
ensuring. Operating systems o�er memory protection (or
at least the reliable ones do). Programming languages can
go further and support certain kinds of data abstraction by
controlling name spaces. However, neither approach is ad-
equate to ensure all of the properties involved in general
program correctness. In general a speci�cation will require
a variety of properties, some of which are beyond expression



as types in typical programming languages, or as memory
protection in any OS.

Our work on active networks at Penn has led us to con-
sider ways in which it may be possible to move beyond these
boundaries. There is a single technical insight that we would
like to use to advance both of these approaches. The insight
is this: it is sometimes easier to see that an answer is cor-
rect than it is to produce a correct answer in the �rst place.
For a good metaphor: it is much easier to see that a jigsaw
puzzle is solved than it is to solve it. This translates into
two strategies for providing better veri�cation assurances to
hosts that might run mobile code. First, if it is known that
a program is intended to compute a particular thing, then
the program can be run and the answer checked. This is
called program checking [1] (but dynamic veri�cation might
be a better name for it). Second, if a proof that a program
computes a particular thing is cited, then that proof can
be checked. We call this called proof referencing. These
approaches are complementary.

To see a very simple example of program checking, sup-
pose a program is meant to compute the square root of x
within a given accuracy. To achieve program checking for
this program, just square its outputs and check to see if they
are within the desired range. This idea can be extended
to much more interesting applications. However, program
checking has two drawbacks. First, it is only able to check
that an answer is correct: it does not, by itself, show that
a program will produce a correct answer, only that it has
not yet in execution produced an incorrect one. Indeed, a
dynamically-checked program is no more reliable than the
less-reliable of the checked program and the checker. So, if
the correctness of the checker itself is in doubt, then little
constructive is contributed by using it. Second, the checker
su�ers from the usual problem of runtime checking: it must
be reasonably e�cient or it will degrade the performance of
the program it is checking. For instance, if a procedure pro-
duces many values and each one must be checked, this could
be quite burdensome.

4 Proof-Referencing Code

The alternative to dynamic checking is generally called pro-
gram veri�cation, an endeavor with a history of disappoint-
ments. Basically, most programs are too complicated to
verify completely; most of the insights about program prop-
erties that went into writing the program are not present
in the code itself, so autonomous theorem-proving systems
are unlikely to be able to �nd correctness proofs. Interac-
tive proofs require a skilled person to construct the proof of
correctness, usually with modest automated support. The
result is that it is basically out of the question to insist that
a host check that a mobile program is correct or safe by
static means.

Various projects have attempted to attack this problem.
For instance, `inferential programming' [11] advocated us-
ing an environment and method for collecting information
from the programmer as the program was written. Another
idea is that of a veri�cation condition generator, which uses
programmer annotations to generate conditions for verify-
ing a program. A culmination of these and similar ideas
was discussed recently under the names `self-certi�ed code'
and `proof-carrying code' by Necula and Lee [10, 9]. The
idea is another variant on the principal that it may be easier
to check an answer than it is to produce it. For a mobile
program, it is the creator of the program who knows the

key reasons it is correct, not the host that receives the pro-
gram. Hence it is reasonable to shift the burden of proof
onto the supplier of the mobile program. The mobile pro-
gram is paired with a proof of its safety and delivered to a
host. It is easy for a computer to check a formal proof, even
when the proof may have been very di�cult to create, so the
host checks the proof and runs the program.

While we don't want to add any confusion by di�ering
from the terminology introduced by Necula and Lee, we'd
like to refer to this technique as Proof-Referencing Code
(PRC) to be more general about what the code must con-
tain. To see the point, let us discuss some pragmatics.

5 Needed Infrastructure

The aim of [10] was to show that a packet �lter can be
made faster by proving to an OS kernel that the �lter would
respect its memory protection requirements, thereby en-
abling the omission of expensive runtime safety checks. This
demonstration is useful in bringing up a variety of issues that
would arise in any context that sought to use these methods
in a more routine manner. First, there must be a common
understanding between the host and the code provider about
the logic in which the desired property is being proved. It
would, of course, be pointless for the host to use a proof-
checker supplied by the code supplier. Second, the proof of
any non-trivial property of a program probably relies on a
great deal of basic mathematics. It is impractical to assume
that the host is aware of anything that may be needed, since
it may have been developed by the code supplier. It is also
impractical for the code supplier to send a large proof that
develops a relevant branch of mathematics as part of every
mobile program.

From these two facts we can conclude that standardiza-
tion and infrastructure will be crucial to the practical use of
PRC. But what kind of infrastructure is required for PRC?
First, it is necessary to have a suitable logic. This logic must
also have some standardized form for its proofs so they can
be checked by a host. It is probably best to use a collection
of logics and achieve interoperability by some kind of com-
mon embedding into a general-purpose logic of which they
can all be viewed as sub-sets. Second, the logic must have a
way of building libraries of theorems that can be referenced
remotely. This will allow PRC's to refer to the libraries for
basic mathematics needed as a foundation for their more
code-speci�c proofs. Third, the logic must be capable of
talking about properties of the code language. Fourth|the
most interesting criterion|it must be usable by the system
that compiles or evaluates the code.

6 Higher-Order Logic System and Theories

Church's higher-order logic was used as the basis for a goal-
directed theorem-proving system, HOL, by Michael Gor-
don [2]. The HOL system was originally used for hardware
veri�cation, but numerous projects have shown that it is
also useful for software. HOL has an international user com-
munity and a large base of theories (HOL terminology for
a library of theorems) derived by its users over the years.
HOL is based on a short list of basic axioms; the tens of
thousands of lines of facts in its world-wide libraries have all
been proved from these axioms using the HOL system. One
particular feature of this way of doing things is that any user
will have as much con�dence in the theories of another user



as they have con�dence in the HOL system (as opposed to
the author of the theory).

HOL libraries could form the basis of a PRC infrastruc-
ture. We plan to experiment with this idea by an explo-
ration based on work of Peter Homeier [4, 6, 5] which has
examined the correctness of a veri�cation condition genera-
tor (VCG) for a small imperative programming language. A
VCG processes programs written in the speci�ed language,
internally constructs a proof of the program's correctness,
and produces as its result a set of lemmas called veri�ca-
tion conditions, as the remainder left for the programmer
to prove. He was able to show how to prove the sound-
ness of the veri�cation condition generator in HOL, that for
all programs submitted to the VCG, the truth of the veri-
�cation conditions that it produced in fact guarranteed the
total correctness of the program with respect to its speci�-
cation. Such a proof establishes with security many of the
connections we would need to have between HOL and the
programming language in a PRC system, in particular the
fundamental connection that program proofs imply veri�ed
code. This kind of VCG would make PRC more practical, by
reducing both the volume and the complexity of the proofs
to be attached to PRC.

7 A Compiler and Runtime System for PRC

Our principal idea is to develop a compiler and runtime sys-
tem whose dynamic checking is inversely proportional to how
much the compiler knows about the program. This, by itself,
is nothing new: compilers typically attempt to gather infor-
mation about programs in order to reduce dynamic check-
ing. However, the kind of information they must settle for
is somewhat limited. Either this must be entirely inferred
by the compiler, or it must be guided by some programmer
pragmas, but no system we are aware of can accept a general
mathematical proof of a property as an input that achieves
an (automatic) optimization.

Our speci�c goal is the following. We would like to ex-
tend the language of [5] to include arrays. Then we will de-
velop a suitable format for PRC that includes proofs about
array bounds access. This will then be used in a distributed
system in which a PRC producer can send a proof to a PRC
host. At the PRC host the proofs provided by the producer
will be checked and, if they are correct, used to optimize
the compilation and runtime checking of the program part
of the PRC. As part of this system, we will also develop a
system that will allow us to store HOL theories so that re-
mote references in PRC can be satis�ed. We hope to show
through this experiment a signi�cant speedup in execution,
through the safe and secure elimination of run-time array
bounds checking.

One intriguing aspect of this design is that it provides
a novel kind of performance-tuning knob for mobile code
systems. Code that carries no information about its safety
properties will be heavily checked dynamically. For exam-
ple, like current packet �lters, it might be interpreted so that
the results of each instruction can be veri�ed. This would be
appropriate for prototype code, or code that is infrequently
executed. To improve performance, the programmer can
provide more information about code, allowing the host to
omit the dynamic checks. In general, this will give us the
ability to trade o� between the amount of work the program-
mer does in developing the code, and the amount of work
the system does in executing it, while avoiding compromis-
ing safety.

8 Applications to Active Networks

Our interest in secure mobile code arises from our work
on active networks. An active network is one based on a
`store, compute, and forward' model in which the switch is
programmable, allowing customizable forms of communica-
tion. For instance, a message may contain a program that
is executed by the switch to facilitate an application-speci�c
routing strategy. This contrasts with the protocol of the
Internet, which is based on a `store and forward' model of
computing: an Internet switch receives a message and deals
with it based on the destination to which it is addressed.

There are many potential applications of programmable
switches based on various resources they could provide to
users and operators. Perhaps their most compelling advan-
tage is that the evolution of an active network will rely less
on standards adoption and can therefore proceed at a pace
determined by technology rather than standards commit-
tees. However, programmability of switches brings up nu-
merous questions about security and the fair allocation of
resources. Much research on active networks is currently fo-
cused on �nding a design to provide good functionality while
dealing sensibly with these problems.

The programs that are used to provide customized com-
munication on switches are a form of mobile code that we
call switchlets. Switchlets could bene�t signi�cantly from
PRC techniques if PRC allows switchlets to run safely on
shared switches without authentication and with protection
boundaries that are not expensive to enforce. It is our hope
that this technology can be developed to a degree that it
can play a signi�cant role in an active network context com-
bining suitable degrees of mutual trust, trust of friends, and
trust with veri�cation.

References

[1] Manuel Blum and Sampath Kannan. Designing Pro-
grams that Check Their Work. Journal of the ACM,
42, 1995.

[2] Michael J.C. Gordon and Tom F. Melham. Introduction
to HOL: A theorem proving environment for higher or-
der logic. Cambridge University Press, 1993.

[3] James Gosling, Bill Joy, and Guy Steele. The Java
Language Speci�cation. Addison Wesley, 1996.

[4] P. V. Homeier and D. F. Martin. A Mechanically Ver-
i�ed Veri�cation Condition Generator. The Computer
Journal, 38(2):131{141, July 1995.

[5] Peter V. Homeier. Trustworthy Tools for Trustworthy
Programs: A Mechanically Veri�ed Veri�cation Condi-
tion Generator for the Total Correctness of Procedures.
PhD thesis, University of California, Los Angeles, June
1995.

[6] Peter V. Homeier and David F. Martin. Mechanical
Veri�cation of Mutually Recursive Procedures. In M. A.
McRobbie and J. K. Slaney, editors, Proceedings of the
13th International Conference on Automated Deduction
(CADE-13), volume 1104 of Lecture Notes in Arti�cial
Intelligence, pages 201{215. Springer-Verlag, July 1996.

[7] Tim Lindholm and Frank Yellin. The Java Virtual Ma-
chine Speci�cation. Addison Wesley, 1996.



[8] R. Milner, M. Tofte, and R. Harper. The De�nition of
Standard ML. MIT Press, 1990.

[9] George C. Necula. Proof-Carrying Code. In Proceedings
of the 24th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL
'97). ACM Press, 1997.

[10] George C. Necula and Peter Lee. Safe Kernel Exten-
sions Without Run-Time Checking. In Second Sympo-
sium on Operating System Design and Implementation
(OSDI '96), 1996.

[11] William L. Scherlis and Dana S. Scott. First steps to-
wards inferential programming. In R. E. A. Mason,
editor, Information Processing 83, pages 199{212, Ams-
terdam, 1983. Elsevier Science Publishers B. V. (North-
Holland).


