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MEYER’S LAW: [1]
It is a simple task to make things complex, but a complex task to make them simple.

1.  INTRODUCTION

Reorienting one’s view provides not only perspective and depth, but often reveals structural 
previously obscured. Despite the advantages of fuzzy reasoning, its propagation has been impeded, possib
lack of agreement on the specific formulation. This paper suggests a reorientation of the framework o
reasoning, which opens up a large new world of fuzzy reasoning beyond current systems for exploratio
theoretical and practical.

The field of fuzzy logic and fuzzy expert systems has excited researchers for over 25 years. This inte
manifested both in a collection of research papers and experimental implementations. Zadeh suggested a fr
for constructing fuzzy inferences called “the compositional rule of inference” [18], and this approach ha
followed by most of the theoretical community. In examining both the theoretical work and the pra
implementations, we found that a fuzzy implementation constructed by Togai InfraLogic, Inc. [8], [14] did n
within the theoretical framework described in the papers. In analyzing this discrepancy, it was discovered 
theoretical system fundamentally differed from the reasoning of crisp expert systems, whereas the
implementation, and virtually all other implementations, aligned. However, Togai’s system seemed ad hoc 
result of experimental intuition. In this paper, we construct a new theoretical framework, place Togai’s work wi
and compare this new system with the classical approach, showing how the traditional theory may have mi
ideas of logic into the realm of expert systems. In an example to be presented, both approaches are demons
new approach is seen to be simpler, more intuitive, and more implementable.
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Fuzzy reasoning has many advantages over normal (“crisp”) reasoning; a crisp rule makes a curt d
based on a simple boolean test, as

if  (satellite_temperature > 80°) then set_cooling_system_to 20°

In contrast, a fuzzy rule makes a more gradual and shaded judgement, as

if  (satellite_temperature is HOT) then cooling_system_setting is HIGH

This judgement about the current temperature being HOT is not a simple test that yields “yes” or “n
rather an operation that yields adegree of truthfulness, represented as a real number between 0.0 and 1.0, incl
0.0 represent complete falsity, and 1.0 represents complete truth; values in between represent an intermedia
of satisfaction. HOT would be defined as a function which would take the current satellite temperature and 
fuzzy value between 0.0 and 1.0 denoting the degree to which the temperature was hot.

Likewise, the conclusion about setting the cooling system on HIGH does not specify a specific temp
to set the thermostat. Rather, HIGH represents a range of settings that are associated with a high degree of 
would be defined as a function that takes possible values that the cooling system could be set to, and retur
value denoting the degree to which that setting is a high setting.

This ability to use descriptive nomenclature for qualities, such as HOT, without needing to pin the defi
down to a rigid interval, both matches the intuition of the experts whose knowledge is being pooled to form the
system, and also yields a more natural, gradual approach to reasoning, with more graceful adaptation to un
situations. Crisp rule systems can only simulate this behavior using many crisp rules in place of each fuzzy r
even then the behavior is stilted and jerky.

In this paper, we will discuss both the classical and satisfaction approaches to performing fuzzy infer
To focus on inferencing, we do not discuss fuzzification or defuzzification, or chains of inference. But befo
describe the structure of the two approaches, we need to first define the notation that we will use, and th
concept of triangular norms.

2.  DEFINITIONS AND NOTATION

The field of fuzzy logic originated from the work of L. A. Zadeh [17], as an extension of classical log
has also been used to aid in the management of uncertainty in expert systems [19]. A survey of some of the a
the field reveals an enormous diversity of approaches and techniques, particularly for expert systems. The f
description introduces some new notation, including the use of lambda notation to describe fuzzy sets.

We use the notation D→ R to describe thefunction type from domain D to range R. A functionf of type
D → R may be described usinglambda notation as

f = λd. (expression involving d)

whered is a variable of type D, and the expression has type R. Theλ symbol is just notation to denote a function, wit
its formal parameter list and its body. This means the same thing as

f(d) = (expression involving d)

For example,λx. x+3 is the function that adds three to its argument;f(x) = x+3 defines the same function a
f = λx. x+3. This functionλx. x+3 is applied to 5 asf(5) = (λx. x+3)(5) = (letx=5 in x+3) = 5+3 = 8. As an axiom,
f = λd. f(d) and (λd. f(d))(d0) = f(d0).

We will write the maximum value of an expression over different values of a variable as

A fuzzy set A is defined over auniverse of discourse U, which is itself a normal set. A fuzzy set differs from
a normal set in that all the members ofU are considered to be in the fuzzy set, but each only to a particular de
between 0 and 1. The fuzzy setA is described by a characteristicfuzzy membership function, which has domainU and
range [0,1]. We identify the fuzzy setA with its membership function, so that we will simply writeA(u) for the
membership ofu in A, or, using lambda notation for denoting functions, we write the fuzzy setA itself as

A = λu. A(u)

If a variablev has typeτ1 and an expressione has typeτ2, thenλv.e has typeτ1 → τ2, soA above has type
U → [0,1]. We will be using function types of the formU → [0,1] often to represent fuzzy sets, and so we abbrev
this type as “φU”. We use “a :τ” to state that object a has typeτ. ThusA is concisely described as “A : φU”, andA(u)
as “A(u) : [0,1]”.

expression involving u( )
u U∈
∪
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3.  TRIANGULAR NORMS, CONORMS, AND NEGATIONS

Fuzzy logic values (in [0,1]) may be combined in ways analogous to the logical operations on crisp
values ({true, false}). Without specifying the operators exactly, we may describe the possible fuzzy versio
conjunction, disjunction, and negation by abstractly specifying their properties. It happens that conjunctio
suitably represented by triangular norms, and disjunctions are suitably represented by triangular conorms, as

A triangular norm (abbreviatedt-norm) [9] is a functionT : [0,1] × [0,1] → [0,1] which fulfills

(1) T(0, 0) = 0, (Bottom stability)
(2) T(u, 1) =u, (Top identity)
(3) u ≤ u’ andv ≤ v’ ⇒ T(u, v) ≤ T(u’, v’), (Monotonicity)
(4) T(u, v) = T(v, u), (Commutativity)
(5) T(T(u, v), w) = T(u, T(v, w)). (Associativity)

A triangular conorm (abbreviatedt-conorm) is a functionS : [0,1] × [0,1] → [0,1] which fulfills

(6) S(1, 1) = 1, (Top stability)
(7) S(u, 0) =u, (Bottom identity)

as well as the monotonicity (3), commutativity (4), and associativity (5) conditions above for t-norms.
A negation is a functionN : [0,1] → [0,1] which fulfills

(8) u ≤ u’ ⇒ N(u) ≥ N(u’), (Monotonicity)
(9) N(N(u)) = u. (Involution)

Some of the most interesting t-norms are listed by Klement [9] as

 min(u, v) if s = 0

 uv if s = 1


Ts (u, v) =  max(u + v – 1, 0) ifs = ∞


 otherwise

 min(u, v) if max(u, v) = 1

Tw (u, v) = 
 0 otherwise

Tα (u, v) = (α ≥ 0)

These t-norms have dual t-conorms, as follows:

 max(u, v) if s = 0

 u + v – uv if s = 1


Ss (u, v) =  min(u + v, 1) if s = ∞


 otherwise

 max(u, v) if min(u, v) = 0

Sw (u, v) = 
 1 otherwise

Sβ (u, v) = (β ≥ -1)

s 1 s
u

1–( ) s
v

1–( )
s 1–

-------------------------------------+
 
 
 

log

uv
α 1 α–( ) u v uv–+( )+
---------------------------------------------------------

1 s 1 s
1 u–

1–( ) s
1 v–

1–( )
s 1–

----------------------------------------------------+ 
 log–

u v β 1–( )uv+ +
1 βuv+

-----------------------------------------
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The most interesting negations are:

Nγ (u) = (γ  > -1)

In combination, we also want these operators to satisfy DeMorgan’s laws:

(10) N( S(u, v) ) = T( N(u), N(v) ) (DeMorgan’s Law 1)
(11) N( T(u, v) ) = S( N(u), N(v) ) (DeMorgan’s Law 2)

Examples of (T, S, N) triples of triangular norms, conorms, and negations that satisfy these DeMorgan’s
are

(Ts, Ss, N0) for s ∈ [0,∞]

(T0, S0, Nγ) for γ  > -1

(Tw, Sw, N0)

(Tα, Sβ, Nγ) for α ≥ 0,β ≥ -1, γ  > -1, and

These include many of the definitions of fuzzy conjunction, disjunction, and negation that have
proposed. The most common definitions used for conjunction and disjunction are minimum (T0) and maximum (S0)
respectively. The most common definition for negation is 1–u (N0). Some writers avoid the use ofT1 andS1, as these
suggest a probabilistic semantics, and there is a desire to distinguish fuzzy calculations from probability. We
using these families of functions, especially triangular norms, to aid in defining other operators later.

4.  CLASSICAL FUZZY INFERENCING

When calculating according to rules in a fuzzy expert system, the central operation is called “infere
and is concerned with taking rules of the knowledge base, applying known information, and deriving
information. In [10], the standard problem of fuzzy inferencing is illustrated by the following:

given if X is A thenY is B
and X is A’ ,

conclude Y is B’

HereA’ andB’ are fuzzy sets related to but not necessarily equal toA andB, respectively. This is known as
compositional modus ponens, and can be expressed in classical fuzzy logic as

B’ = A’ º (A ⇒ B)

where⇒ is a fuzzy implication operator, and º is a fuzzy max-* composition operator. Commonly, a fuzzy e
system consists of a number of rules that cooperate in forming an answer, as in

Rule 1. IfX is A1 thenY is B1
Rule 2. Else IfX is A2 thenY is B2

. . . . . .
Rule n. Else IfX is An thenY is Bn

When these rules are applied to the factX is A’, they yield the resulting fuzzy setsB1’ , ...,Bn’ . The result of the entire
fuzzy expert system is then the combination of these fuzzy sets using an operatorfelse, so the result setB’ is

B’ = B1’ felse . . .felseBn’

These three operators define the classical inferencing process. They are now described in more detail in the 
sections, first⇒, then º, and finallyfelse.

4.1.  Fuzzy implication

There is a vast multitude of suggestions for fuzzy implication. In normal set theory, a relation R betwe
A and B is a subset of A× B. In fuzzy logic, ifU and V are the universes of discourse of fuzzy setsA and B
respectively, then a fuzzy relationR between fuzzy setsA andB is a fuzzy set based on the universe of discou

1 u–
1 γu+
---------------

α 1 β+
1 γ+
------------=
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U × V. Fuzzy implication⇒ : φU × φV → φU×V is an operation which yields such a fuzzy relation R : φU×V , and we
write R = A ⇒ B. If the relation R is independent of the actual elements ofU andV, and only depends on thei
degrees of membership inA andB, then a suitable functionr : [0,1] × [0,1] → [0,1] exists so thatR can be defined as
the pointwise application ofr to the cross productA × B, as

R = A ⇒ B = λu,v. r( A(u), B(v) )

There is extensive debate in the literature about the particular operation to use forr. Mizumoto lists fifteen
different operators that have been proposed for fuzzy implication [12]. Bouchon-Meunier lists eight impli
operators, and in addition two families of operators, parameterized by functions [2]. The operators she gives r are
(using Mizumoto’s subscripts)

rm = λa,b. max( 1 –a, min( a, b ) ) (Willmott implication)

ra = λa,b. min( 1 –a + b, 1 ) (Lukasiewicz implication)

rc = λa,b. min( a, b ) (Mamdani implication)

rb = λa,b. max( 1 –a, b ) (Kleene-Dienes implication)

r* = λa,b. 1 –a + ab (Reichenbach implication)

 1 if a ≤ b
rs = λa,b.  (Rescher-Gaines implication)

 0 otherwise

 1 if a ≤ b
rg = λa,b.  (Brouwer-Gödel implication)

 b otherwise

 1 if a ≤ b
r∆ = λa,b.  (Goguen implication)

 b / a otherwise

One family of operators Bouchon-Meunier gives is

rN = λa,b. max(N(a), b )

whereN : [0,1] → [0,1] is astrong negation defined by

N(x) = g(–1)( g(0) –g(x) )

whereg : [0,1] → R+ is a continuous, strictly decreasing function defined on [0,1] and lying on R+, so thatg(1) = 0
andg(0) < +∞, and where

 g–1(x) if 0 ≤ x ≤ g(0)
g(–1)(x) =  0 if x > g(0)

 1 if x < 0 .

As an example, forg(x) = 1 –x, we find thatg–1(x) = 1 –x, and deriveN(x) = 1 –x, which is the negationN0, and from
this we getrN = λa,b. max( 1 –a, b ), which is the implicationrb.

Such a functiong is anadditive generator of a triangular normF, where we defineF by

F(x, y) = g(–1)( g(x) + g(y) )

Note that forg(x) = 1 –x, we deriveF(x, y) = max( 0,x + y – 1 ), which is the triangular normT∞, and forg(x) = – ln
x, we deriveF(x, y) = xy, which is the triangular normT1.

The other family of operators Bouchon-Meunier gives is

rF = λa,b. f ( a, b )

wheref : [0,1] × [0,1] → [0,1] is thequasi-inverse of a triangular normF, defined by

(defn. of quasi-inverse)f u v,( ) max w 0 1,[ ]∈ such that F u w,( ) v≤{ }=
Page 5
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For F = T0 = λa,b. min(a, b), the quasi-inverse isf(a, b) = 1 if a ≤ b, and b otherwise, which isrg. ForF = T1 = λa,b.
ab, the quasi-inverse isf(a, b) = 1 if a ≤ b, and b/a otherwise, which givesr∆. ForF = T∞ = λa,b. max( a + b – 1, 0 ),
the quasi-inverse isf(a, b) = min( 1 –a + b, 1 ), yieldingra.

Clearly there is an enormous diversity of choices for the implication operator. For eachr, there is a
correspondingR and ⇒, as described above. In addition to the variety, there is debate about their indiv
suitability. Notice, for example, thatrc does not even match the crisp implication operator ⇒ for the cases where
a = 0 (false):

rc( a, b ) = min( a, b ) = min( 0,b ) = 0

whereas in classical, crisp logic, using 0 = false and 1 = true, (0⇒ b) = 1. Bouchon-Meunier remarks thatrc “does not
satisfy the same properties as the other ones and cannot be considered as a real fuzzy implication.” [2] Nev
this has not prevented the use ofrc in many papers and implementations, such as [10] and Togai’s work.

4.2.  Fuzzy max-* composition

The fuzzy max-* composition operator º has typeφU × φU×V → φV . If C = (A ⇒ B), then

where * : [0,1]× [0,1] → [0,1] specifies the composition operator. A triangular norm is classically considered 
[2]. The most common choice for the * operator is minimum (T0), producing Zadeh’s max-min composition. Othe
compositional operators have been suggested, for example, Dubois and Prade have respectively sugg
bounded productΘ and drastic productΛ, equivalent to the triangular normsT∞ = λu,v. max(u + v – 1, 0) and
Tw = λu,v. (min(u, v) if max(u, v) = 1, else 0), which generate the max-Θ and max-Λ composition operators.

4.3.  Alternative combination

The fuzzy alternative combination operatorfelse is used to combine the results of different rules witho
priority. felse has typeφV × φV → φV . Clearlyfelse should be both commutative and associative. Several definition
felse are discussed in [10]. Two possible definitions are the or-link (for) and the and-link (fand):

B1’ for B2’ = max(B1’ , B2’ ) = λv. max( B1’ (v), B2’ (v) )
B1’ fandB2’ = min(B1’ , B2’ ) = λv. min( B1’ (v), B2’ (v) )

The for operator models the intuition that all the rules describe alternative situations, and that th
conclusion is to be the aggregation of all the results of these rules. This operator monotonically increases t
for each constituent. This considers the different rules as specifying different responses to various cases, w
rule that fires contributing positively to the eventual effect.

The fand operator models the intuition that all the rules describe competing situations, and that th
conclusion is to be the most skeptical value of all the results of these rules. This operator monotonically decre
result for each constituent. This appears to be less intuitive thanfor, but it in fact is necessary for certain choices of t
other operators. In fact, the use of most of the implication operators (exceptrc) imply that rules which are not at al
applicable to the current state of the world yield complete fuzzy sets (B’(v) = 1.0 for allv). If these are combined with
other resulting fuzzy sets usingfor, they swamp out the contributions from other rules to yield complete fuzzy 
lacking relevance to the situation. To avoid this, Dubois and Prade suggest using thefand operation for combination
whenrm is used for implication [5], and this works for most of the other implication operators as well. By contrafor
works appropriately withrc.

In classical fuzzy inferencing, the choice of thefelse operator is dependent on the context of the rules and
type of reasoning desired, as well as depending on the other operators. [2]

4.4.  Review of the classical approach

In the great diversity of proposals in formulating fuzzy reasoning, we see a complex, interdependent
of operators, without clear preferences, i.e., muddled. There are so many ways to construct the inferencing o
all apparently reasonable yet inducing hidden dependencies. In general, when a situation becomes mud
solution is to draw back and reconsider the assumptions underlying the model.

A' º A B⇒( ) A' º C λv. A' u( ) * C u v,( )( )
u U∈
∪= =
Page 6
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5.  TOGAI’S METHODS OF FUZZY INFERENCING

Togai InfraLogic, Inc. is a significant, successful, and well-known source of practical, working fuzzy e
systems. Togai uses two forms of fuzzy inferencing, which they term “max-min” and “max-dot” (or “max-prod
inferencing [8], succinctly described by:

Max-Min: B’ = λv. min( , B(v) ) = ( ∪ (A’ ∩ A) ) ∩ B

Max-Dot: B’ = λv. ( ) ⋅ B(v) = ( ∪ (A’ ∩ A) )  ⋅ B

Togai first combinesA’ andA, and then combines the result withB. We believe that it is inappropriate to
describe Togai’s methods in the classical formulation, because that is not how they are computed. Their p
different, and the underlying cause is that the classical formulation is an extension of crisp boolean logic, w
expert systems are not based on crisp boolean logic. In particular, expert system rules are not logical implica

While at first it may seem a reasonable extension to base the fuzzy inferencing operators on the c
implication operator and modus ponens,in fact this does not reflect the typical operation of an expert system. In a
normal, crisp expert system, rules are not processed according to classical implication and modus ponens. R
the simplest formulation, rules are processed in a loop called the “recognize-act cycle” [16]. Once each cyc
rule’s antecedent is examined and tested to see if it is true. All rules whose antecedent tested true are collec
set called the “activation set”. According to a pre-set “conflict resolution” strategy [11], one of these rules is 
from the activation set and its consequent is executed. This is called “firing” the rule. Then the cycle rep
practice, the process of finding the activated rules is highly optimized using the Rete algorithm [6], [7].

This processing does not regard the antecedent and consequent parts of a rule as merged
homogeneous implication relation; rather it is more of the style of an “if” statement in a programming lan
where if the test is true, the body may then be executed; as evidence of this, the test and the body are differentypes of
phrases. Also, the test and the body are separated in time and causality; the antecedent’s test of relevance
operation that happens, and only secondly and as a result is the consequent empowered to operate. An expe
rule compares to a logical implication as in C, assignment (=) compares to the equality test (==).

The max-min and max-dot methods also are the inferencing methods most used in other practic
besides Togai’s. One reason may be that forming a fuzzy relation among the clauses of the antecedent of th
the consequent is complex, and difficult and costly to implement. General articles surveying the field demons
max-min method [3, 4], sometimes only considering crisp values forA’.

Togai’s max-min method can possibly be expressed in the classical framework by making the adroit 
of ⇒c (Mamdani implication) for⇒ and max-min composition for º [15], but this does not straightforwardly desc
the essence of this method. The other method, max-dot, cannot be expressed in the classical formulation, a
which is presented in Appendix A. Nevertheless, these methods of Togai work to produce real, practica
systems. We suggest that expert systems deserve a fuzzy theoretical framework appropriate for that field.

6.  SATISFACTION-ORIENTED FUZZY INFERENCING

These considerations motivate us to propose a simple but fundamentally different formulation of
inferencing,rotating the operators. Instead of the classical formulation,

B’ = A’ º (A ⇒ B)

we propose
B’ = (A’ ◊ A) ∝ B

min A' u( ) A u( ),( )
u U∈
∪

min A' u( ) A u( ),( )
u U∈
∪

Classical inferencing Satisfaction inferencing

A’

A B

º

⇒

B’

B

AA’

∝

◊

B’

tree rotation
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This describes applying a rule to a specific case by first comparing the condition of the rule to the
facts, and then if they match, accepting the conclusion of the rule, qualified by the success of the matc
◊ : φU × φU → [0,1] yields the degree ofsatisfaction betweenA andA’, and∝: [0,1] × φV → φV is amuting operator,
modifying the degree of membership inB according to the degree of satisfaction. We call thissatisfaction-oriented
fuzzy inferencing.

6.1.  Satisfaction operator

In defining◊, it is tempting to immediately choose a measure of “similarity” between the two fuzzy sA
andA’; after all, they are both based on the same universe of discourse; if they are exactly equal, one would e
measure should be 1.0; and if they are completely disjoint (no non-zero memberships in common), one woul
the measure should be 0.0.

However, take for exampleA defined as in the solid line in the figure above, then theA’ given in the left
example is clearly more “similar” toA than theA’ in the right example. The area of overlap is large, while the are
difference between the two curves is small. Yet the right example represents anA’ which is a fuzzy set version of a
crisp value, where the crisp value coincides with the maximum ofA. To be consistent with the direct use of the cri
value, the right example should also give the maximum measure of 1.0.

The problem is that we have been looking at the two fuzzy setsA andA’ and considering their closeness t
equality; but when we apply a crispvalue to a fuzzy set, we do not considertheir closeness (since clearly a point i
not a set), but rather the degree to which the crisp value satisfies the membership test. In the same fashion,
compareA andA’, we should consider to what degree theysatisfy each other. In this sense, we regard each fuzzy
as a test for the other. The symmetry inherent in this description implies a symmetry between the fuzzy set o
in the definition of the satisfaction operator.

We define themax-* satisfaction family of operators by

where * has type [0,1]× [0,1] → [0,1]. Similar to the choices for the composition operator, we suggest a trian
norm for *. Choosing minimum (T0) as * forms the max-min satisfaction operator. Note the similarity of this to
inner part of the definition of Zadeh’s max-min composition operator. Analogously, we may define max-Θ and max-
Λ satisfaction operators in accord with the max-Θ and max-Λ composition operators, where the * operator in t
definition above is replaced by the bounded productΘ (T∞) or the drastic productΛ (Tw). These also support the
intuition of satisfaction rather than similarity. Four examples, with their triangular norms, are:

A’ ◊∧ A = (max-min satisfaction) (T0)

A’ ◊* A = (max-dot satisfaction) (T1)

A’ ◊+ A = (max-Θ satisfaction) (T∞)

 min(A’(u), A(u)) if max(A’(u), A(u)) = 1
A’ ◊w A =  (max-Λ satisfaction) (Tw)

 0 otherwise

more “similar” more “satisfying”

A AA’

A’

1.0 1.0

0.0 0.0
U U

A' ◊ A A' u( ) * A u( )( )
u U∈
∪=

min A' u( ) A u( ),( )
u U∈
∪

A' u( ) A u( )⋅
u U∈
∪

max A' u( ) A u( ) 1–+ 0,( )
u U∈
∪

u U∈
∪
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6.2. Muting operator

The muting operator∝ has type [0,1]× φV → φV . The purpose ofs∝ B is to produce a resulting fuzzy setB’
which is likeB but possibly lessened in some way ifs < 1. We suggests ∝ B = λv. s * B(v), where * is a triangular
norm.

Four simple muting operators, with their triangular norms, are:

s ∝∧ B = λv. min(s, B(v)) (leveled muting) (T0)

s ∝* B = λv. s ⋅ B(v) (scaled muting) (T1)

s ∝+ B = λv. max(B(v) + s – 1, 0) (lowered muting) (T∞)

 min(s, B(v)) if max(s, B(v)) = 1
s ∝w B = λv.  (drastic muting) (Tw)

 0 otherwise

Degree of

membership

1

0

A’
A’ ◊∧ A:

s

A

Degree of

membership

1

0

A’
A’ ◊+ A:

s

A

Degree of

membership

1

0

A’

A’ ◊* A:

s

A

Degree of

membership

1

0

A’

A’ ◊w A:

s

A

Degree of

membership

1

0
B’

s ∝∧ B:

s

B

Degree of

membership

1

0 B’

s ∝+ B:

s

B

Degree of

membership

1

0
B’

s ∝* B:

s

B

Degree of

membership

1

0 B’

s ∝w B:

s

B
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There is no correspondence between the muting operator∝ and the implication operator ⇒ from the
classical formulation, as there was between the similarity operator◊ and the detachment operator º. Therefore t
diversity present in the suggestions for⇒ is not transferred to∝.

6.3.  Alternative combination

Any of the triangular conorms from section 3 could be used forfelse, but for (S0) seems the most natura
choice for satisfaction-oriented inferencing. There is no need to avoid usingfor as in the classical approach, as rul
that do not apply do not contribute strong fuzzy sets. This supports the positive intuition of aggregating contrib
It also coincides with the normal expert system interpretation of a set of rules as being disjunctive cases.

6.4.  Comparison with Togai’s inferencing methods

Essentially, the satisfaction approach is a generalization of the inferencing presented by Togai. Tog
inferencing methods, “max-min” and “max-dot” (or “max-product”), are both expressed naturally within satisfa
oriented fuzzy inferencing, using the max-min satisfaction operator,◊∧. The “max-min” method uses ∝∧ as the
muting operator, and the “max-dot” method uses ∝*  as the muting operator. Togai usesfor for the combination
operator, as we suggest as well for satisfaction-oriented inferencing. The notation presented here to 
satisfaction-oriented fuzzy reasoning, using◊ and∝, is new and not used by Togai. The two methods can now
succinctly written as

Max-Min: B’ = (A’ ◊∧ A) ∝∧ B = λv. min( , B(v) )

Max-Dot: B’ = (A’ ◊∧ A) ∝* B = λv. ( ) ⋅ B(v)

7.  COMPARISON OF THE CLASSICAL AND SATISFACTION APPROACHES

The types of the operators used are different in the two approaches:

Classical:
⇒ : φU × φV → φU×V
º : φU × φU×V → φV

Satisfaction:
◊ : φU × φU → [0,1]
∝ : [0,1] × φV → φV

Both:
felse : φV × φV → φV

The satisfaction approach is objectively simpler, due to the fact that the types involved in the satisf
oriented formulation are less complex types, of lower order. In particular, the type of the intermediate value pr
by the first operator and passed to the second as an argument is far less complex (φU×V vs. [0,1]). This implies less
design freedom in specifying the satisfaction operators, but also better guidance in choosing natural definition
operators, focussing research effort. The example that will be presented will show the simplicity of this appro

The intermediate value of the classical approach is a complex data object representing a fuzzy relati
is relatively difficult to grasp intuitively. If the antecedent of a rule has one clause, this relation has a
dimensional graph. If the antecedent has n clauses, the graph has n+2 dimensions. By contrast, the intermed
in the satisfaction method is a real number between 0 and 1. This is easily interpreted as the degree to whic
of the antecedent succeeded. The way that this value is then used to qualify the conclusion is easily grasped
intuitive than the classical composition operator’s method of extracting a fuzzy set from the fuzzy impli
relation. This will also be demonstrated in the example.

As far as ease of implementation, the simplicity alone eases this. Besides this, virtually all pr
implementations of fuzzy expert systems use essentially a simple version of the satisfaction approach, not on
Although they may recognize there is a difference between what they are doing and the classical theory, th
found the satisfaction method more implementable, even at the cost of not having a theoretical basis for their 

In terms of speed of execution, the classical method seems to have an advantage in that the fuzzy im
relation may be precomputed for each rule, and then at runtime only the composition operator need be 
However, it appears that this does not necessarily preclude the satisfaction approach being faster; comp
satisfaction operator (◊) should take less time than the composition operator (º), perhaps much less time, an
using the satisfaction value to mute the conclusion (∝) should take less time than the satisfaction operation.

min A' u( ) A u( ),( )
u U∈
∪

min A' u( ) A u( ),( )
u U∈
∪
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Since both approaches take as input a full fuzzy set and yield as output a full fuzzy set, both approa
equally able to produce chains of inference.

In the classical approach, the operators are interdependent; Bouchon-Meunier reports that a “c
combined choice of the appropriate implication, composition, and combination operators “is necessary t
unacceptable conclusions” [2]. By contrast, the satisfaction operators are independent, due to the simple ty
intermediate value passed between them ([0,1]). In terms of software engineering principles, this provides 
possible coupling between the operators, and thus the highest degree of modularity [13].

The classical approach describes a static relationship between the fuzzy sets in a rule’s antece
consequent. This is a declaration of a logical dependency, related to the implication operator in classical lo
not active or operational. This does not make itwrong, as long as the designer of the rules understands the sema
being used, but it is inconsistent with the semantics of crisp expert systems.

The satisfaction-oriented approach specifies a dynamic, operational execution of a rule, not a
relationship between fuzzy sets. This matches the process of firing crisp rules in an expert system, and 
intuitive feelings of causality, thatif the test of the rule is satisfied,then the body is executed and the conseque
asserted. This approach eases the unification of crisp and fuzzy rules into one concept, and the integration
and crisp reasoning in a single expert system. We will discuss our approach to this integration in an upcomin

There is a point of intersection between the two approaches. If we choose⇒c (Mamdani implication) for⇒,
max-min composition for º, max-min satisfaction for◊, and ∝∧ (leveled muting) for∝, then the two inference
methods give the same result:

Classical:

Satisfaction:

Clearly both are equal to

8.  EXAMPLE

We will show that the satisfaction approach reflects one’s natural physical intuition, whereas the cl
approach does not. The following is a very simple version of the canonical example. Consider an inverted pe
attached to a pivot on a movable platform, where we can control the acceleration of the platform left and rig
the objective of keeping the pendulum balanced if it begins to fall.

Let θ ∈ U = [-5.0, 5.0] denote the current angle of the pendulum in degrees, with positive angles de
clockwise from upright. Leta ∈ V = [-5.0, 5.0] denote the current acceleration of the platform in m/sec2, with positive
accelerations to the right.

8.1.  Membership functions

Let the membership functions be as indicated in the following diagrams:

B' A' º A B⇒( ) λv. min A' u( ) min A u( ) B v( ),( ),( )
u U∈
∪= =

B' A' ◊ A( ) ∝ B λv.min min A' u( ) A u( ),( )
u U∈
∪( ) B v( ),( )= =

B' λv. min A' u( ) A u( ) B v( ), ,( )
u U∈
∪=

θ

a

Pendulum

Platform

Pivot
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The graphs above show the membership functions of characteristic fuzzy sets defined on the two u
of discourse. For example, theV universe of discourse has five fuzzy sets defined, named NM, NS, ZO, PS, an
standing for, respectively, “Negative Medium,” “Negative Small,” “Zero,” “Positive Small,” and “Positive Mediu
The graph under the name “NM” states that the membership function NM(a) is 1.0 fora between -5 and -2, decrease
linearly from 1.0 to 0.0 fora between -2 and -1, and is 0.0 fora ≥ -1. The names of the fuzzy sets are reused acr
different universes, but this overloading is unambiguous as long as the universe is known.

Take the case whereθ is “about” 2.5 degrees. Let A’ have the possibility distribution

8.2.  Rule base

Assume that the rule base has the following five rules:

(R1) if θ is PM
then a is PM

(R2) if θ is PS
then a is PS

(R3) if θ is ZO
then a is ZO

(R4) if θ is NS
then a is NS

(R5) if θ is NM
then a is NM

RULES: θ is NM θ is NS θ is ZO θ is PS θ is PM

R5: a is NM R4:a is NS R3:a is ZO R2:a is PS R1:a is PM

Degree of
membership

-5 -4 -3 -2 -1 0 1 2 3 4 5

1

0

NM NS ZO PS PM

θ ∈ U, degrees

Degree of
membership

1

0

NM NS ZO PS PM

a ∈ V, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

A’

θ, degrees
-5 -4 -3 -2 -1 0 1 2 3 4 5
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This example is intentionally as simple and direct as possible. One could almost have just compu
resulta from the inputθ as simplya = θ. The reason for this simple system is not to show the versatility of ex
systems (that is assumed), but to examine in a clean experiment the different kinds of fuzzy inferencing.

The purpose of this example is to demonstrate the calculations involved in each style of inferencing, 
simplicity and intuitiveness, not to make a general conclusion about their relative validity. The exact semant
fuzzy expert system depends on the triple of the membership functions, the rules, and the inferencing met
thus the two systems cannot be completely compared in any one example.

8.3.  Classical inferencing

Among the various choices for⇒ and º, in this example we will use⇒m and max-min composition. For this
value ofA’, most of the rules will not contribute meaningfully to the final answer, but rule 1 is one that will. Fo
1, letA = “θ is PM”, andB = “a is PM”.

Then using⇒m for ⇒, we calculateC = A ⇒ B as

C = λθ, a. max( min(A(θ), B(a) ), 1 –A(θ) )

This fuzzy relationC is a relatively complex intermediate value. Its graph is below, showing membe
values (µ) of C for positiveθ, a (the rest is a continuation).

We then combineC with A’ to formD = λθ, a. min(A’(θ), C(a) ) as shown above. Taking the maximum ofD
over allθ, we arrive at the resultant contribution of rule 1 to the value ofB’.

B’ = A’ º (A ⇒ B) = A’ º C

=

=

= λa. 0.67

Applying Rule 2:

The only other rule to apply to this state of the world, whereθ is about 2.5, is rule 2. For this rule,A = “θ is
PS”, andB = “a is PS”, and of course these newA, B generate a new fuzzy implication relationC and composition
relationD.

θ

µ a

C

θ

µ a

D

λa. min A' θ( ) C θ a,( ),( )
θ U∈
∪

λa. D θ a,( )
θ U∈
∪

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5
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Then the fuzzy set yielded by rule 2 is

B’ = A’ º (A ⇒ B) = A’ º C

=

=

= λa. 0.75

Combining the Rules’ Results:

Then combining these two fuzzy sets obtained from rules 1 and 2 withfand (as suggested by Dubois an
Prade [5]), we find the final output of the fuzzy expert system to be the minimum:

B’ = λa. ( 0.67 ) fand λa. ( 0.75 ) = λa. min( 0.67, 0.75 ) = λa. 0.67

Thus the result of all this complex calculation is a flat fuzzy set with no preference for any part
acceleration.This will not balance the inverted pendulum, which in this example is tipped forward and fallin
forward.

But is this simply characteristic of the particular implication operator chosen? The next set of graph
the resultingB’ fuzzy sets for eight different choices of the fuzzy implication operator⇒, using max-min
composition andfand (except for⇒c, for which we must usefor to avoid a trivially empty result).

Most of the other choices for fuzzy implication are not significantly better than⇒m. For example,⇒a, ⇒b,
and ⇒*  all show some welcome increase of possibility for accelerations above 1.0, but they still maintain a pos
of 0.67 fora less than 0.0 as in the graph for⇒m, even though there is no possibility, physically speaking, that th
accelerations would improve the standing of the pendulum. The three operators ⇒s, ⇒g, and ⇒∆ all show a welcome
focus around the interval (1,2), which is physically meaningful, but they somewhat presumptuously ass
possibility of 1.0 (absolute truth) for values ofa within the interval [1.5, 1.67], when neither of the contributing rul
applied in this example with a certainty above 0.67, and neither of the conclusion fuzzy sets of those rul
degrees of membership over that interval above 0.67.

θ

µ a

C

θ

µ a

D

λa. min A' θ( ) C θ a,( ),( )
θ U∈
∪

λa. D θ a,( )
θ U∈
∪

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’ from all rules

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5
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Of the fuzzy implication operators described,⇒c performs the best, maintaining realistic possibilites f
positive accellerations but not permitting negative accellerations. But for⇒c to be the best is a paradox, because⇒c
is not considered to be a “real” fuzzy implication operator, since it does not correspond to the classical imp
operator, unlike the others.In truth, its perceived weakness turns out it be its strength.⇒c works better exactly
because it corresponds to a conjunction operation, rather than an implication, and a conjunction better mo
semantics of a crisp expert system rule. This shows the fundamental flaw in the classical formulation, that it a
to define expert system reasoning based on logical implication.

8.4.  Satisfaction inferencing

By contrast, the new satisfaction approach to inferencing is considerably simpler. We will use the m
satisfaction operator (◊∧) for ◊ and scaled muting (∝*) for ∝. Taking the previous example of an inverted pendulu
A andB from rule 1, andA’ “about” 2.5 as before, we compute

B’ = ( A’ ◊ A ) ∝ B

by first computing

s = A’ ◊ A

=

= 0.67

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

⇒m

⇒a

⇒c

⇒b

⇒g

⇒∆

⇒s

⇒*

min A’ θ( ) A θ( ),( )
θ ∈ U
∪
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Note that in comparison with the classical inferencingC, which was a fuzzy relation requiring a three
dimensional graph, this intermediate values is simply a real number in [0,1].

This value ofs is then used to mute the fuzzy setB, generating the resultB’ = s∝ B. Using the scaled muting
operator ∝*  , we create

ThisB’ has the intuitive advantages that it has a shape that is related to the originalB; that it neither exceeds
the membership ofB, nor the degree of satisfaction calculated; and it may be combined with the results of othe
rules by using thefor operator.

For example, the other rule that applies here (rule 2), whereA = “θ is PS” andB = “a is PS”, yields the
following satisfaction:

s = A’ ◊ A

=

= 0.5

which then produces the following contributionB’ = s ∝ B:

Combining the results of these two rules usingfor, we achieve the final resulting fuzzy set:

Degree of
membership

-5 -4 -3 -2 -1 0 1 2 3 4 5

1

0

A = PM

θ, degrees

A’ ◊ A:

s

A’

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

B = PM

s

s ∝ B:

min A’ θ( ) A θ( ),( )
θ ∈ U
∪

Degree of
membership

-5 -4 -3 -2 -1 0 1 2 3 4 5

1

0

A = PS

θ, degrees

A’ ◊ A:

s

A’

Degree of
membership

1

0 B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

B = PS

s

s ∝ B:
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Comparing this result with the fuzzy set resulting from the classical approach, we see they differ prim
that the satisfaction approach does not support any possibility to accelerations less than zero, whereas the
approach yields a flat fuzzy set, where all possibilities are equal. This example withθ about 2.5 degrees describes
condition where the pendulum is tipped about 2.5 degrees forward. Intuitively, if the pendulum was tipped f
and falling forward, we would want the platform to also accelerate forward to push the pendulum back up.The results
of the satisfaction approach reflect this expectation, whereas the classical results do not.

Just as we repeated the inference process for each of the classical inferencing operators, here are t
of using the different satisfaction-oriented inferencing operators for this example. The different choices for◊ compute
the satisfaction values as shown, and assumming the satisfaction values from the operator◊∧, the various muting
operators work as follows:

Note that the fuzzy set resulting from using∝∧ is the same as that shown earlier for⇒c. The leveled, scaled,
and lowered muting operators all give intuitive results. The drastic muting operator,∝w, seems weaker, and the othe
operators may be preferred for actual inferencing. Nevertheless, even∝w seems to yield superior results to most 
the classical results for this example.

Degree of
membership

1

0

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

B’ from all rules

B’:

Degree of
membership

1

0

θ, degrees
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

θ, degrees
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

θ, degrees
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

θ, degrees
-5 -4 -3 -2 -1 0 1 2 3 4 5

◊∧

◊* ◊w

◊+

s1s2

A’ A1A2

s1

s2

A’ A1A2

s1
s2

A’ A1A2

s1

s2

A’ A1A2

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

Degree of
membership

1

0

B’

a, meters/second2
-5 -4 -3 -2 -1 0 1 2 3 4 5

∝∧

∝* ∝w

∝+
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9.  SUMMARY AND CONCLUSIONS

The satisfaction-oriented approach to fuzzy reasoning arises from a very simple change at the h
inferencing, rotating the operators. It contrasts with the model normally studied in the literature, being simp
more intuitive. It also is the model being used by most practical implementations, though some of those imple
have felt the need to justify their systems by describing them in terms of the classical approach.

There is nothingwrong with the classical approach, as long as the designer of the rules understan
semantics being used. However, the classical approach is a fuzzy adaptation of the ideas of crisp logic and
proving, which have an inherently different semantics from the operational, dynamic semantics of expert s
Expert system reasoning is not theorem proving in the classical sense. As a separate field, expert systems 
fuzzy theoretical foundation consistent with its core ideas.

We present this new approach to fuzzy reasoning to provide a solid, mathematically sound theoretic
for the good work going on in current implementations. But beyond this, satisfaction-oriented fuzzy rea
establishes a framework for a large new space of fuzzy reasoning, including new definitions of satisfact
muting. This world invites investigation, displaying both a clean theory and real-world effectiveness. Both theo
and practical exploration can now begin from this reoriented view.

APPENDIX A

THEOREM 1:  The max-dot method cannot be expressed in the classical formulation.

To prove that the max-dot method cannot be expressed in the classical formulation, assume the cont
it can. Then there exist versions of⇒ and º such that forall fuzzy setsA’, A, andB, with universes of discourseU, U,
andV respectively,

A’ º (A ⇒ B) = B’ = ( ∪ (A’ ∩ A) ) ⋅ B (1)

or, expanding (1) using the definitions of the operators,

(2)

for some operators * andr. As this is true for allA’, A, andB, let us chooseA’, A, andB that are constant functions
whereA’(u) = a’, A(u) = a, andB(v) = b, wherea’, a, b ∈ [0,1], for allu ∈ U andv ∈ V. Then the particular choices o
u andv do not matter, and the maximum operators∪ have no variety of selection, so the statement (2) reduces t

a’ * r(a, b) = min(a’, a) ⋅ b (3)

Since this is true for alla’, a, andb, consider the case wherea’ = 1:

1 * r(a, b) = min(1,a) ⋅ b

Since min(1,x) = x and 1 *x = x (due to the top identity property of * as a triangular norm),

r(a, b) = a ⋅ b

This shows thatr must be exactly the multiplication operation. Thus we can rewrite (3) as

a’ * (a ⋅ b) = min(a’, a) ⋅ b (4)

Since this is true for alla’, a, andb, consider the case whereb = 1:

a’ * (a ⋅ 1) = min (a’, a) ⋅ 1
a’ * a = min(a’, a)

This shows that * must be exactly the minimum operator. So then (4) becomes

min(a’, a ⋅ b) = min(a’, a) ⋅ b (5)

But this cannot be true! For example, choosinga’ = 0.4,a = 1,b = 0.5 we have

λv. A' u( ) * r A u( ) B v( ),( )
u U∈
∪( ) λv. min A' u( ) A u( ),( )

u U∈
∪( ) B v( )⋅( )=
Page 18
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min(0.4, 1⋅ 0.5) = min(0.4, 1)⋅ 0.5
0.4 = 0.2

which is false. This false conclusion contradicts our assumption, so we have proven that there are no versio⇒
and º which can express Togai’s max-dot inference method.
Q.E.D.
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