
A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

1 of 22

Mechanical Verification of Total Correctness
Through Diversion Verification Conditions

by

Peter Vincent Homeier

Department of Computer and Information Science
University of Pennsylvania

homeier@saul.cis.upenn.edu

and

David F. Martin

Computer Science Department
University of California at Los Angeles

dmartin@cs.ucla.edu

“It is clear that working out the details of this would be a lot of work.”

— Michael Gordon, 1988

copyright © Peter Vincent Homeier 1998

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

2 of 22

Problem Statement and Thesis

• Software today is notoriously subject to error

Current practices employ repeated testing to achieve quality.

“Program testing can be used to show the presence of bugs,
 but never to show their absence!” — Dijkstra, 1972

If a program is partially correct but not proven to terminate,
then its correct answers may not ever be provided.

• Program proofs can greatly increase reliability, but are difficult

Program proofs verify a program’s correctness once, that it satisfies its
specification, instead of relying on repeated and incomplete testing.

But proofs are complex and difficult to construct, esp. for termination.

• Verification Condition Generators partially automate the proof’s
creation

This significantly reduces the complexity and detail required from the
user, making the proofs more effective.

• But VCGs have generally not themselves been proven sound

So the credibility of the proof rests on the credibility of the tool, which
has not been verified.

• THESIS: Reliable partial automation of proofs can be achieved
by verifying the Verification Condition Generator.

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

3 of 22

Contributions

• A Mechanically Verified Verification Condition Generator

— for a small imperative programming language, including
procedures and expressions with side effects

— for total correctness (partial correctness + termination)

— the proof of the VCG verification is conducted within and checked
by the HOL mechanical theorem proof checker

— includes a prototype VCG implementation within HOL

• A new method for proving the termination of mutually recursive
procedures

— our main theoretical contribution

— verified by analysis ofprocedure call graph structure, unlike all
previous VCG work, which was directed bysyntactic structure
• Proof of progress achieved across a single call
• Proof of recursive progress across multiple calls
• Proof of termination

• New program logics have been invented

Five program logics are presented, with 14 correctness specifications

Three logics are new, addressing
• total correctness of expressions
• progress up to procedure entrance
• termination, conditional and unconditional

All of these logics weremechanically proven sound within HOL.

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

4 of 22

Overview of Approach

Operational

Semantics

Definitions

 Axiomatic Semantics is Sound

 VCG is Sound

Correctness

Specifications

Definitions

VCG

Definitions

Proof of VCG

Verification of VCG:

VCG

Proof of VCs

Program with annotations

Verification Conditions

 Program is Totally Correct

Use of VCG:

Proof of Rules

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

5 of 22

Syntax of Sunrise Programming Language

The syntax is represented in HOL logic by new concrete recursive types.

exp: e ::= n | x | ++x | e1 + e2 | e1 – e2 | e1 * e2

exp list: es ::= 〈〉 | CONS e es

bexp: b ::= e1 = e2 | e1 < e2 | es1 << es2 | b1 ∧ b2 | b1 ∨ b2 | ~b

cmd: c ::= skip |
abort |
x := e |
c1 ; c2 |
if b then c1 elsec2 fi |
asserta with apr while b do c od |
p (x1, . . . ,xn ; e1, . . . ,em)

decl: d ::= procedurep (var x1, . . . ,xn ; val y1, . . . ,ym);
global z1, . . . ,zk;
pre apre;
postapost;
entersp1 with a1;

…
enterspj with aj;
recurses witharec;
c

end procedure |
d1 ; d2 |
empty

prog: π ::= program d ; c end program

Table 1. Sunrise Programming Language Syntax

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

6 of 22

Syntax of Sunrise Assertion Language

The syntax is represented in HOL logic by new concrete recursive types.

• vs1 << vs2 is lexicographical less than.

• (a1 => a2 | a3) is a conditional expression.

• Theclose operator forms the universal closure of an expression, with
the effect of universally quantifying all free variables.

These two languages, though related, are distinct, with translation
functionsVE : exp->vexp andAB : bexp->aexp .

vexp: v ::= n | x | v1 + v2 | v1 – v2 | v1 * v2

vexp list: vs ::= 〈〉 | CONS v vs

aexp: a ::= true | false |
v1 = v2 | v1 < v2 | vs1 << vs2 |
a1 ∧ a2 | a1 ∨ a2 | ~a |
a1 ⇒ a2 | a1 = a2 | (a1 => a2 | a3) |
closea | ∀x. a | ∃x. a

Table 2. Assertion Language Syntax

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

7 of 22

Required Annotations

• Annotations are a pragmatic necessity for simple VCGs

• while loops require two annotations:
asserta with apr while b do c od — invariant, progress expression

• Procedure declarations require five kinds:
procedurep (var x1, . . . ,xn ; val y1, . . . ,ym);

global z1, . . . ,zk; — global variables
pre apre; — precondition
postapost; — postcondition
entersp1 with a1; — entrance progress expressionai

… for every procedurepi called inc
enterspj with aj;
recurses witharec; — recursion progress expression
c

end procedure

• The recursion progress expressionarec = (v < x) specifies the progress
expected between recursive calls, thatv strictly decreases.

• The sum of the progressa12+a23+a31 must imply the progress ofarec.

p
1

p
2

p
3

p
1
 recurses

with a
rec

p
1
 enters p

2
with a

12

p
2
 enters p

3
with a

23

p
3
 enters p

1
with a

31

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

8 of 22

Bicycling Example

program
procedure pedal(; val n, m);

global a, b, c;
pre n * m + c = a * b;
post c = a * b;
enters pedal with n < 'n ∧ m = 'm;
enters coast with n < 'n ∧ m < 'm;
recurses with n < 'n;

if n = 0 ∨ m = 0 then
skip

else
c := c + m;
if n < m then

coast(; n – 1, m – 1)
else

pedal(; n – 1, m)
fi

fi
end procedure;

procedure coast(; val n, m);
global a, b, c;
pre n * (m + 1) + c = a * b;
post c = a * b;
enters pedal with n = 'n ∧ m = 'm;
enters coast with n = 'n ∧ m < 'm;
recurses with m < 'm;

c := c + n;
if n < m then

coast(; n, m – 1)
else

pedal(; n, m)
fi

end procedure;

a := 7; b := 12; c := 0;
pedal(; a, b)

end program
[c = 7 * 12]

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

9 of 22

Syntactic
Well-

Formedness

Partial
Correctness

Stage 0

Partial
Correctness

Stage k ⇒ k+1

Partial
Correctness

Precondition
Maintenance

Call
Entrance
Progress

Conditional
Termination

Recursive
Progress

Unconditional
Termination

Total
Correctness

of Procedures

Total
Correctness

of Body

Total
Correctness
of Program

graph
analysis

1.

2. 3.

4.

5.6. 7.

8. 9.

10. 11.

12.

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

10 of 22

Scale of VCG Logical Structure in HOL

• Definition and Verification of Verification Condition Generator

— 57,000+ lines of proof code

— 8 new types

— 217 definitions of new functions and constants

— 906 major theorems proved

— 22 new HOL theories constructed

— largest logical structure among contributed libraries

• Secure Application of VCG to Examples

— 10,000 lines of code for VCG tactics, parser, prettyprinter

— 7 examples; largest is
• 4 procedures
• 68 lines of code
• Generates 13 verification conditions.

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

11 of 22

VCG Analysis of Call Graph Structure

The call graph structure of the Bicycling example:

Takingcoast as the root node and exploring backwards through the call
graph, we generate the call graph tree forcoast:

We end each branch of exploration when we encounter a duplicate of a
node already present on the path back to the root.

pedal coast n = 'n ∧ m < 'mn < 'n ∧ m = 'm

n < 'n ∧ m < 'm

n = 'n ∧ m = 'm

m < 'm

coast

coast

coast

pedal

pedal

∀n1 m1. (n1 < n ∧ m1 < m)
 ⇒ (m1 < 'm)

∀n1 m1. (n1 = n ∧ m1 < m)
 ⇒ (m1 < 'm)

∀n1 m1. (n1 < n ∧ m1 = m) ⇒
(∀n2 m2. (n2 < n1 ∧ m2 < m1)

 ⇒ (m2 < 'm))

∀n1 m1. (n1 = n ∧ m1 = m) ⇒
(∀n2 m2. (n2 < n1 ∧ m2 < m1)

 ⇒ (m2 < 'm))

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

12 of 22

Call Graph Verification Conditions

From this call graph tree, we generate verification conditions for each
leaf node:

Leaves which duplicate the root produceundiverted recursion
verification conditions.

Leaves which donot duplicate the root producediversion verification
conditions.

m < 'm

∀n1 m1. (n1 = n ∧ m1 = m) ⇒
(∀n2 m2. (n2 < n1 ∧ m2 < m1) ⇒ (m2 < 'm))

(n * (m + 1) + c = a * b ∧ m = 'm) ⇒
(∀n1 m1. (n1 = n ∧ m1 = m) ⇒

(∀n2 m2. (n2 < n1 ∧ m2 < m1) ⇒ (m2 < 'm)))

(n * (m + 1) + c = a * b ∧ m = 'm) ⇒
(∀n1 m1. (n1 = n ∧ m1 < m) ⇒ (m1 < 'm))

(∀n1 m1. (n1 < n ∧ m1 < m) ⇒ (m1 < 'm)) ⇒
(∀n1 m1. (n1 < n ∧ m1 = m) ⇒

(∀n2 m2. (n2 < n1 ∧ m2 < m1) ⇒ (m2 < 'm)))

diversion verification condition

undiverted recursion verification condition

undiverted recursion
verification condition

coast

coast

coast

pedal

pedal

∀n1 m1. (n1 < n ∧ m1 < m)
 ⇒ (m1 < 'm)

∀n1 m1. (n1 = n ∧ m1 < m)
 ⇒ (m1 < 'm)

∀n1 m1. (n1 < n ∧ m1 = m) ⇒
(∀n2 m2. (n2 < n1 ∧ m2 < m1)

 ⇒ (m2 < 'm))

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

13 of 22

Proof of Recursion

Must show progress for each and every path of recursion.

Must find all cycles, and develop expressions for progress across each.

But the full procedure call tree is infinite:

Identify nodes in the tree which duplicate the root. These are instances of
recursion.

For each instance of recursion, examine its path to the root.

If the path contains another instance of recursion, this is an instance of
multiple recursion. If it does not, this is an instance ofsingle recursion.

The proof of full recursion simplifies to proving single recursion.

coast

pedal

Multiple recursion

Single recursioncoast

coastcoastpedal pedal

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

14 of 22

Proof of Single Recursion

Take the part of the tree which stops at each instance of single recursion:

Many leaves are duplicates of the root. This is still an infinite tree.

Consider each such leaf node, and examine its path to the root.

If the path contains internally duplicate nodes not the same as the root,
this is called adiversion, and the leaf is an instance ofdiverted recursion.

The subtrees rooted at the two instances ofpedal have identical structure.

Undiverted recursion

Diversion

Diverted recursion

coast

coast

coast

coast

coast

pedal

pedal

pedal

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

15 of 22

Proof of Diverted Recursion

We can implicitly cover the infinite expansion of the tree by

bending the far endpoint of the diversion around and

connecting it to the near endpoint of the diversion.

The connection is established by a newdiversion verification condition.

This VC is that the path condition at thenear endpoint implies the path
condition at thefar endpoint.

This may seemcounterintuitive, since the far endpoint isprevious in time
to the near endpoint.

This says that the diversiondoes not interfere with the proof of recursion.
The path conditions do not lose progress going around the diversion.

☞ This reduces the proof burden to a finite number of VCs.

Undiverted recursion
verification conditions

Diversion
verification
condition pedal

pedal

coast

coast

coast

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

16 of 22

Main VCG Function

Definition of VCG:

vcg (program d ; c end program) q =

let ρ = mkenv dρ0 in

let h1 = vcgd dρ in

let h2 = vcgg(proc_names d) ρ in

let h3 = vcgctrue c g0 qρ in

h1 & h2 & h3

Theorem of Verification of VCG:

vcg_THM:

|– ∀π q. WFpπ ∧ every close (vcgπ q) ⇒ π[q]

The ultimate theorem of the verification of the VCG:

For all programsπ and specificationsq,

If the programπ is well-formed, and

If every verification condition generated byvcg is true,

Then the programπ is totally correct with respect to the specq.

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

17 of 22

Example – Bicycling Mutual Recursion

We submit the following text to the prototype VCG embedded in HOL:

g `^(||` program
 procedure pedal (;val n,m);
 global a,b,c;
 pre n*m + c = a*b;
 post c = a*b;
 calls pedal with n < 'n /\ m = 'm;
 calls coast with n < 'n /\ m < 'm;
 recurses with n < 'n;

 if n = 0 \/ m = 0
 then skip
 else
 c := c + m;
 if n < m then coast(;n - 1,m - 1)
 else pedal(;n - 1,m)
 fi
 fi
 end procedure;

 procedure coast (;val n,m);
 global a,b,c;
 pre n*(m + 1) + c = a*b;
 post c = a*b;
 calls pedal with n = 'n /\ m = 'm;
 calls coast with n = 'n /\ m < 'm;
 recurses with m < 'm;

 c := c + n;
 if n < m then coast(;n,m - 1)
 else pedal(;n,m)
 fi
 end procedure;

 a := 7; b := 12; c := 0;
 pedal(;a,b)

 end program
 [c = a*b]
 `||)`;

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

18 of 22

Verification Conditions for Bicycling

ThenVCG_TAC reduces this goal to nine verification conditions:

#e(VCG_TAC);;
OK..
9 subgoals

• Partial correctness and entrance progress for procedurepedal:
!'n n 'm m 'a a 'b b 'c c.
 (('n = n) /\ ('m = m) /\ ('a = a) /\ ('b = b) /\ ('c = c)) /\
 (n * m + c = a * b) ==>
 (((n = 0) \/ (m = 0))
 => (c = a * b)
 | ((n < m)
 => (((n - 1) * ((m - 1) + 1) + c + m = a * b) /\
 n - 1 < 'n /\ m - 1 < 'm)
 | (((n - 1) * m + c + m = a * b)
 /\ n - 1 < 'n /\ (m = 'm))))

• Partial correctness and entrance progress for procedurecoast:
!'n n 'm m 'a a 'b b 'c c.
 (('n = n) /\ ('m = m) /\ ('a = a) /\ ('b = b) /\ ('c = c)) /\
 (n * (m + 1) + c = a * b) ==>
 ((n < m)
 => ((n * ((m - 1) + 1) + c + n = a * b) /\ (n = 'n) /\ m-1 < 'm)
 | ((n * m + c + n = a * b) /\ (n = 'n) /\ (m = 'm)))

• The value of the recursion expression of the procedurepedal strictly
decreases across the undiverted recursion pathpedal→ pedal.

!n m c a b 'n.
 (n * m + c = a * b) /\ (n = 'n) ==>
 (!n1 m1. n1 < n /\ (m1 = m) ==> n1 < 'n)

• The value of the recursion expression of the procedurepedal strictly
decreases across the undiverted recursion pathpedal→ coast→ pedal.

!n m c a b 'n.
 (n * m + c = a * b) /\ (n = 'n) ==>
 (!n1 m1. n1 < n /\ m1 < m ==>
 (!n2 m2. (n2 = n1) /\ (m2 = m1) ==> n2 < 'n))

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

19 of 22

Verification Conditions for Bicycling (cont.)

• The diversion ofcoast in coast→ coast→ pedal does not interfere
with the recursive progress of the procedurepedal.

!n m 'n.
 (!n1 m1. (n1 = n) /\ (m1 = m) ==> n1 < 'n) ==>
 (!n1 m1.
 (n1 = n) /\ m1 < m ==>
 (!n2 m2. (n2 = n1) /\ (m2 = m1) ==> n2 < 'n))

• The diversion ofeven in pedal→ pedal→ coast does not interfere
with the recursive progress of the procedurecoast.

!n m 'm.
 (!n1 m1. n1 < n /\ m1 < m ==> m1 < 'm) ==>
 (!n1 m1. n1 < n /\ (m1 = m) ==>
 (!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < 'm))

• The value of the recursion expression of the procedurecoast strictly
decreases across the undiverted recursion pathcoast→ pedal→ coast.

!n m c a b 'm.
 (n * (m + 1) + c = a * b) /\ (m = 'm) ==>
 (!n1 m1.
 (n1 = n) /\ (m1 = m) ==>
 (!n2 m2. n2 < n1 /\ m2 < m1 ==> m2 < 'm))

• The value of the recursion expression of the procedurecoast strictly
decreases across the undiverted recursion pathcoast→ coast.

!n m c a b 'm.
 (n * (m + 1) + c = a * b) /\ (m = 'm) ==>
 (!n1 m1. (n1 = n) /\ m1 < m ==> m1 < 'm)

• Total correctness for the main body:
7 * 12 + 0 = 7 * 12

We have proven these nine VCs in HOL; five of the VCs were solved by
Richard Boulton’sARITH_CONV decision procedure.

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

20 of 22

Resulting HOL Theorem

Proving the nine VC’s in HOL results in the following theorem:

 |- program
 procedure pedal(var ;val n,m);
 global a,b,c;
 pre n * m + c = a * b;
 post c = a * b;
 calls pedal with n < 'n /\ m = 'm;
 calls coast with n < 'n /\ m < 'm;

 recurses with n < 'n;

 if n = 0 \/ m = 0 then skip
 else
 c := c + m;
 if n < m then coast(;n - 1,m - 1)
 else pedal(;n - 1,m) fi
 fi
 end procedure;

 procedure coast(var ;val n,m);
 global a,b,c;
 pre n * (m + 1) + c = a * b;
 post c = a * b;
 calls pedal with n = 'n /\ m = 'm;
 calls coast with n = 'n /\ m < 'm;

 recurses with m < 'm;

 c := c + n; if n < m then coast(;n,m - 1)
 else pedal(;n,m) fi
 end procedure;

 a := 7; b := 12; c := 0; pedal(;a,b)
 end program
 [c = a * b]

☞ This is a genuine HOL theorem of total correctness!

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

21 of 22

Secure and Insecure Versions of VCG

Most of the time of applying the VCG_TAC is consumed in
-- conversion to evaluate well-formedness of program (WF)
-- conversion to calculate verification conditions of program (VCG)

These conversions were re-implemented in ML, using the same
algorithm already verified in HOL logic, for faster execution:

Example Secure WF Insecure WF Ratio

ex1 1.791 s 0.002 s 900

ex2 1.282 s 0.002 s 650

ex3 3.578 s 0.005 s 700

ex4 13.412 s 0.009 s 1500

ex5 3.486 s 0.004 s 900

ex6 4.653 s 0.005 s 900

ex7 12.406 s 0.010 s 1200

Example Secure VCG Insecure VCG Ratio

ex1 7.171 s 0.010 s 720

ex2 12.842 s 0.012 s 1070

ex3 48.907 s 0.031 s 1580

ex4 388.763 s 0.147 s 2640

ex5 31.183 s 0.022 s 1420

ex6 965.904 s 0.350 s 2760

ex7 1085.146 s 0.420 s 2580

A V E R I F I E D V E R I F I C A T I O N C O N D I T I O N G E N E R A T O R

Peter Vincent Homeier
UNIVERSITY OF PENNSYLVANIA — DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE

22 of 22

Conclusions

about the mechanically verified VCG:

• The VCG verification encapsulated a level of semantic reasoning,
proving it once, rather than repeating it for each application.

• Intricacies of semantics of termination require mechanical proof.

• There is a substantial difference between partial and total correctness
involving procedures, which has not been generally appreciated.

about the new method of proving termination of procedures:

• The new method is more general and flexible than prior proposals,
and more powerful, which enables more intuitive proofs.
It is compositional and readily mechanized in a VCG.

about a trustworthy VCG:

• This VCG substantially decreases the difficulty of proving programs
totally correct, and does so with a very high level of security.

• A VCG itself must be trustworthy for the proofs to be trustworthy.

• This level of trusworthiness is now demonstrated to be feasible, by the
presentation of this mechanically verified VCG.

