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MEYER’S LAW: [1]
It is a simple task to make things complex, but a complex task to make them simple.

1. INTRODUCTION

Reorienting one’s view provides not only perspective and depth, but often reveals structural insight
previously obscured. Despite the advantages of fuzzy reasoning, its propagation has been impeded, possibly by the
lack of agreement on the specific formulation. This paper suggests a reorientation of the framework of fuzzy
reasoning, which opens up a large new world of fuzzy reasoning beyond current systems for exploration both
theoretical and practical.

The field of fuzzy logic and fuzzy expert systems has excited researchers for over 25 years. This interest has
manifested both in a collection of research papers and experimental implementations. Zadeh suggested a framework
for constructing fuzzy inferences called “the compositional rule of inference” [18], and this approach has been
followed by most of the theoretical community. In examining both the theoretical work and the practical
implementations, we found that a fuzzy implementation constructed by Togai InfraLogic, Inc. [8], [14] did not fit
within the theoretical framework described in the papers. In analyzing this discrepancy, it was discovered that the
theoretical system fundamentally differed from the reasoning of crisp expert systems, whereas the Togai
implementation, and virtually all other implementations, aligned. However, Togai's system seemed ad hoc and the
result of experimental intuition. In this paper, we construct a new theoretical framework, place Togai's work within it,
and compare this new system with the classical approach, showing how the traditional theory may have misapplied
ideas of logic into the realm of expert systems. In an example to be presented, both approaches are demonstrated; the
new approach is seen to be simpler, more intuitive, and more implementable.
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Fuzzy reasoning has many advantages over normal (“crisp”) reasoning; a crisp rule makes a curt decision
based on a simple boolean test, as

if (satellite_temperature > 8hen set_cooling_system_to 20
In contrast, a fuzzy rule makes a more gradual and shaded judgement, as
if (satellite_temperature is HQ1hen cooling_system_setting is HIGH

This judgement about the current temperature being HOT is not a simple test that yields “yes” or “no”, but
rather an operation that yieldglagreeof truthfulness, represented as a real number between 0.0 and 1.0, inclusive.

0.0 represent complete falsity, and 1.0 represents complete truth; values in between represent an intermediate degree
of satisfaction. HOT would be defined as a function which would take the current satellite temperature and return a
fuzzy value between 0.0 and 1.0 denoting the degree to which the temperature was hot.

Likewise, the conclusion about setting the cooling system on HIGH does not specify a specific temperature
to set the thermostat. Rather, HIGH represents a range of settings that are associated with a high degree of cooling. It
would be defined as a function that takes possible values that the cooling system could be set to, and return a fuzzy
value denoting the degree to which that setting is a high setting.

This ability to use descriptive nomenclature for qualities, such as HOT, without needing to pin the definition
down to a rigid interval, both matches the intuition of the experts whose knowledge is being pooled to form the expert
system, and also yields a more natural, gradual approach to reasoning, with more graceful adaptation to unforeseen
situations. Crisp rule systems can only simulate this behavior using many crisp rules in place of each fuzzy rule, and
even then the behavior is stilted and jerky.

In this paper, we will discuss both the classical and satisfaction approaches to performing fuzzy inferencing.
To focus on inferencing, we do not discuss fuzzification or defuzzification, or chains of inference. But before we
describe the structure of the two approaches, we need to first define the notation that we will use, and the useful
concept of triangular norms.

2. DEFINITIONS AND NOTATION

The field of fuzzy logic originated from the work of L. A. Zadeh [17], as an extension of classical logic. It
has also been used to aid in the management of uncertainty in expert systems [19]. A survey of some of the articles in
the field reveals an enormous diversity of approaches and techniques, particularly for expert systems. The following
description introduces some new notation, including the use of lambda notation to describe fuzzy sets.

We use the notation B R to describe théunction typefrom domain D to range R. A functidrof type
D - R may be described usifgmbda notatioras

f =Ad. (expression involving)d

whered is a variable of type D, and the expression has type R\ $imbol is just notation to denote a function, with
its formal parameter list and its body. This means the same thing as

f(d) = (expression involving)d

For exampleAx. x+3 is the function that adds three to its argumi&xit= x+3 defines the same function as
f = Ax. x+3. This functionAx. x+3 is applied to 5 ak5) = Ax. x+3)(5) = (letx=5 in x+3) = 5+3 = 8. As an axiom,
f=Ad. f(d) and d. f(d))(d,) = f(dy).

We will write the maximum value of an expression over different values of a variable as

[] (expression involving u
ullU
A fuzzy set As defined over aniverse of discourse,Which is itself a normal set. A fuzzy set differs from
a normal set in that all the memberdbfre considered to be in the fuzzy set, but each only to a particular degree,
between 0 and 1. The fuzzy geis described by a characteridtizzy membership functiomhich has domait and
range [0,1]. We identify the fuzzy sétwith its membership function, so that we will simply wriél) for the
membership ofi in A, or, using lambda notation for denoting functions, we write the fuzzy isstIf as

A =Au. A(u)
If a variablev has typer; and an expressiomhas typer,, thenAv.e has typer; — T, SOA above has type
U - [0,1]. We will be using function types of the fokin— [0,1] often to represent fuzzy sets, and so we abbreviate

this type as ¢,". We use “a 1" to state that object a has typeThusA is concisely described a#* @,", and A(u)
as “A(u) : [0,1]".

Page 2



3. TRIANGULAR NORMS, CONORMS, AND NEGATIONS

Fuzzy logic values (in [0,1]) may be combined in ways analogous to the logical operations on crisp logic
values (frue, falsg). Without specifying the operators exactly, we may describe the possible fuzzy versions of
conjunction, disjunction, and negation by abstractly specifying their properties. It happens that conjunctions are
suitably represented by triangular norms, and disjunctions are suitably represented by triangular conorms, as follows.

A triangular norm(abbreviated-norm) [9] is a functionT : [0,1] x [0,1] - [0,1] which fulfills

(1) T(0,0) =0, (Bottom stability)
(2) T(u, 1) =u, (Top identity)

(3) usu andvsv O T(u, v) <T(U', V'), (Monotonicity)
(4) T(U, V) = T(V! U), (CommutatIV|ty)
(5) T(T(u, v), w) = T(u, T(v, w)). (Associativity)

A triangular conorm(abbreviated-conornj is a functionS: [0,1] x [0,1] - [0,1] which fulfills

© 1, 1=1, (Top stability)
(7) Hu, 0) =u, (Bottom identity)

as well as the monotonicity (3), commutativity (4), and associativity (5) conditions above for t-norms.
A negationis a functionN : [0,1] - [0,1] which fulfills

(8) usu O N(u) = N(u), (Monotonicity)
9) N(N(U)) =u. (Involution)

Some of the most interesting t-norms are listed by Klement [9] as

;min(u, V) ifs=0
:uv ifs=1
Tsu,v) = :max(u +v-1,0) ifs=o0
: |:| u_ V_ D
LI logg (1 + wlﬂ otherwise
L O s-1 O
;min(u, V) if max(u,v) =1
Ty v) = L
L0 otherwise
WV = qv a=0
) a+(l—o)(u+v—uy (@=0)
These t-norms have dual t-conorms, as follows:
[Imax(, v) ifs=0
u+v—uv ifs=1
sSuv) = Ominu+v 1) ifs=oo
] 1-u 1-v
m (s "-1)(s "-1)g .
5 1-logg % + o1 0 otherwise
[max@, v) if min(u, v) =0
sswy) = O _
L1 otherwise
_ u+v+(B—1)uv i
Py = —Irpwv B=-1)
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The most interesting negations are:
v - 1-u S .
NY () Ty v >-1)

In combination, we also want these operators to satisfy DeMorgan’s laws:

(10)  N(S(u,Vv)) =T(N(u), N(v) ) (DeMorgan’s Law 1)
(1) N(T(u,v)) =S(N(u), N(v) ) (DeMorgan’s Law 2)

Examples of [, S N) triples of triangular norms, conorms, and negations that satisfy these DeMorgan’s laws
are

(T SN fors[0,9]

(To S NY)  fory >-1

(Tw S NO)

T, PNy foraz0,=-1,y >-1, anda = 115

These include many of the definitions of fuzzy conjunction, disjunction, and negation that have been
proposed. The most common definitions used for conjunction and disjunction are midighamd maximum %)
respectively. The most common definition for negation is(N*). Some writers avoid the use Bf andS,, as these
suggest a probabilistic semantics, and there is a desire to distinguish fuzzy calculations from probability. We will be
using these families of functions, especially triangular norms, to aid in defining other operators later.

4. CLASSICAL FUZZY INFERENCING

When calculating according to rules in a fuzzy expert system, the central operation is called “inferencing,”
and is concerned with taking rules of the knowledge base, applying known information, and deriving new
information. In [10], the standard problem of fuzzy inferencing is illustrated by the following:

given if XisAthenYisB
and XisA ,
conclude YisB’

HereA’ andB’ are fuzzy sets related to but not necessarily equabiadB, respectively. This is known as
compositional modus ponerand can be expressed in classical fuzzy logic as

B=A°AD B)

where[] is a fuzzy implication operator, and ° is a fuzzy max-* composition operator. Commonly, a fuzzy expert
system consists of a number of rules that cooperate in forming an answer, as in

Rule 1. IfXis A thenYis By
Rule 2. Else IXisA,thenYisB,
Rule n. Else IiXis A, thenY is By,

When these rules are applied to the ¥ A’, they yield the resulting fuzzy sdg', ..., B, . The result of the entire
fuzzy expert system is then the combination of these fuzzy sets using an dpggasorthe result s&’ is

B’ =By feise - -felseBn’

These three operators define the classical inferencing process. They are now described in more detail in the next three
sections, first], then ©, and finallfgse

4.1. Fuzzy implication

There is a vast multitude of suggestions for fuzzy implication. In normal set theory, a relation R between sets
A and B is a subset of A B. In fuzzy logic, ifU andV are the universes of discourse of fuzzy getsnd B
respectively, then a fuzzy relatidhbetween fuzzy setd andB is a fuzzy set based on the universe of discourse
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U x V. Fuzzy implicatiorl] : @, X @, - @yxv IS an operation which yields such a fuzzy relatong,., , and we
write R = A 0 B. If the relationR is independent of the actual elementdJofindV, and only depends on their
degrees of membership AnandB, then a suitable functian: [0,1] x [0,1] - [0,1] exists so thaR can be defined as
the pointwise application afto the cross produét x B, as

R =A0 B = Au, v r(A(u), B(v))

There is extensive debate in the literature about the particular operation to uddifmmoto lists fifteen
different operators that have been proposed for fuzzy implication [12]. Bouchon-Meunier lists eight implication
operators, and in addition two families of operators, parameterized by functions [2]. The operators shergives for
(using Mizumoto’s subscripts)

rm = Aa,b max(1l-a min(a, b)) (Willmott implication)

rga, = Aah min(l-a+b, 1) (Lukasiewicz implication)

r = Aab min(a,b) (Mamdani implication)

N, = Aab max(l-ab) (Kleene-Dienes implication)

r« = Aah 1-a+ab (Reichenbach implication)
W ifa<b

r¢ = Aahb LI (Rescher-Gaines implication)
L 10 otherwise
[1 ifasb

rg = Aah L | (Brouwer-Godel implication)
L b otherwise
[1 ifasb

ran. = Aab L (Goguen implication)
LIb/a otherwise

One family of operators Bouchon-Meunier gives is
rv = Aab max(N(a), b)
whereN : [0,1] - [0,1] is astrong negatiordefined by
N = g=(g(0) —9(x) )

whereg : [0,1] - R* is a continuous, strictly decreasing function defined on [0,1] and lying osoRhatg(1) = 0
andg(0) < +eo, and where

Lo if 0 < x < g(0)
gVx = Lo if x > g(0)
L1 ifx<0.

As an example, fag(x) = 1 —x, we find thag(x) = 1 —x, and deriveN(x) = 1 —x, which is the negatioNO, and from
this we gety =Aa,bh max( 1 —a, b), which is the implicatiom,
Such a functiomy is anadditive generatoof a triangular nornfr, where we defin€ by

Fixy) = g™(g(x) +9(y))
Note that forg(x) = 1 —x, we deriveF (X, y) = max( 0,x +y — 1), which is the triangular norm,, and forg(x) = — In
X, we deriveF(X, y) = xy, which is the triangular norify.
The other family of operators Bouchon-Meunier gives is
re = Aah f(ab)
wheref : [0,1] % [0,1] — [0,1] is thequasi-inverseof a triangular nornk, defined by

f(u,v) = maq{wO][O0, 1] suchthat K u Ww<v} (defn. of quasi-inverse)
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ForF =Tp =Aa,b min(@, b), the quasi-inverse f%a, b) = 1 ifa< b, andb otherwise, which isy. ForF =T, = Aa,h
ab, the quasi-inverse $a, b) = 1 if a< b, andb/a otherwise, which gives,. ForF = T, =Aa,h max(a+b—-1, 0),
the quasi-inverse ia, b) = min(1 -a+ b, 1), yieldingr,,.

Clearly there is an enormous diversity of choices for the implication opefadoreachr, there is a
correspondingR and [0, as described above. In addition to the variety, there is debate about their individual
suitability. Notice, for example, that does not even match the crisp implication operatofor the cases where
a=0 (false):

r(a,b) = min(a,b) = min(0,b) =0
whereas in classical, crisp logic, using 0 = false and 1 = triie,l{0= 1. Bouchon-Meunier remarks thrat'does not

satisfy the same properties as the other ones and cannot be considered as a real fuzzy implication.” [2] Nevertheless,
this has not prevented the use oin many papers and implementations, such as [10] and Togai's work.

4.2. Fuzzy max-* composition

The fuzzy max-* composition operator ° has type< @ xv - @, . If C= (A0 B), then
A°(AO B) = A°C = Av. [ (A(u) * C(u, V)
udu

where *:[0,1]x [0,1] - [0,1] specifies the composition operator. A triangular norm is classically considered for *

[2]. The most common choice for the * operator is minimig), (producing Zadeh’'s max-min composition. Other
compositional operators have been suggested, for example, Dubois and Prade have respectively suggested the
bounded produc® and drastic produch, equivalent to the triangular normg, = Au,v. max{ + v — 1, 0) and

Ty = Au v (Min(u, v) if max(u, v) = 1, else 0), which generate the nm@and maxA composition operators.

4.3. Alternative combination

The fuzzy alternative combination operafgg, is used to combine the results of different rules without
priority. fosehas typeap, x @, — @, . Clearlyfgseshould be both commutative and associative. Several definitions of
feise@re discussed in [10]. Two possible definitions are the orflipkand the and-linkff,y):

81: for BZ
Bl fand BZ

Av. max(B;'(v), Bo'(v) )
Av. min(B;'(v), Bo'(v) )

= max@B,,By)
= min(B,,By)

The f,, operator models the intuition that all the rules describe alternative situations, and that the final
conclusion is to be the aggregation of all the results of these rules. This operator monotonically increases the result
for each constituent. This considers the different rules as specifying different responses to various cases, with each
rule that fires contributing positively to the eventual effect.

The f,,q Operator models the intuition that all the rules describe competing situations, and that the final
conclusion is to be the most skeptical value of all the results of these rules. This operator monotonically decreases the
result for each constituent. This appears to be less intuitivéghant it in fact is necessary for certain choices of the
other operators. In fact, the use of most of the implication operators (eXcepply that rules which are not at all
applicable to the current state of the world yield complete fuzzyB¢tg € 1.0 for allv). If these are combined with
other resulting fuzzy sets usifig, they swamp out the contributions from other rules to yield complete fuzzy sets,
lacking relevance to the situation. To avoid this, Dubois and Prade suggest usipg operation for combination
whenr, is used for implication [5], and this works for most of the other implication operators as well. By céjtrast,
works appropriately with,.

In classical fuzzy inferencing, the choice of fyg,operator is dependent on the context of the rules and the
type of reasoning desired, as well as depending on the other operators. [2]

4.4. Review of the classical approach

In the great diversity of proposals in formulating fuzzy reasoning, we see a complex, interdependent system
of operators, without clear preferences, i.e., muddled. There are so many ways to construct the inferencing operators,
all apparently reasonable yet inducing hidden dependencies. In general, when a situation becomes muddled, the
solution is to draw back and reconsider the assumptions underlying the model.
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5. TOGAI'S METHODS OF FUZZY INFERENCING

Togai InfraLogic, Inc. is a significant, successful, and well-known source of practical, working fuzzy expert
systems. Togai uses two forms of fuzzy inferencing, which they term “max-min” and “max-dot” (or “max-product”)
inferencing [8], succinctly described by:

Av. min( [] min(A'(u), A(u) , B(V))
uduU

A ([ min(A(u), A(u)) CB(v)
uduU

Togai first combine®\’ andA, and then combines the result wghWe believe that it is inappropriate to
describe Togai’'s methods in the classical formulation, because that is not how they are computed. Their process is
different, and the underlying cause is that the classical formulation is an extension of crisp boolean logic, whereas
expert systems are not based on crisp boolean logic. In particular, expert system rules are not logical implications.

While at first it may seem a reasonable extension to base the fuzzy inferencing operators on the classical
implication operator and modus poneimsfact this does not reflect the typical operation of an expert syatem
normal, crisp expert system, rules are not processed according to classical implication and modus ponens. Rather, in
the simplest formulation, rules are processed in a loop called the “recognize-act cycle” [16]. Once each cycle, each
rule’s antecedent is examined and tested to see if it is true. All rules whose antecedent tested true are collected into a
set called the “activation set”. According to a pre-set “conflict resolution” strategy [11], one of these rules is chosen
from the activation set and its consequent is executed. This is called “firing” the rule. Then the cycle repeats. In
practice, the process of finding the activated rules is highly optimized using the Rete algorithm [6], [7].

This processing does not regard the antecedent and consequent parts of a rule as merged into an
homogeneous implication relation; rather it is more of the style of an “if” statement in a programming language,
where if the test is true, the body may then be executed; as evidence of this, the test and the body atgpdifigrent
phrases. Also, the test and the body are separated in time and causality; the antecedent’s test of relevance is the first
operation that happens, and only secondly and as a result is the consequent empowered to operate. An expert system’s
rule compares to a logical implication as in C, assignment (=) compares to the equality test (==).

The max-min and max-dot methods also are the inferencing methods most used in other practical work
besides Togai's. One reason may be that forming a fuzzy relation among the clauses of the antecedent of the rule and
the consequent is complex, and difficult and costly to implement. General articles surveying the field demonstrate the
max-min method [3, 4], sometimes only considering crisp value&' for

Togai’'s max-min method can possibly be expressed in the classical framework by making the adroit choices
of O . (Mamdani implication) fof] and max-min composition for © [15], but this does not straightforwardly describe
the essence of this method. The other method, max-dot, cannot be expressed in the classical formulation, a proof of
which is presented in Appendix A. Nevertheless, these methods of Togai work to produce real, practical expert
systems. We suggest that expert systems deserve a fuzzy theoretical framework appropriate for that field.

Max-Min: B’

(Jwwna)ns
(o nay)os

Max-Dot: B =

6. SATISFACTION-ORIENTED FUZZY INFERENCING

These considerations motivate us to propose a simple but fundamentally different formulation of fuzzy
inferencing fotating the operators. Instead of the classical formulation,

B =A°AD B)

we propose
B=(0A OB

tree rotation

———————— >

O

Bl

Classical inferencing

B’

Satisfaction inferencing

Page 7



This describes applying a rule to a specific case by first comparing the condition of the rule to the actual
facts, and then if they match, accepting the conclusion of the rule, qualified by the success of the match. Here
0@y *x @y — [0,1] yields the degree aftisfactionbetweerA andA’, andd: [0,1] x @, — @, iS amutingoperator,
modifying the degree of membershipBraccording to the degree of satisfaction. We call shissfaction-oriented
fuzzy inferencing

6.1. Satisfaction operator

In defining?, it is tempting to immediately choose a measure of “similarity” between the two fuzz sets
andA’; after all, they are both based on the same universe of discourse; if they are exactly equal, one would expect the
measure should be 1.0; and if they are completely disjoint (no hon-zero memberships in common), one would expect
the measure should be 0.0.

1.0 1.d

0.0 0.0

- U L U
more “similar” more “satisfying”

However, take for exampl& defined as in the solid line in the figure above, themAthgiven in the left
example is clearly more “similar” t& than theA’ in the right example. The area of overlap is large, while the area of
difference between the two curves is small. Yet the right example represé&itw/hich is a fuzzy set version of a
crisp value, where the crisp value coincides with the maximuf ©6 be consistent with the direct use of the crisp
value, the right example should also give the maximum measure of 1.0.

The problem is that we have been looking at the two fuzzydsatsl A’ and considering their closeness to
equality; but when we apply a crigplueto a fuzzy set, we do not considkeir closeness (since clearly a point is
not a set), but rather the degree to which the crisp value satisfies the membership test. In the same fashion, when we
compareA andA’, we should consider to what degree thatisfyeach other. In this sense, we regard each fuzzy set
as a test for the other. The symmetry inherent in this description implies a symmetry between the fuzzy set operands
in the definition of the satisfaction operator.

We define thenax-* satisfactiorfamily of operators by

AOA =[] (AW* Aw)
udu

where * has type [0,1% [0,1] - [0,1]. Similar to the choices for the composition operator, we suggest a triangular
norm for *. Choosing minimumTg) as * forms the max-min satisfaction operator. Note the similarity of this to the
inner part of the definition of Zadeh's max-min composition operator. Analogously, we may defi@andxnax-

N\ satisfaction operators in accord with the n@&and maxA composition operators, where the * operator in the
definition above is replaced by the bounded pro@u¢T,,) or the drastic produdk (T,). These also support the
intuition of satisfaction rather than similarity. Four examples, with their triangular norms, are:

AOgA = L] min(A(u), A(u) (max-min satisfaction  (Tg)
udu

AOA = [] A DA (max-dot satisfaction  (Ty)
udyu

Ao, A = [] maxA(u)+A()-1,0) (max® satisfaction (To)
udu

Dmin(A’(u), A(u)) if max@'(u), A(u)) =1
Ao,A = [ U (max-\ satisfaction (To)
uou [o otherwise
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A’ <>D A O, A:

1 A A
Degree of S Degree of
membershlp membership s
0
I
1 A A
Degree of Degree of
membershlp S  membership s
0
I

6.2. Muting operator

The muting operatdr has type [0,1k ¢, —» @, . The purpose &[] B is to produce a resulting fuzzy &t
which is likeB but possibly lessened in some wag # 1. We suggest[01 B=Av. s* B(v), where * is a triangular
norm.

Four simple muting operators, with their triangular norms, are:

spB AV. min(s, B(v)) (leveled mutiny (To)

s«B = Av. s[B(V) (scaled mutinp (T

s, B = Av. maxB(v) +s-1,0) (owered mutiny (T)
[lmin(s, B(v))
sO,B = v U
Lo otherwise

1 B B

if max(s, B(v)) =1
(drastic muting (Tw)

Degree of Degree of
membership S

0

membershlp S

1 B

Degree of
membership

0

1 B

Degree of
membershlp
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There is no correspondence between the muting opdratmd the implication operatdr from the
classical formulation, as there was between the similarity opératnd the detachment operator °. Therefore the
diversity present in the suggestions foris not transferred tol.

6.3. Alternative combination

Any of the triangular conorms from section 3 could be used,fgy butf,, (S)) seems the most natural
choice for satisfaction-oriented inferencing. There is no need to avoidfysagyin the classical approach, as rules
that do not apply do not contribute strong fuzzy sets. This supports the positive intuition of aggregating contributions.
It also coincides with the normal expert system interpretation of a set of rules as being disjunctive cases.

6.4. Comparison with Togai’'s inferencing methods

Essentially, the satisfaction approach is a generalization of the inferencing presented by Togai. Togai's two
inferencing methods, “max-min” and “max-dot” (or “max-product”), are both expressed naturally within satisfaction-
oriented fuzzy inferencing, using the max-min satisfaction operatorThe “max-min” method useS as the
muting operator, and the “max-dot” method u§gsas the muting operator. Togai udgsfor the combination
operator, as we suggest as well for satisfaction-oriented inferencing. The notation presented here to describe
satisfaction-oriented fuzzy reasoning, usingnd, is new and not used by Togai. The two methods can now be
succinctly written as

Max-Min: B = (A"OgA) OB Av. min( [] min(A'(u), A(U) ,B(v))
uduU

Max-Dot: B’ A (L min(A(u), AW)) CB(V)
uluU

(A 05A) O« B

7. COMPARISON OF THE CLASSICAL AND SATISFACTION APPROACHES

The types of the operators used are different in the two approaches:

Classical:
OD : QX Qv > Quxv
: Oy X Quxv — Qv
Satisfaction:
O @ x @y - [0,1]
O: [0,1] x @, - @y
Both:

folse: QX @y - Gy

The satisfaction approach is objectively simpler, due to the fact that the types involved in the satisfaction-
oriented formulation are less complex types, of lower order. In particular, the type of the intermediate value produced
by the first operator and passed to the second as an argument is far less agmplex (0,1]). This implies less
design freedom in specifying the satisfaction operators, but also better guidance in choosing natural definitions of the
operators, focussing research effort. The example that will be presented will show the simplicity of this approach.

The intermediate value of the classical approach is a complex data object representing a fuzzy relation. This
is relatively difficult to grasp intuitively. If the antecedent of a rule has one clause, this relation has a three-
dimensional graph. If the antecedent has n clauses, the graph has n+2 dimensions. By contrast, the intermediate value
in the satisfaction method is a real number between 0 and 1. This is easily interpreted as the degree to which the test
of the antecedent succeeded. The way that this value is then used to qualify the conclusion is easily grasped and more
intuitive than the classical composition operator's method of extracting a fuzzy set from the fuzzy implication
relation. This will also be demonstrated in the example.

As far as ease of implementation, the simplicity alone eases this. Besides this, virtually all practical
implementations of fuzzy expert systems use essentially a simple version of the satisfaction approach, not only Togai.
Although they may recognize there is a difference between what they are doing and the classical theory, they have
found the satisfaction method more implementable, even at the cost of not having a theoretical basis for their systems.

In terms of speed of execution, the classical method seems to have an advantage in that the fuzzy implication
relation may be precomputed for each rule, and then at runtime only the composition operator need be applied.
However, it appears that this does not necessarily preclude the satisfaction approach being faster; computing the
satisfaction operatol) should take less time than the composition operator (°), perhaps much less time, and then
using the satisfaction value to mute the conclusigrsfiould take less time than the satisfaction operation.
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Since both approaches take as input a full fuzzy set and yield as output a full fuzzy set, both approaches are
equally able to produce chains of inference.

In the classical approach, the operators are interdependent; Bouchon-Meunier reports that a “careful”
combined choice of the appropriate implication, composition, and combination operators “is necessary to avoid
unacceptable conclusions” [2]. By contrast, the satisfaction operators are independent, due to the simple type of the
intermediate value passed between them ([0,1]). In terms of software engineering principles, this provides the least
possible coupling between the operators, and thus the highest degree of modularity [13].

The classical approach describes a static relationship between the fuzzy sets in a rule’s antecedent and
consequent. This is a declaration of a logical dependency, related to the implication operator in classical logic. It is
not active or operational. This does not makeréng, as long as the designer of the rules understands the semantics
being used, but it is inconsistent with the semantics of crisp expert systems.

The satisfaction-oriented approach specifies a dynamic, operational execution of a rule, not a static
relationship between fuzzy sets. This matches the process of firing crisp rules in an expert system, and also our
intuitive feelings of causality, that the test of the rule is satisfietthenthe body is executed and the consequent
asserted. This approach eases the unification of crisp and fuzzy rules into one concept, and the integration of fuzzy
and crisp reasoning in a single expert system. We will discuss our approach to this integration in an upcoming paper.

There is a point of intersection between the two approaches. If we dheddamdani implication) fofJ ,
max-min composition for °, max-min satisfaction fgrand U (leveled muting) forll, then the two inference
methods give the same result:

Classical:

B'= A°(AD B) = Av. [ ] min(A(u), min(A(u), B(\)))
Satisfaction: e

B =(A0A)OB = )\v.min((ulglLJ min(A'(u), A(U))), B(v))

Clearly both are equal to

B' = Av. [ ] min(A'(u), A(U), B(V))
udu

8. EXAMPLE

We will show that the satisfaction approach reflects one’s natural physical intuition, whereas the classical
approach does not. The following is a very simple version of the canonical example. Consider an inverted pendulum
attached to a pivot on a movable platform, where we can control the acceleration of the platform left and right, with
the objective of keeping the pendulum balanced if it begins to fall.

Pendulum

Let® O U = [-5.0, 5.0] denote the current angle of the pendulum in degrees, with positive angles denoting
clockwise from upright. Lea 0 V = [-5.0, 5.0] denote the current acceleration of the platform in fafséb positive
accelerations to the right.

8.1. Membership functions

Let the membership functions be as indicated in the following diagrams:
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1

Degree of
membership

0

5 4 -3 -2 -1 0 1 2 3 4 5
6 0 U, degrees

NS zZO PS

Degree of
membership

0

-5 4 -3 -2 -1 0 1 2 3 4 5
a0V, meters/secorfd

The graphs above show the membership functions of characteristic fuzzy sets defined on the two universes
of discourse. For example, tNeuniverse of discourse has five fuzzy sets defined, named NM, NS, ZO, PS, and PM,
standing for, respectively, “Negative Medium,” “Negative Small,” “Zero,” “Positive Small,” and “Positive Medium.”

The graph under the name “NM” states that the membership functioa)N8VI(.0 fora between -5 and -2, decreases
linearly from 1.0 to 0.0 foa between -2 and -1, and is 0.0 & -1. The names of the fuzzy sets are reused across
different universes, but this overloading is unambiguous as long as the universe is known.

Take the case whefeis “about” 2.5 degrees. Lét have the possibility distribution

A

Degree of
membership

0
[

[ [ [ [ [ [ [
5 4 -3 -2 -1 0 1 2 3 4 5
0, degrees

8.2. Rule base

Assume that the rule base has the following five rules:

(R1) if0isPM
thenais PM

(R2) if0isPS
thenais PS

(R3) ifBisZO
thenais ZO

(R4) ifBisNS
thenais NS

(R5) ifBisNM
thenais NM

RULES: 0is NM 0is NS 0is ZO 0is PS 0is PM
| R5:ais NM | R4:ais NS | R3:ais ZO | R2:ais PS | Rlais PM |
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This example is intentionally as simple and direct as possible. One could almost have just computed the
resulta from the input® as simplya = 6. The reason for this simple system is not to show the versatility of expert
systems (that is assumed), but to examine in a clean experiment the different kinds of fuzzy inferencing.

The purpose of this example is to demonstrate the calculations involved in each style of inferencing, to show
simplicity and intuitiveness, not to make a general conclusion about their relative validity. The exact semantics of a
fuzzy expert system depends on the triple of the membership functions, the rules, and the inferencing method, and
thus the two systems cannot be completely compared in any one example.

8.3. Classical inferencing

Among the various choices far and ©, in this example we will usg,,, and max-min composition. For this
value ofA’, most of the rules will not contribute meaningfully to the final answer, but rule 1 is one that will. For rule
1, letA="0is PM”, andB = “ais PM".

Then usingd ,,for O, we calculat«C = A0 B as

C = AB,a max(min(A(6), B(@) ), 1 -A(8))

This fuzzy relationC is a relatively complex intermediate value. Its graph is below, showing membership
values [1) of C for positived, a (the rest is a continuation).

C D

We then combin€ with A’ to formD = A8, a. min(A’(8), C(a) ) as shown above. Taking the maximunbof
over allg, we arrive at the resultant contribution of rule 1 to the valu.of

B = A°AOB) = A°C
= a. [] min(A(®), C(8, a))
60U
= 2Aa. [] D8 a)
e0uU
= Aa 0.67
B

Degree of
membership

5 4 -3 -2 -1 0 1 2 3 4 5
a, meters/secorfd
Applying Rule 2:
The only other rule to apply to this state of the world, wlBeseabout 2.5, is rule 2. For this ruke= "0 is

PS”, andB = “a Is PS”, and of course these néwB generate a new fuzzy implication relatiGrand composition
relationD.
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Then the fuzzy set yielded by rule 2 is
B'I

A°AOB) = A°C

Aa. [] min(A'(6), C(6, a))
60U

Aa. [] D(s, a)
e0uU

Aa. 0.75

B’

Degree of
membership

-5 -4 -3 -2 -1 0 1 2 3 4 5
a, meters/secorfd

Combining the Rules’ Results:

Then combining these two fuzzy sets obtained from rules 1 and Z wittas suggested by Dubois and
Prade [5]), we find the final output of the fuzzy expert system to be the minimum:

B’ = Aa. (0.67) fyng Aa. (0.75) = Aa. min(0.67,0.75) = Aa. 0.67

B’ from all rules

Degree of
membership

-5 4 -3 -2 -1 0 1 2 3 4 5
a, meters/secorfd

Thus the result of all this complex calculation is a flat fuzzy set with no preference for any particular
acceleration.This will not balance the inverted penduluwhich in this example is tipped forward and falling
forward.

But is this simply characteristic of the particular implication operator chosen? The next set of graphs show
the resultingB’ fuzzy sets for eight different choices of the fuzzy implication oper@torusing max-min
composition and,,,4 (except ford ., for which we must usk, to avoid a trivially empty result).

Most of the other choices for fuzzy implication are not significantly better(thanFor exampleld 5, U p,
andO « all show some welcome increase of possibility for accelerations above 1.0, but they still maintain a possibility
of 0.67 fora less than 0.0 as in the graph fof, even though there is no possibility, physically speaking, that those
accelerations would improve the standing of the pendulum. The three operatarg, andd A all show a welcome
focus around the interval (1,2), which is physically meaningful, but they somewhat presumptuously assert the
possibility of 1.0 (absolute truth) for valuesaoivithin the interval [1.5, 1.67], when neither of the contributing rules
applied in this example with a certainty above 0.67, and neither of the conclusion fuzzy sets of those rules have
degrees of membership over that interval above 0.67.
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@ B .
1 B

[

Degree of Degree of
membership membership
0 0
5 4 3 2 -1 0 1 2 3 4 5 5 4 3 2 -1 0 1 2 3 4 5
a, meters/secorfd a, meters/secorfd

B’

1 B
Degree of Degree of
membership membership
0 0 T T T T T 1
2 -1 0 1 2

[

5 4 3 2 -1 0 1 2 3 4 5 5 -4 -3 3 4 5
a, meters/secorfd a, meters/secorfd
1 B ‘@ 1 B
Degree of Degree of
membership m membership
0 I T T T T T 1 0 I T T T T T T T T T
5 4 3 2 -1 0 1 2 3 4 5 5 4 3 -2 -1 0 1 2 3 4 5
a, meters/secorfd a, meters/secorfd
II 1 B ‘@ L B
Degree of Degree of
membership membership
0 0 I T T T T T T T T T
5 4 3 2 -1 0 1 2 3 4 5 5 4 3 -2 -1 0 1 2 3 4 5

a, meters/secorfd a, meters/secorfd

Of the fuzzy implication operators describétl, performs the best, maintaining realistic possibilites for
positive accellerations but not permitting negative accellerations. Bt fdo be the best is a paradox, becduse
is not considered to be a “real” fuzzy implication operator, since it does not correspond to the classical implication
operator, unlike the otherin truth, its perceived weakness turns out it be its strengthworks better exactly
because it corresponds to a conjunction operation, rather than an implication, and a conjunction better models the
semantics of a crisp expert system rule. This shows the fundamental flaw in the classical formulation, that it attempts
to define expert system reasoning based on logical implication.

8.4. Satisfaction inferencing

By contrast, the new satisfaction approach to inferencing is considerably simpler. We will use the max-min
satisfaction operator) for ¢ and scaled muting¥) for O. Taking the previous example of an inverted pendulum,
A andB from rule 1, and\' “about” 2.5 as before, we compute

B'=(A0A)OB

by first computing
s = AJOA
= [ min(A’'(8), A®))
00U
= 0.67
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A OA: A A=PM
1
Degree of S =
membership

0, degrees

Note that in comparison with the classical inferendB)gwhich was a fuzzy relation requiring a three-
dimensional graph, this intermediate vadtie simply a real number in [0,1].

This value ofis then used to mute the fuzzy Begenerating the resul® =s [ B. Using the scaled muting
operatorls , we create

B=PM

s B: 1

Degree of s
membership

[ [ [ [ [ [ [ |
5 4 -3 -2 -1 0 1 2 3 4 5
a, meters/secorfd

ThisB’ has the intuitive advantages that it has a shape that is related to the Brithaalit neither exceeds
the membership d@, nor the degree of satisfaction calculated; and it may be combined with the results of other fuzzy
rules by using th&,, operator.

For example, the other rule that applies here (rule 2), where¢'0 is PS” andB = “ais PS”, yields the
following satisfaction:

AOA
L] min(A’(8), A8))
egdu
0.5

S

A OA: A=PS A
1

Degree of
membership

0
[ [ [ [ [ [ [ [ [ [

0, degrees
which then produces the following contributiBh=s O B:

sB: 1 B=PS

Degree of
membership

-5 4 -3 -2 -1 0 1 2 3 4 5
a, meters/secorfd

Combining the results of these two rules udjygwe achieve the final resulting fuzzy set:
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1

B’ from all rules

Degree of
membership

[ [ [ [ [ [ |
-5 4 -3 -2 -1 0 1 2 3 4 5
a, meters/secorfd

Comparing this result with the fuzzy set resulting from the classical approach, we see they differ primarily in
that the satisfaction approach does not support any possibility to accelerations less than zero, whereas the classical
approach yields a flat fuzzy set, where all possibilities are equal. This exampBahitiut 2.5 degrees describes a
condition where the pendulum is tipped about 2.5 degrees forward. Intuitively, if the pendulum was tipped forward
and falling forward, we would want the platform to also accelerate forward to push the pendulum baekrepults
of the satisfaction approach reflect this expectation, whereas the classical results do not.

Just as we repeated the inference process for each of the classical inferencing operators, here are the results
of using the different satisfaction-oriented inferencing operators for this example. The different chdicesrfpute
the satisfaction values as shown, and assumming the satisfaction values from the @petia¢ovarious muting
operators work as follows:

e
1 1

Degree of % Degree of
membership membership
0 0
I I T T T T 1 T T I I T T
5 4 -3 -2 1 0 1 2 3 4 5 5 4 -3 -2 1 0 1 2 3 4 5
0, degrees 0, degrees
A A A A A A
1- 1-
Degree of S Degree of s
membership S, membership s,
0 0
I I T T T T 1 T T I I T T T T 1 T 1 I T
5 4 -3 -2 -1 0 1 2 3 4 5 5 4 -3 -2 -1 0 1 2 3 4 5
6, degrees 6, degrees

0

) )
1 B . B
Degree of Degree of
I T T T 1 0 I T T T T T T

membership
T T
5 4 3 -2 -1 0 1 2 3 4 5 5 4 3 -2 -1 0 1 2 3 4 5
a, meters/secorfd a, meters/secorfd

B
Degree of Degree of
membership membership l !
0 0
T T T 171 T T T T T°1
- 3 2 -1 0

1 2 3 4 5 5 4 3 -2 -1 0 1 2 3 4 5
a, meters/secorfd a, meters/secorfd

1-

Note that the fuzzy set resulting from usifgis the same as that shown earlierliqr. The leveled, scaled,
and lowered muting operators all give intuitive results. The drastic muting opéigtseems weaker, and the other
operators may be preferred for actual inferencing. Nevertheless[Jeveeems to yield superior results to most of
the classical results for this example.
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9. SUMMARY AND CONCLUSIONS

The satisfaction-oriented approach to fuzzy reasoning arises from a very simple change at the heart of
inferencing, rotating the operators. It contrasts with the model normally studied in the literature, being simpler and
more intuitive. It also is the model being used by most practical implementations, though some of those implementors
have felt the need to justify their systems by describing them in terms of the classical approach.

There is nothingvrong with the classical approach, as long as the designer of the rules understands the
semantics being used. However, the classical approach is a fuzzy adaptation of the ideas of crisp logic and theorem
proving, which have an inherently different semantics from the operational, dynamic semantics of expert systems.
Expert system reasoning is not theorem proving in the classical sense. As a separate field, expert systems deserves a
fuzzy theoretical foundation consistent with its core ideas.

We present this new approach to fuzzy reasoning to provide a solid, mathematically sound theoretical basis
for the good work going on in current implementations. But beyond this, satisfaction-oriented fuzzy reasoning
establishes a framework for a large new space of fuzzy reasoning, including new definitions of satisfaction and
muting. This world invites investigation, displaying both a clean theory and real-world effectiveness. Both theoretical
and practical exploration can now begin from this reoriented view.

APPENDIX A

THEOREM 1: The max-dot method cannot be expressed in the classical formulation.
To prove that the max-dot method cannot be expressed in the classical formulation, assume the contrary, that
it can. Then there exist versionslofand ° such that fall fuzzy sets\’, A, andB, with universes of discourds, U,
andV respectively,
Ao@AOB) = B = (Ll(vna)m (1)
or, expanding (1) using the definitions of the operators,

?\V-(UQUA'(U) * r(A(U), B(V)) = ?\V-((ugumin(A'(U), A(W)) [B(Y)) @)
for some operators * and As this is true for alN', A, andB, let us choos@&'’, A, andB that are constant functions,
whereA'(u) =a’, A(u) =a, andB(v) =b, wherea’, 0 [0,1], for allu O U andv O V. Then the particular choices of
u andv do not matter, and the maximum operatonshave no variety of selection, so the statement (2) reduces to

a *r(ab) = min@,a) b 3)
Since this is true for all’, a, andb, consider the case wheak= 1:

1*r(a,b) = min(l,a) (b
Since min(1x) =x and 1 *x = x (due to the top identity property of * as a triangular norm),

r(ab) = alb

This shows that must be exactly the multiplication operation. Thus we can rewrite (3) as

a’ *(alb) = min@,a) b (4)
Since this is true for all’, a, andb, consider the case whdre= 1:

a *(all) = min@,a) 1
a *a = min@, a)

This shows that * must be exactly the minimum operator. So then (4) becomes
min@',alb) = min(@’, a) [b (5)

But this cannot be true! For example, choosihg 0.4,a= 1,b = 0.5 we have
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min(0.4, 10.5)

min(0.4, 1Y0.5
0.4 0.2

which is false. This false conclusion contradicts our assumption, so we have proven that there are no vi@rsions of
and ° which can express Togai's max-dot inference method.
Q.E.D.
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