
Mechanical Veri�cation of Total Correctness

Through Diversion Veri�cation Conditions

Peter V. Homeier1 and David F. Martin2

1 University of Pennsylvania Computer and Information Science Department
Philadelphia, Pennsylvania 19104-6389 USA

homeier@saul.cis.upenn.edu
2 UCLA Computer Science Department, 4732 Boelter Hall

Los Angeles, California 90095-1596 USA
dmartin@cs.ucla.edu

Abstract. The total correctness of programs with mutually recursive
procedures is signi�cantly more complex than their partial correctness.
Past methods of proving termination have su�ered from being rigid, not
general, non-intuitive, and ad hoc in structure, not suitable for mech-
anization.We have devised a new method for proving termination and
mechanized it within an automatic tool called a Veri�cation Condition
Generator. This tool analyzes not only the program's syntax but also,
uniquely, its procedure call graph, to produce veri�cation conditions suf-
�cient to ensure the program's total correctness. Diversion veri�cation
conditions reduce the labor involved in proving termination from in�nite
to �nite. The VCG tool has itself been deeply embedded and proven
sound within the HOL theorem prover with respect to the underlying
structural operational semantics. Now proofs of total correctness of indi-
vidual programs may be signi�cantly automated with complete security.

1 Introduction

If a program is partially correct but not proven to terminate, then its correct
answers may not ever be provided. Thus, the termination of programs is an
essential element of their proper function. Even for programs which are not in-
tended to terminate, such as operating systems or embedded reactive programs,
signi�cant portions are expected to terminate, such as a response to an external
event. But assuring this termination is a complex task. Previous methods have
required considerable work and skill to create proofs of termination, and each
such proof has depended greatly on the ad hoc structure of the particular prob-
lem. What is needed is automation of the proof process; but these prior methods
are not su�ciently regular to support mechanization.

In this paper we investigate the semi-automatic veri�cation of the total cor-
rectness of programs with mutually recursive procedures, including termination.
The automation is performed by a tool called a Veri�cation Condition Gener-

ator, or VCG, which constructs the proof of a program's correctness, modulo a
set of veri�cation conditions, which are logical formulae left to the user to prove.

This twice simpli�es the programmer's task, as it reduces both the volume and
the level of the proof. These veri�cation conditions do not contain any refer-
ences to programming language constructs or concepts, such as assignment or
recursion, but only involve relationships among the values used in the program.

In the past, VCG tools in general were not themselves veri�ed [8]. This meant
that the soundness of a proof of a program's correctness rested upon the sound-
ness of an unveri�ed tool. Most VCGs are based on an axiomatic semantics,
and in particular for procedures, there is a history of axiomatic semantics pro-
posed in the literature which were later found to be unsound [1]. The VCG tool
we present is itself veri�ed to be sound. This means that for any program and
speci�cation, if the veri�cation conditions are proven, then the program must
be totally correct with respect to its speci�cation. The proof of soundness was
conducted within and checked by the HOL mechanical theorem prover [3], based
on the structural operational semantics for the programming language. The the-
orem of the soundness of the VCG forms the basis for practical, e�ective proofs
of total correctness for individual programs, with complete security. We have
previously veri�ed a VCG for partial correctness [7]; the requirement of proving
termination has added at least as much complexity as all of partial correctness.

In this investigation, we have discovered a more powerful method for verify-
ing the termination of programs with mutually recursive procedures than those
previously proposed in the literature, called the diversion veri�cation condition

method. Though counterintuitive at �rst glance, these diversion veri�cation con-
ditions reduce the labor involved in proving termination from in�nite to �nite.
This method is both more general and more natural than prior ones, and is also
suitable for mechanization in a VCG. The VCG we exhibit here implements this
new method for proving termination and hence total correctness.

The organization of this paper is as follows. Section 2 discusses approaches to
proving termination. In Section 3 we give the syntax of the language used, and
in Section 4 its semantics. Section 5 de�nes the automatic VCG tool. Section
6 applies the VCG to an example with an interesting termination argument.
Section 7 focuses on the graph analysis, and in Section 8 we conclude.

2 Termination

For normal while loops, termination can be assured through the speci�cation of
a \variant" expression, with values in a well-founded set, that can be shown to
strictly decrease for each iteration of the loop. For programs with mutually re-
cursive procedures, a new form of nontermination arises, where a procedure calls
itself recursively, either directly or through a chain of intermediate procedures,
where each recursive invocation continues calling itself deeper and deeper, with-
out ever returning from any of these calls. This is known as \in�nite recursive
descent," and it must be eliminated for total correctness.

Originating with Soko lowski [11], and continuing with Apt [2], America and
de Boer [1], and Pandya and Joseph [10], rules have been presented based on
Hoare's rule for partial correctness [4]; but these have su�ered from ad hoc

organization, lack of generality and awkwardness for many real programs. The
essential idea of these methods is the introduction of a recursion depth counter,
an integer-valued expression which is required to decrease by exactly one upon
each deeper procedure call. Since the expression is required to be non-negative,
it cannot continue decreasing forever, and hence no in�nite descent is possible.

This is e�ective for proving the termination of many programs whose code
naturally matches this structure, but many real programs, like recursive descent
parsers, do not easily �t within the rigor of requiring the recursion depth counter
to decrease by exactly one upon each new call. A fast multiplication example
was given by Pandya and Joseph [10]. They ameliorated the problem by reducing
the number of procedures for which the depth counter needed to decrease, but
retained the rigidity of the recursion depth counter for the remainder.

We have designed a more general and
exible approach, where we require
progress not across a single procedure call, but around a cycle in the procedure
call graph. Each procedure which is intended to recurse is given a well-founded
expression which is expected to decrease between recursive calls of that proce-
dure, irrespective of the number of other procedures called along the way. This
decrease around each cycle can be demonstrated if the progress along each single
arc of the cycle is known. This allows individual arcs to contribute no forward
progress, or even to step backwards, as long as in the end, when the cycle is com-
pletely traversed, the accumulation of all the progress along the cycle su�ces to
ensure the well-founded decrease. Thus we free the termination argument from
being arti�cially attached to the number of procedure calls, and return it to
the actual problem of instances of recursion. Also, di�erent procedures may use
di�erent well-founded expressions, according to the reason why each terminates.

We establish the decrease of a procedure's well-founded expression across
every path of nested calls that leads to a recursive call in two parts. First, the
progress of each individual procedure across a single call is speci�ed and proven
by analysis of the program's syntax. Then in the second part, the procedure call
graph is analyzed, where the progress of all the procedures around a cycle in
the procedure call graph is \added together." If the progress around each cycle
implies the recursive progress, then termination of the procedure is assured.

Most programs which contain mutually recursive procedures will have an
in�nite number of possible paths of recursion, all of which need to be veri�ed
for the necessary recursive progress. This would be impossible, but we have
discovered a counter-intuitive but e�ective means to simplify this task to a �nite
one, through diversion veri�cation conditions. This is discussed in Section 7.

Our new method is more general and
exible than previous proposals. It
supports more natural proofs and also may enable proofs of programs otherwise
impractical. In addition, the proofs are more stable under program evolution,
such as breaking out an interior code block into a new procedure, because this
method is based on essential progress between recursive calls, rather than the
fragile rigidity of the exact number of procedure calls involved, an artifact of
the code rather than the problem being solved. Of ultimate practical value, the
regular structure of this proof method supports mechanization in a VCG.

3 Programming and Assertion Languages Syntax

We deeply embed a simple imperative programming language called Sunrise in
the HOL logic to illustrate the VCG with the new termination methodology. The
syntax of the Sunrise programming and assertion languages is given in Table 1.

exp: e ::= n j x j ++x j e1 + e2 j e1 � e2 j e1 � e2

bexp: b ::= e1 = e2 j e1 < e2 j es1 � es2 j b1 ^ b2 j b1 _ b2 j � b

cmd: c ::= skip j abort j x := e j c1 ; c2 j if b then c1 else c2 � j
assert a with apr while b do c od j p(x1; : : : ; xn ; e1; : : : ; en)

decl: d ::= procedure p(varx1; : : : ; xn ; val y1; : : : ; ym);
global z1; : : : ; zk ;
pre apre; (this will be represented later as
post apost; proc p vars vals glbs pre post enters rec c)
enters p1with a1;

...
enters pj with aj ;
recurseswith arec;
c

endprocedure j
d1 ; d2 j
empty

prog: � ::= program d ; c endprogram

vexp: v ::= n j x j v1 + v2 j v1 � v2 j v1 � v2

aexp: a ::= true j false j v1 = v2 j v1 < v2 j vs1 � vs2 j a1 ^ a2 j a1 _ a2 j
� a j a1) a2 j a1 = a2 j a1 => a2 | a3 j close a j 8x: a j 9x: a

Table 1: Programming and Assertion Language Syntax

The notation f [e=x] indicates the function f overridden so that

(f [e=x])(x) = e; and for y 6= x, (f [e=x])(y) = f(y)

We will also use f [es=xs] where es and xs are lists, to indicate a multiple
override in order from right to left across the lists, so the right-most elements of
es and xs make the �rst override, and the others are added on top of this.

Most of these constructs are standard. n is an unsigned integer � 0 (num). x
is a program variable, required to not begin with the single quote character (');
such names are reserved as \logical" variables. ++ is the increment operator,

with a side e�ect as in C. es1 � es2 is the lexicographic ordering between
two lists. abort causes an immediate abnormal termination. The while loop
requires an invariant assertion a and a variant expression v (in apr = (v < x)) to
be supplied. In the procedure call p(xs; es), p is a string, xs is a list of variables,
denoting the actual variable parameters (passed by call-by-name), and es is a
list of exp expressions, denoting actual value parameters (call-by-value).

The procedure declaration speci�es the procedure's name p, formal variable
parameter names x1; : : : ; xn, formal value parameter names y1; : : : ; ym, global
variables used in p (or any procedure p calls) z1; : : : ; zk, precondition apre, post-
condition apost, entrance progress expressions a1 for p1 through aj for pj , re-
cursive progress expression arec, and body c. All parameter types are num. The
entrance of a procedure is within its scope, just before the body. We refer to a
typical procedure declaration as proc p vars vals glbs pre post enters rec c,
instead of the longer version in Table 1. Here enters collects all the entrance
progress clauses together, as an entrance progress environment, of type prog env

= string -> aexp, de�ned as enters = (�p:false)[a1=p1] : : : [aj=pj]. Procedures
are mutually recursive, and may call each other irrespective of declaration order.

The syntax of the associated assertion language is also given in Table 1.
Most of these constructs are standard. Note that v1�v2 terminates at zero, e.g.,
3�5 = 0. vs1 � vs2 is the lexicographic ordering between two lists. a1 => a2 | a3
is a conditional expression, yielding the value of a2 or a3 depending on the value
of a1. close a forms the universal closure of a, quantifying all free variables.

The functions FVa a and FVv v yield the sets of all free variables in a and v.
Variables contain two parts, a string and a variant number (of type num),

assembled into a variable by the constructor function VAR s n. The function
variant x s produces a variable which is a variant of x, but which is guaranteed
not to be within the set s. In addition, the closest possible variant is produced,
so if x itself is not within s, then variant x s = x. More generally,

variant x s = (x 2 s => variant (mk variant x 1) s j x)

where mk variant (VAR s n) k = VAR s (n + k).
The function variants xs s applies variant repeatedly to each of the elements

of the list xs to produce variants distinct from the set s and from each other.

variants [] s = []
variants (cons x xs) s = let x0 = variant x s in

cons x0 (variants xs (fx0g [s))

Variables are separated into two classes, program variables and logical vari-
ables, where logical variables are distinguished by beginning with a quote charac-
ter ('). A program variable may be converted to a corresponding logical variable
by prepending a quote; this is done by the function logical x. This is naturally
extended to lists of variables by the function logicals xs. The variant functions
above may be applied to either program or logical variables.

A simultaneous substitution of expressions for variables is considered an ob-
ject, apart from applying the substitution to an expression. The substitution is

represented by a function from variables to expressions; all but a �nite number
of variables map to themselves. Such a substitution is created by [ys=xs], where
ys and xs are lists of variables. (Note this overloads the notation for function
override.) Then a � ss explicitly applies a substitution ss to an expression a,
automatically renaming bound variables in a as necessary to avoid capture.

Because the programming and assertion languages are distinct, functions are
provided to translate from the programming language to the assertion language:
VE for numeric expressions, VES for lists of numeric expressions, and AB for
boolean expressions. Since in this language expressions may have side e�ects,
functions are also provided to yield the substitutions that represent those side
e�ects: VE state for numeric expressions, VES state for lists of numeric expres-
sions, and AB state for boolean expressions.

As a product, we may now de�ne the simultaneous substitution that corre-
sponds to a single or multiple assignment statement, overriding the expression's
state change with the change of the assignment:

[x := e] = (VE state e)[(VE e) = x]

[xs := es] = (VES state es)[(VES es) = xs]

Also, we de�ne the function ab pre, which given a boolean expression b and a
desired postcondition q, yields an appropriate precondition which if true, ensures
that after executing b that the postcondition q holds.

ab pre b q = q � (AB state b)

This brief description of the translation functions is detailed more in [6], [7].

4 Operational Semantics

This language is almost exactly the same as that given by Homeier and Martin
[7], except for the additional annotations for termination. That paper presents
a structural operational semantics for the programming language and a deno-
tational semantics for the assertion language, which apply here almost without
modi�cation. In that paper, tables 2 and 3 give the structural operational se-
mantics of the Sunrise programming language, as rules inductively de�ning the
six relations E, B, ES, C, D, and P . These relations (except for ES) are de�ned
within HOL using Tom Melham's excellent rule induction package [9].

For example, the relation C c � s1 s2 expresses how a command c may operate
on a state s1 of type state = var->num (binding non-negative integer values
to variables), in the presence of an environment � (containing all information
about all declared procedures), to produce a resulting state s2. The procedure
environment � is represented as a function from procedure names to tuples; we
de�ne the type env as

string -> (var list # var list # var list # aexp # aexp

prog env # aexp # cmd),

The tuple contains, in order, the variable parameter list, value parameter list,
global variables list, the precondition, the postcondition, the entrance progress
environment, the recursive progress expression, and the body.

The semantics is changed from that described in [7] as follows. The multipli-
cation operator is added, analogous to the addition operator. The lexicographic
ordering operator is added, analogous to the less-than operator, where the two
arguments are evaluated using the relation ES instead of E. The empty decla-
ration is added, with the semantics of not producing any modi�cation in the
environment �. Other than these, where loops or declarations have additional
annotations, consider the semantics rules to be adapted without any new e�ect.

For de�ning P , we use the empty environment �0 = �p:h []; []; []; false;
true; (�p: false); false; aborti, and the initial state s0 = �x: 0. We may
construct an environment � from a declaration d as � = mkenv d �0, where

mkenv (proc p vars vals glbs pre post enters rec c) �
= �[hvars; vals; glbs; pre; post; enters; rec; ci = p]

mkenv (d1; d2) � = mkenv d2 (mkenv d1 �)
mkenv (empty) � = �

The semantics of the assertion language is almost the same as that given in
table 4 of [7] by recursive functions V , V S, and A de�ned on the structure of
assertion-language expressions, in a denotational fashion. The only change is the
addition of the lexicographic relation. For example, the function A a s evaluates
the boolean expression a in the state s, yielding a boolean value. Similarly, V and
V S evaluate numeric expressions and lists of numeric expressions, respectively.

The Hoare-style total correctness of programs (�[q]) can now be de�ned as

�[q] = (8s: P � s) A q s) ^ (9s: P � s)

5 Veri�cation Condition Generator

In this section we give the de�nition of the Veri�cation Condition Generator as
new functions within the HOL logic for proving the total correctness of Sunrise
programs. There are two general classes of functions, those which analyze the
structure of the program's syntax, and those which analyze the structure of the
program's procedure call graph.

5.1 Veri�cation of Commands and Declarations

We begin with the analysis of commands. The VCG functions for this are vcgc,
the main function, and vcg1, which does most of the work. These are presented
in Table 2. In the de�nitions of these functions, comma (,) makes a pair of two
items, square brackets ([]) delimit lists, semicolon (;) within a list separates
elements, and ampersand (&) appends two lists. In addition, the function dest<
is a destructor function, breaking an assertion language expression of the form
v0 < v1 into a pair of its constituent subexpressions, v0 and v1.

vcg1 (skip) enters q � = q; []
vcg1 (abort) enters q � = false; []
vcg1 (x := e) enters q � = q � [x := e]; []
vcg1 (c1 ; c2) enters q � =

let (s; h2) = vcg1 c2 enters q � in
let (p; h1) = vcg1 c1 enters s � in

p; h1 & h2
vcg1 (if b then c1 else c2 �) enters q � =

let (r1; h1) = vcg1 c1 enters q � in
let (r2; h2) = vcg1 c2 enters q � in

(AB b => ab pre b r1 j ab pre b r2); h1 & h2
vcg1 (assert a with apr while b do c od) enters q � =

let (v0; v1) = dest< apr in
let (p; h) = vcg1 c enters (a ^ apr) � in

a; [a ^ AB b ^ (v0 = v1)) ab pre b p ;
a ^ �(AB b)) ab pre b q] & h

vcg1 (call p (xs ; es)) enters q � =
let (vars; vals; glbs; pre; post; enters0; rec; c) = � p in
let vals0 = variants vals (FVa q [sl(xs& glbs)) in
let u = xs& vals0 in

let v = vars& vals in
let x = u& glbs in
let y = v & glbs in
let x0 = logicals x in

let y0 = logicals y in

let x0

0 = variants x0 (FVa q) in
(((pre ^ enters p)� [u=v]) ^
((8x: (post� [u& x0

0=v & y0])) q)� [x=x0

0])
)� [vals0 := es]; []

vcgc p c enters q � = let (a; h) = vcg1 c enters q � in

[p) a] & h

vcgd (proc p vars vals glbs pre post enters rec c) � =
let x = vars& vals& glbs in
let x0 = logicals x in

vcgc (x0 = x ^ pre) c enters post �
vcgd (d1 ; d2) � = let h1 = vcgd d1 � in

let h2 = vcgd d2 � in
h1 & h2

vcgd (empty) � = []

Table 2: De�nition of VCG functions for commands and declarations.

The vcg1 function has type cmd ! prog env ! aexp ! env ! (aexp �
aexp list). vcg1 takes a command, an entrance progress environment, a post-
condition, and a procedure environment, and returns a pair, consisting of a
precondition and a list of veri�cation conditions that must be proved in order
to verify that command with respect to the precondition, postcondition, and
environments. vcg1 is de�ned recursively, based on the structure of the com-
mand. Note that the procedure call clause includes the expression enters p; this
strengthens the precondition generated to verify not only the partial correctness
of the command, but also the entrance progress claims in enters.

The vcgc function is similar to vcg1, but takes an additional parameter, a
precondition of type aexp, and returns only a list of veri�cation conditions.

The veri�cation condition generator function to analyze declarations is vcgd.
The vcgd function is also presented in Table 2. This function has type decl!
env ! aexp list. vcgd takes a declaration and a procedure environment, and
returns a list of veri�cation conditions that must be proved in order to verify
that declaration with respect to the procedure environment.

5.2 Veri�cation of Recursion

The next several functions analyze the structure of the procedure call graph.
We will begin with the lowest level functions, and build up to the main VCG

function for the procedure call graph, vcgg.
The purpose of the graph analysis is to verify that the progress speci�ed

in the recurses with clause for each procedure is achieved for every possible
recursive call of the procedure. This key process is justi�ed in Section 7.

The fundamental building block for the graph analysis is the call progress
function. Just as weakest precondition functions compute the appropriate pre-
condition to establish a given postcondition for a partial correctness speci�cation,
call progress computes the appropriate precondition when starting execution
from the entrance of procedure p1 to establish a given entrance condition q at
the entrance of procedure p2, using the entrance progress declared in p1 for p2.

There are two mutually recursive functions at the core of the algorithm to an-
alyze the procedure call graph, extend graph vcs and fan out graph vcs. They
are presented together in Table 3. Each yields a list of veri�cation conditions to
verify recursive progress across parts of the graph. In the de�nitions, sl converts
a list to a set, and cons adds an element to a list. length simply returns the
length of the list. map applies a function to each element of a list, and gathers
the results of all the applications into a new list which is the value yielded.
at
takes a list of lists and appends them together, to \
atten" the structure into a
single list of elements from all the lists.

extend graph vcs performs the task of tracing backwards across a particular
arc of the procedure call graph. fan out graph vcs traces backwards across all
incoming arcs of a particular node in the graph. The types and meanings of the
arguments to these functions are given at the bottom of Table 3.

The depth counter n was a necessary artifact to be able to de�ne these
functions in HOL. Originally, the function fan out graph vcs was de�ned as

call progress p1 p2 q � =
let hvars; vals; glbs; pre; post; enters; rec; ci = � p1 in
let x = vars& vals& glbs in
let x0 = logicals x in

let x0

0 = variants x0 (FVa q) in
let hvars0; vals0; glbs0; pre0; post0; enters0; rec0; c0i = � p2 in
let y = vars0 & vals0 & glbs0 in

let a = enters p2 in
(a = false => true

j (8y: (a� [x0

0=x0])) q)� [x=x0

0])

induct pre false = true

induct pre (v < x) = (v = x)

extend graph vcs p ps p0 q pcs � all ps n p0 =
let q1 = call progress p0 p q � in
(q1 = true => []

j p0 = p0 =>
let (vars; vals; glbs; pre; post; enters; rec; c) = � p0 in

[pre ^ induct pre rec) q1]
j p0 2 sl(cons p ps) => [pcs p0) q1]
j fan out graph vcs p0 (cons p ps) p0 q1 (pcs[q1=p

0]) � all ps n
)

fan out graph vcs p ps p0 q pcs � all ps (n+ 1) =

at (map (extend graph vcs p ps p0 q pcs � all ps n) all ps)

fan out graph vcs p ps p0 q pcs � all ps 0 = []

Types and meanings of arguments:

p : string : current node (procedure name)
ps : string list : path (list of procedure names)
p0 : string : starting node (procedure name)
q : aexp : current path condition
pcs : string! aexp : prior path conditions
� : env : procedure environment
all ps : string list : all declared procedures (list of names)
n : num : depth counter
p0 : string : source node of arc being explored

Table 3: De�nition of core VCG functions for graph analysis.

graph vcs all ps � p =
let (vars; vals; glbs; pre; post; enters; rec; c) = � p in
fan out graph vcs p [] p rec (�p0: true) � all ps (length all ps)

vcgg all ps � =
at (map (graph vcs all ps �) all ps)

Table 4: De�nition of top-level VCG functions for graph analysis.

a single primitive recursive function on n combining the de�nitions of both
fan out graph vcs and extend graph vcs. Then extend graph vcs was de�ned as a
part of fan out graph vcs, and fan out graph vcs resolved to the remainder. For
calls of extend graph vcs, n should be length all ps � length ps � 1. For calls
of fan out graph vcs, the argument should be length all ps� length ps.

The de�nition of fan out graph vcs maps extend graph vcs across all de�ned
procedures, in all ps. This leads to exponential time complexity. To minimize
this, it is important for the application of extend graph vcs to terminate quickly
for arcs which do not exist. These are indicated by the lack of an enters . . . with
clause in the header of the procedure which is the source of the arc, leading to the
default value for the progress expression, false. If the call of call progress (from
extend graph vcs) retrieves false for the arc, then it returns true immediately
to extend graph vcs, which in turn immediately returns the empty list of no
veri�cation conditions. This rapid dismissal limits the exponential growth to a
factor depending more on the average number of incoming arcs for nodes in the
graph, than on the total number of declared procedures.

The fan out graph vcs function is called initially by the function graph vcs,
given in Table 4. graph vcs analyzes the procedure call graph beginning at a
particular node, and generates veri�cation conditions for paths in the graph to
that node to verify its recursive progress, as declared for the procedure.

The graph vcs function is called by the function vcgg, given in Table 4. vcgg
analyzes the entire procedure call graph, beginning at each node in turn, and
generates veri�cation conditions for paths in the graph, to verify the recursive
progress declared for each procedure in all ps.

5.3 Veri�cation of Programs

The main VCG function is vcg, presented in Table 5. vcg calls vcgd to analyze the
declarations, vcgg to analyze the call graph, and vcgc to analyze the main body
of the program. vcg takes a program and a postcondition as arguments, analyzes
the entire program, and generates veri�cation conditions which are su�cient to
prove the program totally correct with respect to the given postcondition. In the
de�nition of vcg, proc names returns the list of procedure names declared in a
declaration, and g0 is the \empty" call progress environment �p: true.

vcg (program d ; c end program) q =
let � = mkenv d �0 in
let h1 = vcgd d � in
let h2 = vcgg (proc names d) � in
let h3 = vcgc true c g0 q � in

h1 & h2 & h3

Table 5: De�nition of vcg, the main VCG function.

vcg THM : ` 8�q: WFp � ^ every close (vcg � q)) �[q]

Table 6: Veri�cation Condition Generator Veri�cation Theorem.

The VCG has been veri�ed within the Higher Order Logic (HOL) mechanical
theorem prover [3], based on the given structural operational semantics. The
ultimate theorem of the veri�cation of the VCG is given in Table 6. This theorem
states that for any program � and postcondition q, if the program is well-formed
(WF p �) and if all of the veri�cation conditions yielded by the VCG (vcg � q) are
true, then the program must be totally correct with respect to the postcondition
(�[q]). For the vital de�nition of program well-formedness, please see [5].

The proof of this theorem involved 8 new types, 217 de�nitions, and 906 ma-
jor theorems proved within HOL, using over 57,000 lines of proof. These types,
de�nitions, and theorems were organized into 22 HOL theories, on subjects in-
cluding syntax, structural operational semantics, axiomatic semantics, recursive
progress, termination, and the VCG. This proof shows that the VCG is sound,
that the correctness of the veri�cation conditions it produces su�ce to establish
the total correctness of the annotated program. This soundness result is quite
useful, as we may directly apply the veri�cation theorem in proving individual
programs totally correct within HOL, with the amount of work involved reduced
signi�cantly by the VCG while maintaining complete security, and with the full
power of HOL available to the user to prove the veri�cation conditions.

Unfortunately, space precludes giving many interesting details of the proof of
this theorem, which can be found in the �rst author's dissertation [5]. However,
Figure 7 displays the overall structure of this proof. Each box indicates a prop-
erty about the entire program, with the arrows indicating logical consequence.
The boxes are numbered in the order the properties are proven. The preceed-
ing paper [7] described the proof of partial correctness; this is accomplished by
the proofs of boxes 1{4. The addition in this paper of the proof of termination
is accomplished by the proofs of boxes 5{9. Then the partial correctness and
termination properties are combined to prove total correctness in boxes 10{12.
Despite the altitude of this proof structure, it does reasonably depict the increase
in conceptual di�culty in adding termination, as a factor between 2 and 3.

Partial
Correctness

Precondition
Achievement
Across Calls

Call
Entrance
Progress

Conditional
Termination
(all but calls)

Recursive
Progress

Unconditional
Termination
(includ. calls)

Total
Correctness

of Procedures

Total
Correctness

of Main Body

Total
Correctness
of Program

graph
analysis

Syntactic
Well-

Formedness

1.

4.

5.6. 7.

8. 9.

10. 11.

12.

Partial
Correctness

Depth 0

Partial
Correctness

Depth k ⇒ k+1

2. 3.

Figure 7: Structure of VCG veri�cation proof

pedal coast n = 'n ∧ m < 'mn < 'n ∧ m = 'm

n = 'n ∧ m = 'm

n < 'n ∧ m < 'm

Figure 8: Bicycling Example Call Graph.

program

procedure pedal(; val n;m);
global a; b; c;
pre n �m+ c = a � b;
post c = a � b;
enters pedal with n < 0n ^ m = 0m;
enters coast with n < 0n ^ m < 0m;
recurses with n < 0n;

if n = 0 _ m = 0 then

skip

else

c := c+m;
if n < m then

coast(;n� 1;m� 1)
else

pedal(;n� 1;m)
�

�

end procedure;

procedure coast(; val n;m);
global a; b; c;
pre n � (m+ 1) + c = a � b;
post c = a � b;
enters pedal with n = 0n ^ m = 0m;
enters coast with n = 0n ^ m < 0m;
recurses with m < 0m;

c := c+ n;
if n < m then

coast(;n;m� 1)
else

pedal(;n;m)
�

end procedure;

a := 7; b := 12; c := 0;
pedal(;a; b)

end program

[c = 7 � 12]

Table 9: Bicycling Example Program.

6 Example

We onsider an arti�cial but simple example, the Bicycling program in Table 9.
Its procedure call graph is given in Figure 8. The e�ect of this program is to
multiply two numbers (a � b) by repeated additions, and leave the result in c.
Despite the surprising nature of the partial correctness of this program, however,
our primary interest is in its termination.

We call this example \Bicycling" because the structure of the call graph
reminds us of a bicycle, with its two wheels and the chain that transfers power
from the pedals to the rear wheel. Imagine a bicycle with one pedal damaged so
that it could not support any pressure. When pedaling such a bicycle, one would
need to thrust hard when the good pedal was moving downward, but while it
was moving upwards would exert no force, and would coast, depending solely on
the momentum generated by the other phase to propel one to the goal.1 This
corresponds to the entrance progress achieved across the arcs of the call graph.

We believe that it is di�cult to prove termination for the Bicycling program
using either Soko lowski's or Pandya and Joseph's methods. Soko lowski's does
not easily apply, since for the call from coast to pedal, neither n nor m change,
and if n = 0, not even c changes. Pandya and Joseph's method relies on �nding
a smaller set of procedures, but since both procedures are self-recursive, neither
can be eliminated, devolving to Soko lowski's method, with the di�culties above.
Nevertheless there is a very natural and simple argument that this program
terminates, namely that the variable n decreases in any recursion involving pedal,
and m decreases in any recursion involving coast. This argument suggests the
arc labels in Figure 8, and the progress annotations in Table 9.

The VCG has been implemented as a secure HOL tactic. In the Bicycling
example, applying vcgd to the two procedure declarations generates two VC's:

VC1: Partial correctness and entrance progress for pedal:
(0n = n ^ 0m = m ^ n �m + c = a � b))
((n = 0 _ m = 0 =>

c = a � b
j (n < m =>

(n� 1) � ((m� 1) + 1) + c + m = a � b ^
n� 1 < 0n ^ m� 1 < 0m

j (n� 1) �m + c + m = a � b ^ n� 1 < 0n ^ m = 0m)))
VC2: Partial correctness and entrance progress for coast:

(0n = n ^ 0m = m ^ n � (m + 1) + c = a � b))
((n < m =>

n � ((m� 1) + 1) + c + n = a � b ^ n = 0n ^ m� 1 < 0m
j n �m + c + n = a � b ^ n = 0n ^ m = 0m))

Then applying vcgg to the procedure call graph generates six VC's:
VC3: Undiverted recursion veri�cation condition for the path

pedal! pedal:
n �m + c = a � b ^ n = 0n) (8n1m1: n1 < n ^ m1 = m) n1 <

0n)

1 We are grateful to Prof. D. Stott Parker for his recollection of such a damaged bicycle.

VC4: Undiverted recursion veri�cation condition for the path
pedal! coast! pedal:
n �m + c = a � b ^ n = 0n)
(8n1m1: n1 < n ^ m1 < m) (8n2m2: n2 = n1 ^ m2 = m1) n2 <

0n))
VC5: Diversion veri�cation condition for the path coast! coast! pedal:

(8n1m1: n1 = n ^ m1 = m) n1 <
0n))

(8n1m1: n1 = n ^ m1 < m) (8n2m2: n2 = n1 ^ m2 = m1) n2 <
0n))

VC6: Diversion veri�cation condition for the path pedal! pedal! coast:
(8n1m1: n1 < n ^ m1 < m) m1 <

0m))
(8n1m1: n1 < n ^ m1 = m) (8n2m2: n2 < n1 ^ m2 < m1) m2 <

0m))
VC7: Undiverted recursion veri�cation condition for the path

coast! pedal! coast:
n � (m + 1) + c = a � b ^ m = 0m)
(8n1m1: n1 = n ^ m1 = m) (8n2m2: n2 < n1 ^ m2 < m1) m2 <

0m))
VC8: Undiverted recursion veri�cation condition for the path coast! coast:

n � (m+ 1) + c = a � b ^ m = 0m) (8n1m1: n1 = n ^ m1 < m) m1 <
0m)

Finally, applying vcgc to the main body of the program generates one VC:
VC9: Total correctness for main body:

true) (7 � 12 + 0 = 7 � 12)
The reader is invited to verify that these veri�cation conditions are true. We

have applied the VCG to this example, proved the resulting VC's in HOL, and
hence proven the total correctness of the Bicycling example as an HOL theorem.

7 Graph Analysis

To justify the recursive progress claims, we must prove that the recursive decrease
is implied by the cumulative progress across every possible path in the procedure
call graph that is an instance of recursion. A path is an instance of recursion if
it begins and ends with the same procedure (the \root"). There is a potentially
in�nite number of such paths, but the task may be simpli�ed by a series of steps.

First, if an instance of recursion includes another instance of the root interior
to the path, then we call this an instance of multiple recursion; otherwise we call
this single recursion. Fortunately, to prove the progress claims for instances of
multiple recursion, it su�cies to prove them for instances of single recursion.

This simpli�es the task, but it may still involve an in�nite number of paths
due to the presence of other cycles in the call graph. This is because a path
which is an instance of single recursion may contain duplicate nodes other than
the root. We call such an occurrence of duplicate nodes other than the root a
diversion, as it seems to temporarily divert the path from its goal of the root
procedure. To simplify the task further, we can collapse the cases for paths which
di�er only in how many times the diversion is traversed, if we can prove that
traversing the diversion does not \lose ground" logically.

Every node in every path must be annotated with it's \path condition."
This is computed using the call progress function backwards across each arc,
starting from the end of the path, which is initially annotated with the recursion

expression for the root procedure. Paths with the same root procedure at the end
may be collected into a call tree (see Figure 10 for coast), since they share some
of the same path conditions. For each path, if it is an instance of recursion, the
path condition at the beginning is the precondition for satisfying the recursion
progress at the end. If this precondition is implied by the induct pre value of the
recursion expression of that procedure, this path shows the needed progress. We
call such an implication a undiverted recursion veri�cation condition.

Consider such a path marked with path conditions that contains a diversion.
Let the earlier node of the diversion have path condition pc1, and the later node
pc2 (see Figure 10). The similar but shorter path with the diversion removed is
veri�ed above. This veri�cation can apply to the current path if traversing the
diversion \loses no ground" logically. Surprisingly, this is assured if pc2) pc1.
This may seem counterintuitive, since pc1 is earlier in time than pc2. But in fact
this guarantees that traversing the diversion continues to ensure achieving the
desired recursive progress. We call pc2) pc1 a diversion veri�cation condition.

Proving such diversion veri�cation conditions allows us to collapse the set of
paths we must consider to a �nite number, because any path with a diversion can
then be reduced to a path without the diversion, and any path of single recursion
without any diversions can include all non-root procedures at most once. With
a �nite number of declared procedures, each such path must be �nite, and even
with a completely connected procedure call graph, the number of possible such
paths must be �nite. The diversion veri�cation condition method for proving
total correctness is currently U.S. Patent Pending.

m < 'm

∀n1 m1. (n1 = n ∧ m1 < m)
 ⇒ (m1 < 'm)

∀n1 m1. (n1 = n ∧ m1 = m) ⇒
 (∀n2 m2. (n2 < n1 ∧ m2 < m1)
 ⇒ (m2 < 'm))

pc2: ∀n1 m1. (n1 < n ∧ m1 < m) ⇒ (m1 < 'm)

coast

VC 6

pc1:
∀n1 m1. (n1 < n ∧ m1 = m) ⇒
 (∀n2 m2. (n2 < n1 ∧ m2 < m1)
 ⇒ (m2 < 'm))

VC 7

VC 8

coast

coast

pedal

pedal

Diversion

Diversion
Verification
Condition

Undiverted Recursion
Verification Conditions

Figure 10: Call Tree for coast, with path conditions and veri�cation conditions.

8 Summary and Conclusions

We have de�ned concisely and veri�ed within HOL a veri�cation condition gen-
erator which e�ectively implements the diversion veri�cation condition method.
This new method is more general and
exible than prior proposals, and more
powerful while remaining intuitive. It is compositional and readily mechanized.

The real security of this work is in the mechanical veri�cation of the VCG. In
such subtle areas as mutual recursion and graph analysis, our personal intuition
was insu�cient to guarantee soundness. HOL made this security possible.

This VCG substantially decreases the di�culty of proving programs totally
correct, and does so with a very high level of security. A VCG itself must be
trustworthy for the proofs to be trustworthy. This level of trusworthiness is now
demonstrated to be feasible, by the example of this mechanically veri�ed VCG.

For more information on the Sunrise system, please see

http://www.cis.upenn.edu/~hol/sunrise.

Soli Deo Gloria.

References

1. America, P. and de Boer, F.: Proving Total Correctness of Recursive Procedures.
Information and Computation 84 No. 2 (1990) 129{162

2. Apt, K. R.: Ten Years of Hoare logic: A Survey|Part 1. ACM TOPLAS 3 No. 4
(1981) 431{483

3. Gordon, M., Melham, T.: Introduction to HOL, A Theorem Proving Environment
for Higher Order Logic. Cambridge University Press, Cambridge (1993)

4. Hoare, C. A. R.: Procedures and Parameters: an axiomatic approach, in Proceedings
of Symposium on Semantics of Algorithmic Languages, ed. E. Engeler, Lecture Notes
in Mathematics 188 (1971) 102{116

5. Homeier, P.: Trustworthy Tools for Trustworthy Programs: A Mechanically Veri�ed
Veri�cation Condition Generator for the Total Correctness of Procedures. Ph.D.
Dissertation, UCLA Computer Science Department (1995)

6. Homeier, P., Martin, D.: A Mechanically Veri�ed Veri�cation Condition Generator.
The Computer Journal 38 No. 2 (1995) 131{141

7. Homeier, P., Martin, D.: Mechanical Veri�cation of Mutually Recursive Proce-
dures, in Proceedings of the 13th International Conference on Automated Deduc-
tion (CADE-13), eds. M. A. McRobbie and J. K. Slaney. Lecture Notes in Ari�cial
Intelligence 1104 Springer-Verlag (1996) 201{215

8. Igarashi, S., London, R. L., Luckham, C.: Automatic program veri�cation: A logical
basis and its implementation. Acta Informatica 4 (1975) 145{182

9. Melham, T.: A Package for Inductive Relation De�nitions in HOL, in Proceedings
of the 1991 International Workshop on the HOL Theorem Proving System and its
Applications, Davis, August 1991, ed. Archer, M., Joyce, J., Levitt, K., Windley, P.
IEEE Computer Society Press (1992) 350{357

10. Pandya, P. and Joseph, M.: A Structure-directed Total Correctness Proof Rule for
Recursive Procedure Calls. The Computer Journal 29 No. 6 (986) 531{537

11. Sokolowski, S.: Total Correctness for Procedures, in Proceedings, 6th Symposium on
the Mathematical Foundations of Computer Science, ed. J. Gruska, Springer-Verlag,
LNCS 53 (1977) 475{483

