
E�ective Support for Mutually Recursive Types

Peter V. Homeier

Computer and Information Science Department, University of Pennsylvania
Philadelphia, Pennsylvania 19104-6389 USA

http://www.cis.upenn.edu/~homeier
homeier@saul.cis.upenn.edu

Abstract. For purposes of formal analysis, it is common to form a model
of a system within a logic. This sometimes requires the introduction of
new types which are mutually recursive. HOL90 has possessed for several
years now two excellent libraries for mutually recursive types. Despite
their powerful functionality, they are discovered to be di�cult to use in
practice. The input speci�cations of the mutually recursive types are la-
borious, the support for de�ning functions on these types is limited, and
there is no built-in automated support for proving theorems about these
types and functions, beyond proving the induction theorem. We address
these software engineering issues in this paper, by the presentation of a
new library, mutual, which includes all the de�nitional power of the oth-
ers with a succinct interface and tools to facilitate the practical creation
of function de�nitions and proofs. Researchers can now �nd this HOL90
software available from the Web.

1 Introduction

Modeling systems in HOL for study of their properties often requires the creation
of new types in the logic. One of HOL's strengths has been its powerful yet
completely de�nitional and sound tools for creating and using new types, notably
the excellent type de�nition package by Tom Melham [1]. This package provides
facilities for specifying new recursive types in a concise syntax, automatically
constructs the de�nitions required, and proves various theorems needed for using
the new types, such as the type axiom, the structural induction theorem, the one-
to-one and distinctiveness properties of the constructors, and the cases theorem.
In addition to these theorems, the package also provides a tool for de�ning new
functions on the new types, and a tactic for proving theorems about the new
functions and types. This package has the appealing and enduring advantages
of being easy to use, e�ciently implemented, and completely sound.

In fact, if one were to look for a aw in this package, the only place where one
might reasonably criticize it might be in its scope. The package can only create
one new recursive type at a time. This is �ne for many applications, but there
is a signi�cant class of systems which evidence several types, where each type
is de�ned in terms of itself and the others. These are called mutually recursive

types. An example is the syntax structures of a programming language, where
the syntax often is mutually recursive in interesting ways.

There are programming techniques that can be used to de�ne these mutually
recursive types using the standard type de�nition package. One new type is
de�ned, which is a disjoint sum of all the mutually recursive types, with a tag
to discriminate between the types. But these methods can be awkward to use,
and do not provide the simplicity and ease-of-use that many users are familiar
with from the standard package.

In 1991 Myra VanInwegen was working on her Ph.D. thesis [2] with Elsa
Gunter, creating a de�nition of the syntax and semantics of SML within the HOL
logic. SML is a language with mutually recursive syntax. To aid in representing
this syntax by de�nitions of mutually recursive types, Gunter and VanInwegen
created the mutrec library in the summer of 1991 [3]. This library was a signi�-
cant addition to the functionality of HOL90, and provided impetus for users to
switch to HOL90. Nevertheless, Gunter saw the need for additional functional-
ity, and in the summer of 1992, Gunter jointly with Healfdene Goguen followed
this library with the nested rec library, with the ability to handle more general
speci�cations of new types, including the use of pre-existing type operators such
as list, prod, and sum in the speci�cations.

These new libraries provided new functionality that was greatly needed by
many users of HOL who did not have the expertise to use the programming
techniques mentioned before. However, these libraries came in a relatively rough
condition, compared with the standard type de�nition package. Despite their use-
ful functionality, these libraries were hard to use in practice, requiring laborious
speci�cations of the types. In addition, the tool provided for creating de�nitions
of new functions on the new types was restricted. With the most frequent impact,
there was no tool provided analogous to the standard type de�nition package's
INDUCT THEN tactic, which helped to automate proofs of properties concerning a
new type. One needed to use the induction theorem directly and manually, with
a reduction in both ease and clarity.

In this paper we describe a new library for HOL, called mutual, which builds
upon the functionality provided by the nested rec library, providing tools to
ease the creation and use of mutually recursive types, including nested recursion.
The problems mentioned above are addressed, among other issues. This library
makes direct use of the nested rec library for creating the de�nitions, but adds
functions to provide a more convenient and practical interface.

This new library adds no signi�cantly new de�nitional functionality. Never-
theless, it can be considered a strict improvement over the pre-existing libraries.
The thesis of this paper is that \ease-of-use" is an important feature of any
package, which may be overlooked in the drive for increased functionality. The
mutual library may be considered an illustrative example of this thesis.

The organization of this paper is as follows. Section 2 discusses previous
approaches. In Section 3 we describe how to load the mutual library. Section
4 demonstrates the facilities for creating new de�nitions of mutually recursive
types, including nested recursion. Section 5 describes the tool for de�ning new
mutually recursive functions on those new types. Section 6 describes a tactic for
proofs by mutual structural induction, and in Section 7 we conclude.

2 Previous Work

The fundamental tool for de�ning new types in HOL is new type definition,
an ML function. This function requires the user to supply a theorem of the
existence of values of the new type, and in addition create a bijection and its
inverse between the new type and its representation. This involves a good deal
of low-level detailed work that could be characterized as remote from the user's
intuitive conception of the type.

Probably the most commonly-used mechanism for de�ning new recursive
types in HOL is the recursive type de�nition package by Tom Melham, as de-
scribed in Chapter 20 of [1]. This provides ML functions to de�ne a single new
concrete recursive type, with its constructor functions. The package also pro-
vides tools to produce theorems that state the axiomatization of the type, its
induction principle, the disjointness and one-to-one principles of its construc-
tors, and the cases theorem. New recursive functions in the HOL logic can be
de�ned on the structure of this new type. In addition, the package provides the
INDUCT THEN tactic for proving properties about the new type and functions by
structural induction.

Say we wished to de�ne binary trees as either leaves or nodes with two child
trees. A typical type de�nition in HOL88 would be

#let btree_Axiom =

define_type

`btree_Axiom` `btree = LEAF * | NODE btree btree`;;

btree_Axiom =

|- !f0 f1.

?! fn.

(!x. fn(LEAF x) = f0 x) /\

(!b1 b2. fn(NODE b1 b2) = f1(fn b1)(fn b2)b1 b2)

The same type de�nition in HOL90 would be

- val btree_Axiom =

= define_type{

= name = "btree_Axiom",

= type_spec=`btree = LEAF of 'a | NODE of btree => btree`,

= fixities = [Prefix,Prefix] };

val btree_Axiom =

|- !f0 f1.

?!fn.

(!x. fn (LEAF x) = f0 x) /\

(!b1 b2. fn (NODE b1 b2) = f1 (fn b1) (fn b2) b1 b2)

This package has enjoyed great popularity, in no small part due to the ex-
cellent quality of the user interface provided and the e�cient implementation of
the tools. Last but not least, the documentation is complete and quite clear. Its
obvious value has mandated its inclusion in the core HOL system, rather than
as a library, to be readily available to all users.

This excellent package has only one signi�cant limitation; it does not directly
support mutually recursive types. To address this need, the mutrec library was
created for HOL90 by Myra VanInwegen and Elsa Gunter in 1991. It provides a
means to de�ne mutually recursive types.

This brought the creation of mutually recursive types within the reach of
many HOL users. However, Elsa Gunter was not satis�ed with the functionality
of this library, and working jointly with Healfdene Goguen, followed it a year
later with an even more powerful library, nested rec, which added the ability to
refer to the new types being de�ned within some type operators, such as list,
sum, and prod, so long as the proper theorems describing their axiomatization
were also supplied.

Both these libraries, mutrec and nested rec, were powerful additions to the
set of tools in HOL for modeling general systems within the logic. However,
these libraries also had certain weaknesses as well, in that they were not as well
polished and easy to use as the standard recursive type de�nition package.

The most important areas needing improvement are these:

1. The speci�cation of the input grammar is verbose, hard to compose and
read, easy to get wrong, and very di�erent from the simple input that the
standard recursive type de�nition package requires.

2. When de�ning new functions on the new types, the functions are limited to
exactly one argument, which must be one of the types de�ned.

3. No tactics are provided to aid in proofs by induction on the structure of the
mutually recursive types, beyond proving the induction theorem.

Of these three, the �rst is the most obvious need; yet the last may be the
most important, because for every new type de�nition, there may be many new
functions de�ned, and for each new function de�ned, there may be many new
properties proved about it.

3 Loading the Library

The mutual library is designed to reside in the contrib directory. Once installed,
we load the mutual library by

load_library_in_place (find_library "mutual");

This will load several other libraries as well, including mutrec and nested rec.
Loading the mutual library will create the functors

DefineMutualTypesFunc and StringDefineMutualTypesFunc,

and also the structure mutualLib. The functors are used to create new mutually
recursive types; they vary only in whether they take a term frag list or a
string as the input speci�cation. The structure mutualLib has the signature

structure mutualLib :

sig

val define_mutual_functions

: {def:term, fixities:fixity list option,

name:string, rec_axiom:thm}

-> thm

val MUTUAL_INDUCT_THEN : thm -> thm_tactic -> tactic

val list_Axiom : thm

val prod_Axiom : thm

val sum_Axiom : thm

end

This includes a function to de�ne functions on the mutual types, a tactic to per-
form mutual structural induction, and three useful theorems for de�ning nested
mutually recursive types. Opening this structure makes these values available at
the top level:

- open mutualLib;

open mutualLib

val define_mutual_functions = fn

: {def:term, fixities:fixity list option,

name:string, rec_axiom:thm} -> thm

val MUTUAL_INDUCT_THEN = fn : thm -> thm_tactic -> tactic

val list_Axiom =

|- !x f. ?!fn1. (fn1 [] = x) /\

(!h t. fn1 (CONS h t) = f (fn1 t) h t) : thm

val prod_Axiom = |- !f. ?!g. !x y. g (x,y) = f x y : thm

val sum_Axiom = |- !f g. ?!h. (!x. h (INL x) = f x) /\

(!x. h (INR x) = g x) : thm

4 De�nitions of Mutually Recursive Types

Mutually recursive types, with possible nesting of the recursion, are de�ned
using either the DefineMutualTypesFunc or StringDefineMutualTypesFunc

functors. This is best exhibited through an example. Consider the following
BNF grammar:

atexp = var j let dec in exp

exp = atexp j exp atexp j match

match = rule list

rule = pat => exp

dec = valbind j local dec in dec j dec ; dec
valbind = bind (pat to exp) list j rec valbind

pat = wild pat j var

Figure 1 shows the need for mutual recursion by the presence of cycles.
If we represent the types of variables as a type variable 'var, then these

types may be de�ned as follows.

atexp exp

match

rule

dec valbind

pat

var

Figure 1: Dependencies among language phrases.

structure GramDef =

DefineMutualTypesFunc

(val name = "syntax"

val recursor_thms = [list_Axiom,prod_Axiom]

val types_spec =

` atexp = var_exp of 'var

| let_exp of dec => exp ;

exp = aexp of atexp

| app_exp of exp => atexp

| fn_exp of match ;

match = match of rule list ;

rule = rule of pat => exp ;

dec = val_dec of valbind

| local_dec of dec => dec

| seq_dec of dec => dec ;

valbind = bind of (pat # exp) list

| rec_bind of valbind ;

pat = wild_pat

| var_pat of 'var `);

This closely matches the BNF presented above, and is an improvement over
the style of specifying such mutually recursive types in the nested rec library.
Using that library requires one to create a structure with speci�c �elds, including
a type speci�cation with a recursive record structure. This is illustrated on the
next page, where the speci�cation of the above example is given.

val var_ty = (==`:'var`==);

local

structure Ast : NestedRecTypeInputSig =

struct

structure DefTypeInfo = DefTypeInfo

open DefTypeInfo

val def_type_spec =

[{type_name = "atexp",

constructors =

[{name = "var_exp",

arg_info = [existing var_ty]},

{name = "let_exp",

arg_info = [being_defined "dec",

being_defined "exp"]}]},

{type_name = "exp",

constructors =

[{name = "aexp",

arg_info = [being_defined "atexp"]},

{name = "app_exp",

arg_info = [being_defined "exp",

being_defined "atexp"]},

{name = "fn_exp",

arg_info = [being_defined "match"]}]},

{type_name = "match",

constructors =

[{name = "match",

arg_info = [type_op{Tyop="list",

Args=[being_defined "rule"]}]}]},

{type_name = "rule",

constructors =

[{name = "rule",

arg_info = [being_defined "pat",

being_defined "exp"]}]},

{type_name = "dec",

constructors =

[{name = "val_dec",

arg_info = [being_defined "valbind"]},

{name = "local_dec",

arg_info = [being_defined "dec",

being_defined "dec"]},

{name = "seq_dec",

arg_info = [being_defined "dec",

being_defined "dec"]}]},

{type_name = "valbind",

constructors =

[{name = "bind",

arg_info=[type_op

{Tyop="list",

Args=[type_op

{Tyop="prod",

Args=[being_defined "pat",

being_defined "exp"]}]}]},

{name = "rec_bind",

arg_info = [being_defined "valbind"]}]},

{type_name = "pat",

constructors =

[{name = "wild_pat",

arg_info = []},

{name = "var_pat",

arg_info = [existing var_ty]}]}];

val recursor_thms = [list_Axiom,prod_Axiom]

val New_Ty_Existence_Thm_Name = "syntax_existence_thm"

val New_Ty_Induct_Thm_Name = "syntax_induction_thm"

val New_Ty_Uniqueness_Thm_Name = "syntax_uniqueness_thm"

val Constructors_Distinct_Thm_Name =

"syntax_constructors_distinct"

val Constructors_One_One_Thm_Name =

"syntax_constructors_one_one"

val Cases_Thm_Name = "syntax_cases"

end (* struct *)

in

(* Prove the defining theorems for the type *)

structure GramDef = NestedRecTypeFunc (Ast);

end;

The mutual library can condense the above speci�cation due to the intro-
duction of a parser for a mututally recursive types speci�cation language. The
language is modeled on that used in the standard HOL type de�nition pack-
age, and is the same except for having multiple type speci�cations, separated
by semicolons. This parser is in fact very similar to the normal HOL90 parser,
and could be integrated with it. The parser takes the speci�cation as given in
the shorter version above and parses it, creating the longer version seen above,
which is then used as an argument in calling the nested rec package.

The mutual library does give up some freedom present in nested rec, for
choosing the names of the theorems produced. In nested rec, the six theorems
are stored in the current theory under names which are speci�ed independently

for each theorem. In the mutual library tools, only the root is speci�ed by the
user (in the above example, as the string "syntax") and the name of each the-
orem is created in a standard fashion by appending a standard su�x for that
theorem, namely \ exists," \ induct," \ unique," \ distinct," \ one one,"
or \ cases." This was chosen to ease the use of this tool and improve standard-
ization of naming.

Note that the recursor theorems included with the speci�cation must include
the axiomatization theorems for all type operators used to nest types being
de�ned, including new, user-de�ned type operators as well. It is a common error
to leave some out; yet unnecessary ones may confuse the tool.

The DefineMutualTypesFunc functor creates a new structure, as well as
storing the six resulting theorems in the current theory. The new structure has
signature DefTypeSig, and contains these theorems as well.

signature DefTypeSig =

sig

type thm

val New_Ty_Induct_Thm :thm

val New_Ty_Uniqueness_Thm :thm

val New_Ty_Existence_Thm :thm

val Constructors_Distinct_Thm : thm

val Constructors_One_One_Thm : thm

val Cases_Thm : thm

end;

The actual theorems produced by the mutual library are not precisely the
same as those produced by nested rec. Some of the variable names generated
automatically by the nested rec tools were meaningless and hard to work with.
Some we retained, like the long names for case functions, but for others, we
generated more meaningful names based on the types of the variables, as in the
standard recursive types package. In addition, the theorems were restructured
and prepared for use by the other facilities of the mutual library. For the above
example, the existence theorem generated by the mutual library is:

val New_Ty_Existence_Thm =

|- !var_exp_case let_exp_case val_dec_case local_dec_case

seq_dec_case aexp_case app_exp_case fn_exp_case

match_case wild_pat_case var_pat_case

atexp_dec_exp_match_pat_rule_valbind_ch44_pat_exp_case

atexp_dec_exp_match_pat_rule_valbind_NIL_pat_exp_prod_

atexp_dec_exp_match_pat_rule_valbind_case

atexp_dec_exp_match_pat_rule_valbind_CONS_pat_exp_prod_

atexp_dec_exp_match_pat_rule_valbind_case

rule_case

atexp_dec_exp_match_pat_rule_valbind_NIL_rule_case

atexp_dec_exp_match_pat_rule_valbind_CONS_rule_case

bind_case rec_bind_case.

?fna fnd fne fnm fnp0 fnp1 fnl0 fnr fnl1 fnv.

(!x. fna (var_exp x) = var_exp_case x) /\

(!d e. fna (let_exp d e) =

let_exp_case (fnd d) (fne e) d e) /\

(!v. fnd (val_dec v) = val_dec_case (fnv v) v) /\

(!d0 d1. fnd (local_dec d0 d1) =

local_dec_case (fnd d0) (fnd d1) d0 d1) /\

(!d0 d1. fnd (seq_dec d0 d1) =

seq_dec_case (fnd d0) (fnd d1) d0 d1) /\

(!a. fne (aexp a) = aexp_case (fna a) a) /\

(!e a. fne (app_exp e a) =

app_exp_case (fne e) (fna a) e a) /\

(!m. fne (fn_exp m) = fn_exp_case (fnm m) m) /\

(!l. fnm (match l) = match_case (fnl1 l) l) /\

(fnp0 wild_pat = wild_pat_case) /\

(!x. fnp0 (var_pat x) = var_pat_case x) /\

(!p e.

fnp1 (p,e) =

atexp_dec_exp_match_pat_rule_valbind_ch44_pat_exp_case

(fnp0 p) (fne e) p e) /\

(fnl0 [] =

atexp_dec_exp_match_pat_rule_valbind_NIL_pat_exp_prod_

atexp_dec_exp_match_pat_rule_valbind_case) /\

(!p l.

fnl0 (CONS p l) =

atexp_dec_exp_match_pat_rule_valbind_CONS_pat_exp_prod_

atexp_dec_exp_match_pat_rule_valbind_case

(fnp1 p) (fnl0 l) p l) /\

(!p e. fnr (rule p e) =

rule_case (fnp0 p) (fne e) p e) /\

(fnl1 [] =

atexp_dec_exp_match_pat_rule_valbind_NIL_rule_case) /\

(!r l.

fnl1 (CONS r l) =

atexp_dec_exp_match_pat_rule_valbind_CONS_rule_case

(fnr r) (fnl1 l) r l) /\

(!l. fnv (bind l) = bind_case (fnl0 l) l) /\

(!v. fnv (rec_bind v) = rec_bind_case (fnv v) v) : thm

Where the above existence theorem has

?fna fnd fne fnm fnp0 fnp1 fnl0 fnr fnl1 fnv.

the corresponding theorem generated by the nested rec library has instead

?y y''''''''' y'''''''' y''''''' y'''''' y''''' y'''' y''' y'' y'.

with corresponding substitutions throughout.

5 De�ning Mutually Recursive Functions

Once the mutually recursive types are de�ned, we can now de�ne a cooperating
set of mutually recursive functions on them. define mutual functions is used
for this, as in the following example. This example de�nes functions to return
the variables in a phrase of the language, except for those in a given set s.

val vars_thm = define_mutual_functions

{name = "vars_thm",

rec_axiom = syntax_exists,

fixities = NONE,

def =

(--`(atexpV (var_exp (v:'var)) s = (v IN s => {} | {v})) /\

(atexpV (let_exp d e) s = (decV d s) UNION (expV e s))

/\

(expV (aexp a) s = atexpV a s) /\

(expV (app_exp e a) s = (expV e s) UNION (atexpV a s)) /\

(expV (fn_exp m) s = matchV m s)

/\

(matchV (match rs) s = matchVs rs s)

/\

(matchVs (NIL) s = {}) /\

(matchVs (CONS r mrst) s = (ruleV r s) UNION (matchVs mrst s))

/\

(ruleV (rule p e) s = (patV p s) UNION (expV e s))

/\

(decV (val_dec b) s = valbindV b s) /\

(decV (local_dec d1 d2) s = (decV d1 s) UNION (decV d2 s)) /\

(decV (seq_dec d1 d2) s = (decV d1 s) UNION (decV d2 s))

/\

(valbindV (bind bs) s = valbindVs bs s) /\

(valbindV (rec_bind vb) s = (valbindV vb s))

/\

(valbindVs NIL s = {}) /\

(valbindVs (CONS bhd brst) s = (valbindVp bhd s) UNION

(valbindVs brst s))

/\

(valbindVp (p,e) s = (patV p s) UNION (expV e s))

/\

(patV wild_pat s = {}) /\

(patV (var_pat v) s = (v IN s => {} | {v}))`--)};

This creates the following de�nition:

val vars_thm =

|- (!v s. atexpV (var_exp v) s = ((v IN s) => {} | {v})) /\

(!d e s. atexpV (let_exp d e) s = decV d s UNION expV e s) /\

(!a s. expV (aexp a) s = atexpV a s) /\

(!e a s. expV (app_exp e a) s = expV e s UNION atexpV a s) /\

(!m s. expV (fn_exp m) s = matchV m s) /\

(!rs s. matchV (match rs) s = matchVs rs s) /\

(!s. matchVs [] s = {}) /\

(!r mrst s. matchVs (CONS r mrst) s =

ruleV r s UNION matchVs mrst s) /\

(!p e s. ruleV (rule p e) s = patV p s UNION expV e s) /\

(!b s. decV (val_dec b) s = valbindV b s) /\

(!d1 d2 s. decV (local_dec d1 d2) s =

decV d1 s UNION decV d2 s) /\

(!d1 d2 s. decV (seq_dec d1 d2) s =

decV d1 s UNION decV d2 s) /\

(!bs s. valbindV (bind bs) s = valbindVs bs s) /\

(!vb s. valbindV (rec_bind vb) s = valbindV vb s) /\

(!s. valbindVs [] s = {}) /\

(!bhd brst s. valbindVs (CONS bhd brst) s =

valbindVp bhd s UNION valbindVs brst s) /\

(!p e s. valbindVp (p,e) s = patV p s UNION expV e s) /\

(!s. patV wild_pat s = {}) /\

(!v s. patV (var_pat v) s = ((v IN s) => {} | {v})) : thm

This theorem matches the speci�cation, including the names of the variables
used. This is not the case for the nested rec library. Also note the additional
argument s to each function. Any number of arguments may be added, but the
�rst argument must be one of the recursive types. It is possible to de�ne functions
on only one or some of the types de�ned in a mutual set; not all need be present
in the function de�nition. However, note that if any of the constructors of a type
are present, they must all be present, unless the last pattern for the type is the
variable \allelse".

The nested rec version of define mutual functions supports only one ar-
gument. Nevertheless, we can still de�ne the same functions by moving the extra
arguments to be lambda abstractions on the right hand side. However, the re-
sulting theorem is di�erent in its structure and names used, as illustrated below:

val vars_thm =

|- (!x1. atexpV (var_exp x1) = (\s. (x1 IN s) => {} | {x1})) /\

(!x1 x2. atexpV (let_exp x1 x2) =

(\s. decV x1 s UNION expV x2 s)) /\

(!x1. expV (aexp x1) = (\s. atexpV x1 s)) /\

(!x1 x2. expV (app_exp x1 x2) =

(\s. expV x1 s UNION atexpV x2 s)) /\

(!x1. expV (fn_exp x1) = (\s. matchV x1 s)) /\

(!x1. matchV (match x1) = (\s. matchVs x1 s)) /\

(matchVs [] = (\s. {})) /\

(!x1 x2. matchVs (CONS x1 x2) =

(\s. ruleV x1 s UNION matchVs x2 s)) /\

(!x1 x2. ruleV (rule x1 x2) =

(\s. patV x1 s UNION expV x2 s)) /\

(!x1. decV (val_dec x1) = (\s. valbindV x1 s)) /\

(!x1 x2. decV (local_dec x1 x2) =

(\s. decV x1 s UNION decV x2 s)) /\

(!x1 x2. decV (seq_dec x1 x2) =

(\s. decV x1 s UNION decV x2 s)) /\

(!x1. valbindV (bind x1) = (\s. valbindVs x1 s)) /\

(!x1. valbindV (rec_bind x1) = (\s. valbindV x1 s)) /\

(valbindVs [] = (\s. {})) /\

(!x1 x2. valbindVs (CONS x1 x2) =

(\s. valbindVp x1 s UNION valbindVs x2 s)) /\

(!x1 x2. valbindVp (x1,x2) =

(\s. patV x1 s UNION expV x2 s)) /\

(patV wild_pat = (\s. {})) /\

(!x1. patV (var_pat x1) = (\s. (x1 IN s) => {} | {x1}))

: thm

This structure obliges one to use beta reduction when using the de�nition
theorem, rather than simple rewriting.

6 Proofs by Mutual Structural Induction

The third and �nal part of the mutual library is the support for proofs of mutual
structural induction, through MUTUAL INDUCT TAC. This is a revised version of
the INDUCT TACwritten by TomMelham in the standard recursive types package,
expanded for mutually recursive types. There is much care taken in the original
version to break the current goal into a practical and convenient set of subgoals
according to the induction principle, and we have tried to preserve this quality.

The ML function MUTUAL INDUCT TAC has type

thm -> (thm -> tactic) -> tactic

and can be used to generate a structural induction tactic for a set of concrete
types de�nable using the functors of Section 4. The �rst argument is an induction
theorem of the form created by these functors. The second argument is a theorem
continuation that determines what is to be done with the induction hypotheses
when the resulting tactic is applied to a goal.

If ind th is an induction theorem for a set of mutually recursive concrete types
op1; : : : ; opn, where this includes all auxiliary types arising through the nesting
of types in the de�nition, and if each concrete type opi has mi constructors
Ci

1
; : : : ; Ci

mi
, and F is a theorem continuation, then the tactic

MUTUAL INDUCT THEN ind th F

will reduce a goal of the form

(�; (--` (8x1 : op1: t1[x1]) ^
...

(8xn : opn: tn[xn]) `--))

to a collection of (possibly)
P

n

i=1
mi induction subgoals (this count may not

be precise for various reasons). The goal may list the conjuncts in any order;
they need not be in the precise same order as the corresponding clauses listed in
the induction theorem ind th. In fact, some of the goal clauses may be missing
entirely, in which case the tactic will presume that they are (8xi : opi: T).

As an example, consider proving that for the variable-collecting functions
de�ned earlier, none of them collect any variables in the exclusion set s.

g `(!a s (x:'var). x IN atexpV a s ==> ~(x IN s)) /\

(!e s (x:'var). x IN expV e s ==> ~(x IN s)) /\

(!m s (x:'var). x IN matchV m s ==> ~(x IN s)) /\

(!rs s (x:'var). x IN matchVs rs s ==> ~(x IN s)) /\

(!r s (x:'var). x IN ruleV r s ==> ~(x IN s)) /\

(!d s (x:'var). x IN decV d s ==> ~(x IN s)) /\

(!v s (x:'var). x IN valbindV v s ==> ~(x IN s)) /\

(!l s (x:'var). x IN valbindVs l s ==> ~(x IN s)) /\

(!pr s (x:'var). x IN valbindVp pr s ==> ~(x IN s)) /\

(!p s (x:'var). x IN patV p s ==> ~(x IN s))`;

These clauses are listed in an order similar to the de�nition, which is convenient.
These can be simultaneously broken into cases by mutual structural induction
with the following tactic:

- e(MUTUAL_INDUCT_THEN syntax_induct ASSUME_TAC);

OK..

19 subgoals:

val it =

(--`!s x. x IN valbindV (rec_bind v) s ==> ~(x IN s)`--)

(--`!s x. x IN valbindV v s ==> ~(x IN s)`--)

(--`!s x. x IN valbindV (bind l) s ==> ~(x IN s)`--)

(--`!s x. x IN valbindVs l s ==> ~(x IN s)`--)

(--`!s x. x IN matchVs (CONS r rs) s ==> ~(x IN s)`--)

(--`!s x. x IN ruleV r s ==> ~(x IN s)`--)

(--`!s x. x IN matchVs rs s ==> ~(x IN s)`--)

(--`!s x. x IN matchVs [] s ==> ~(x IN s)`--)

(--`!s x. x IN ruleV (rule p e) s ==> ~(x IN s)`--)

(--`!s x. x IN patV p s ==> ~(x IN s)`--)

(--`!s x. x IN expV e s ==> ~(x IN s)`--)

(--`!s x. x IN valbindVs (CONS pr l) s ==> ~(x IN s)`--)

(--`!s x. x IN valbindVp pr s ==> ~(x IN s)`--)

(--`!s x. x IN valbindVs l s ==> ~(x IN s)`--)

(--`!s x. x IN valbindVs [] s ==> ~(x IN s)`--)

(--`!s x. x IN valbindVp (p,e) s ==> ~(x IN s)`--)

(--`!s x. x IN patV p s ==> ~(x IN s)`--)

(--`!s x. x IN expV e s ==> ~(x IN s)`--)

(--`!x s x'. x' IN patV (var_pat x) s ==> ~(x' IN s)`--)

(--`!s x. x IN patV wild_pat s ==> ~(x IN s)`--)

(--`!s x. x IN matchV (match rs) s ==> ~(x IN s)`--)

(--`!s x. x IN matchVs rs s ==> ~(x IN s)`--)

(--`!s x. x IN expV (fn_exp m) s ==> ~(x IN s)`--)

(--`!s x. x IN matchV m s ==> ~(x IN s)`--)

(--`!s x. x IN expV (app_exp e a) s ==> ~(x IN s)`--)

(--`!s x. x IN expV e s ==> ~(x IN s)`--)

(--`!s x. x IN atexpV a s ==> ~(x IN s)`--)

(--`!s x. x IN expV (aexp a) s ==> ~(x IN s)`--)

(--`!s x. x IN atexpV a s ==> ~(x IN s)`--)

(--`!s x. x IN decV (seq_dec d d') s ==> ~(x IN s)`--)

(--`!s x. x IN decV d s ==> ~(x IN s)`--)

(--`!s x. x IN decV d' s ==> ~(x IN s)`--)

(--`!s x. x IN decV (local_dec d d') s ==> ~(x IN s)`--)

(--`!s x. x IN decV d s ==> ~(x IN s)`--)

(--`!s x. x IN decV d' s ==> ~(x IN s)`--)

(--`!s x. x IN decV (val_dec v) s ==> ~(x IN s)`--)

(--`!s x. x IN valbindV v s ==> ~(x IN s)`--)

(--`!s x. x IN atexpV (let_exp d e) s ==> ~(x IN s)`--)

(--`!s x. x IN decV d s ==> ~(x IN s)`--)

(--`!s x. x IN expV e s ==> ~(x IN s)`--)

(--`!x s x'. x' IN atexpV (var_exp x) s ==> ~(x' IN s)`--)

: goalstack

In fact, the original goal can be entirely proven by the tactic

e(MUTUAL_INDUCT_THEN syntax_induct ASSUME_TAC

THEN REWRITE_TAC[vars_thm]

THEN REPEAT GEN_TAC

THEN ((REWRITE_TAC[theorem "set" "IN_UNION"]

THEN REWRITE_TAC[theorem "set" "NOT_IN_EMPTY"]

THEN STRIP_TAC

THEN RES_TAC

THEN NO_TAC

)

ORELSE

(COND_CASES_TAC

THEN REWRITE_TAC[theorem "set" "IN_INSERT",

theorem "set" "NOT_IN_EMPTY"]

THEN DISCH_TAC

THEN ASM_REWRITE_TAC[]

))

);

In the nested rec library there was no analogous tactic provided. The only
thing we could �nd was an info-hol posting by Myra VanInwegen, dated March
19, 1996, where she wrote:

We didn't include such a tactic with the package, but obviously,

one is needed to prove properties of mutually recursive types.

This is what I use:

(* for now, the things proven must be in the same order as in the

conclusion of the induction theorem *)

fun mutual_induct induct_thm (asms, gl) =

let val props_list = map

(fn tm => mk_abs (dest_forall tm)) (strip_conj gl)

val speced_ind = BETA_RULE (SPECL props_list induct_thm)

in

MP_IMP_TAC speced_ind (asms, gl)

end

The only problem with it is, as I note in the comment, that

the properties have to be in the same order as those in the

conclusion of the induction theorem. The result of applying

this function is one subgoal that is a big conjunction, with

each conjunct being a case in the induction.

Using the mutual induct function, we can prove a similar result as before.
The goal must be reordered, and the tactic must make use of BETA TAC. The
resulting tactic is slightly larger than the previous one. To compare these two
tactics, where MUTUAL INDUCT THEN presents the user with

(--`!s x. x IN atexpV (let_exp d e) s ==> ~(x IN s)`--)

(--`!s x. x IN decV d s ==> ~(x IN s)`--)

(--`!s x. x IN expV e s ==> ~(x IN s)`--)

mutual induct followed by REPEAT CONJ TAC presents

(--`!y y''''''''.

(!s x. x IN decV y s ==> ~(x IN s)) ==>

(!s x. x IN expV y'''''''' s ==> ~(x IN s)) ==>

(!s x. x IN atexpV (let_exp y y'''''''') s ==> ~(x IN s))`--)

These y'''''''' variables appear to be an artifact of the implementation of the
nested rec library.

7 Summary and Conclusions

We have de�ned a new library within HOL, mutual, to support the creation and
use of mutually recursive types with nesting. This is essentially equivalent to
the functionality of the nested rec library, but adds facilities to ease its use in
practical ways.

The input speci�cations are shorter and clearer, close to the BNF form, and
similar to the syntax required for the non-mutual recursive type de�nition pack-
age. Functions can be de�ned on these types with more arguments. Properties
may be proved by mutual structural induction, supported by a general-purpose
function for these tactics.

The mutual library software is currently available for HOL90 versions 7 and
10, through the Web page at

http://www.cis.upenn.edu/~homeier/holsw.html.

For all these tools, feedback is welcome and encouraged, as we would like to
polish them for general use. Please notify the author if this library is adapted to
another environment, so it can be posted here as well.

Caution: this software should be considered only of beta quality, and may
contain errors. It is being released now in order to support researchers for whom
this level of quality is acceptable, and who may be able to help in testing and
improving this software.

This exercise is perhaps best appreciated as an investigation into the relative
importance of ease-of-use. This is not a question with a precise answer, but
depends on people's preferences. Thus this paper is only an entry in the ongoing
discussion.

DEDICATION: This paper is dedicated to David F. Martin, Professor and
Founding Member of Computer Science at UCLA, who passed away December
22, 1996. Without his encouragement and involvement, all of my future career
would not be.

Soli Deo Gloria.

References

1. Michael J. C. Gordon, Thomas F. Melham: Introduction to HOL, A Theorem Prov-

ing Environment for Higher Order Logic. Cambridge University Press, Cambridge
(1993)

2. Myra VanInwegen: The Machine-Assisted Proof of Programming Language Proper-

ties. Ph.D. Thesis, University of Pennsylvania, Computer and Information Science
Tech Report MS-CIS-96-31, December 1996

3. Myra VanInwegen, Elsa Gunter: HOL-ML, in Higher Order Logic Theorem Proving

and Its Applications: 6th International Workshop, Vancouver, B.C., Canada, August
1993, eds. Je�rey J. Joyce, Carl-Johan H. Seger. Lecture Notes in Computer Science
780 (1994) 61{74

