

Trustworthy Tools for Trustworthy Programs:
A Verified Verification Condition Generator

Peter V. Homeier and David F. Martin

Computer Science Department
University of California, Los Angeles

homeier@cs.ucla.edu and dmartin@cs.ucla.edu

Abstract.

 Verification Condition Generator (VCG) tools have been effective in
simplifying the task of proving programs correct. However, in the past these
VCG tools have in general not themselves been mechanically proven, so any
proof using and depending on these VCGs might have contained errors. In our
work, we define and rigorously prove correct a VCG tool within the HOL theo-
rem proving system, for a standard

while

-loop language, with one new feature
not usually treated: expressions with side effects. Starting from a structural
operational semantics of this programming language, we prove as theorems the
axioms and rules of inference of a Hoare-style axiomatic semantics, verifying
their soundness. This axiomatic semantics is then used to define and prove cor-
rect a VCG tool for this language. Finally, this verified VCG is applied to an
example program to verify its correctness.

1 Introduction

The most common technique used today to produce quality software without
errors is testing. However, even repeated testing cannot reliably eliminate all errors,
and hence is incomplete. To achieve a higher level of reliability and trust,
programmers may construct proofs of correctness, verifying that the program satisfies
a formal specification. This need be done only once, and eliminates whole classes of
errors. However, these proofs are complex, full of details, and difficult to construct by
hand, and thus may themselves contain errors, which reduces trust in the program so
proved. Mechanical proofs are more secure, but even more detailed and difficult.

One solution to this difficulty is partially automating the construction of the
proof by a tool called a

Verification Condition Generator

 (VCG). This VCG tool
writes the proof of the program, modulo a set of formulas called

verification conditions

which are left to the programmer to prove. These verification conditions do not contain
any references to programming language phrases, but only deal with the logics of the
underlying data types. This twice simplifies the programmer’s burden, reducing the
volume of proof and level of proof, and makes the process more effective. However,
in the past these VCG tools have not in general themselves been proven, meaning that
the trust of a program’s proof rested on the trust of an unproven VCG tool.

In this work we define a VCG within the Higher Order Logic (HOL) theorem
proving system [6], and prove that the truth of the verification conditions it returns
suffice to verify the asserted program submitted to the VCG. This theorem stating the
VCG’s correctness then supports the use of the VCG in proving the correctness of
individual programs with complete soundness assured. The VCG automates much of
the work and detail involved, relieving the programmer of all but the essential task of
proving the verification conditions. This enables proofs of programs which are both
effective and trustworthy to a degree not previously seen together.

2 Previous Work

There has been very little work done on proving the correctness of expressions;
an exception is Sokolowski’s paper on a “term-wise” approach to partial correctness
[10]. Even he does not treat expressions with side effects. Side effects appear
commonly in “real” programming languages, such as in C, with the operators ++ and
get_ch. In addition, several interesting functions are most naturally designed with a
side effect; an example is the standard method for calculating random numbers, based
on a seed which is updated each time the random number generator is run.

In this paper, we define a “verified” verification condition generator as one
which has been proven to correctly produce, for any input program and specification, a
set of verification conditions whose truth implies the consistency of the program with
its specification. Preferably, this verification of the VCG will be mechanically checked
for soundness, because of the many details and deep issues that arise. Many VCG’s
have been written but not verified; there is then no assurance that the verification
conditions produced are properly related to the original program, and hence no
security that after proving the verification conditions, the correctness of the program
follows. Gordon’s work below is an exception in that the security is maintained by the
HOL system itself.

Igarashi, London, and Luckham in 1973 gave an axiomatic semantics for a
subset of Pascal, and described a VCG they had written in MLISP2 [7]. The
soundness of the axiomatic semantics was verified by hand proof, but the correctness
of the VCG was not rigorously proven. The only mechanized part of this work was the
VCG itself.

Larry Ragland, also in 1973, verified a verification condition generator written
in Nucleus, a language Ragland invented to both express a VCG and be verifiable [9].
This was a remarkable piece of work, well ahead of its time. The VCG system
consisted of 203 procedures, nearly all of which were less than one page long. These
gave rise to approximately 4000 verification conditions. The proof of the generator
used an unverified VCG written in Snobol4. The verification conditions it generated
were proven by hand, not mechanically. This proof substantially increased the degree
of trustworthiness of Ragland’s VCG.

Michael Gordon in 1989 did the original work of constructing within HOL a
framework for proving the correctness of programs [5]. He introduced new constants
in the HOL logic to represent each program construct, defining them as functions
directly denoting the construct’s semantic meaning. This is known as a “shallow”
embedding of the programming language in the HOL logic. The work included
defining verification condition generators for both partial and total correctness as
tactics. This approach yielded tools which could be used to soundly verify individual
programs. However, the VCG tactic he defined was not itself proven. If it succeeded,
the resulting subgoals were soundly related to the original correctness goal by the
security of HOL itself. Fundamentally, there were certain limitations to the expressive
power and proven conclusions of this approach, as recognized by Gordon himself:

"

P[E/V]

 (substitution) is a meta notation and consequently the
assignment axiom can only be stated as a meta theorem. This elementary
point is nevertheless quite subtle. In order to prove the assignment
axiom as a theorem within higher order logic it would be necessary to
have types in the logic corresponding to formulae, variables and terms.
One could then prove something like:

+

∀

P E V

.

Spec

(

Truth

(

Subst

(

P, E, V

)),

Assign

(

V

,

Value

E

),

Truth

P

)
It is clear that working out the details of this would be a lot of work.” [5]

In 1991, Sten Agerholm [1] used a similar shallow embedding to define the
weakest preconditions of a small

while

-loop language, including unbounded
nondeterminism and blocks. The semantics was designed to avoid syntactic notions
like substitution. Similar to Gordon’s work, Agerholm defined a verification condition
generator for total correctness specifications as an HOL tactic. This tactic needed
additional information to handle sequences of commands and the

while

 command, to
be supplied by the user.

This paper explores the alternative approach described but not investigated by
Gordon. It turns out to yield great expressiveness and control in stating and proving as
theorems within HOL concepts which previously were only describable as meta-
theorems outside HOL, as above. For example, we are able to prove the assignment
axiom that Gordon cannot:

+

∀

q x e

. {

q

w

[

x

 :=

e

] }

x

 :=

e

 {

q

}

where

q

w

[

x

 :=

e

] is a substituted version of

q

, described later.
To achieve this expressiveness, it is necessary to create a deeper foundation

than that used previously. Instead of using an extension of the HOL Object Language
as the programming language, we create an entirely new set of datatypes within the
Object Language to represent constructs of the programming language and the
associated assertion language. This is known as a “deep” embedding, as opposed to
the shallow embedding developed by Gordon. This allows a significant difference in
the way that the semantics of the programming language is defined. Instead of
defining a construct

as

 its semantic meaning, we define the construct as simply a
syntactic constructor of phrases in the programming language, and then separately
define the semantics of each construct in a structural operational semantics [12]. This
separation means that we can now decompose and analyze syntactic program phrases
at the HOL Object Language level, and thus reason within HOL about the semantics of
purely syntactic manipulations, such as substitution or verification condition
generation, since they exist

within

 the HOL logic.
This has definite advantages because syntactic manipulations, when

semantically correct, are simpler and easier to calculate. They encapsulate a level of
detailed semantic reasoning that then only needs to be proven once, instead of having
to be repeatedly proven for every occurrence of that manipulation. This will be a
recurring pattern in this paper, where repeatedly a syntactic manipulation is defined,
and then its semantics is described and proven correct within HOL.

3 Higher Order Logic

Higher Order Logic (HOL) [6] is a version of predicate calculus that allows
variables to range over functions and predicates. Thus denotable values may be
functions of any higher order. Strong typing ensures the consistency and proper
meaning of all expressions. The power of this logic is similar to set theory, and it is
sufficient for expressing most mathematical theories.

HOL is also a mechanical proof development system. It is secure in that only
true theorems can be proved. Rather than attempting to automatically prove theorems,
HOL acts as a supportive assistant, mechanically checking the validity of each step
attempted by the user.

The primary interface to HOL is the polymorphic functional programming
language ML (“Meta Language”) [4]; commands to HOL are expressions in ML.
Within ML is a second language OL (“Object Language”), representing terms and
theorems by ML abstract datatypes

term

 and

thm

. A shallow embedding represents

program constructs by new OL functions to combine the semantics of the constituents
to produce the semantics of the combination. Our approach is to define a

third

 level of
language, contained within OL as concrete recursive datatypes, to represent the
constructs of the programming language PL being studied and its associated assertion
language AL. We begin with the definition of variables.

4 Variables and Variants

A variable is represented by a new concrete type

var

, with one constructor,
VAR

:string->num->var

. We define two deconstructor functions, Base(VAR

str
n

) =

str

 and Index(VAR

str n

) =

n

. The number attribute eases the creation of variants
of a variable, which are made by (possibly) increasing the number.

All possible variables are considered predeclared of type

num

. In future
versions, we hope to treat other data types, by introducing a more complex state and a
static semantics for the language which performs type-checking. Some languages
distinguish between program variables and logical variables, which cannot be changed
by program control. In this simple language, this is unnecessary. In our more recent
work with procedure calls, we support logical variables; this is treated in our Category
B paper being presented at this conference.

The

variant

 function has type

var->(var)set->var

.

variant x s

 returns a
variable which is a variant of

x

, which is guaranteed not to be in the “exclusion” set

s

.
If

x

 is not in the set

s

, then it is its own variant. This is used in defining proper
substitution on quantified expressions.

The definition of

variant

 is somewhat deeper than might originally appear. To
have a constructive function for making variants in particular instances, we wanted

variant x s

 = (

x

 IN

s

 =>

variant

 (

mk_variant x

 1)

s

 |

x

) (*)
where

mk_variant

 (VAR

str n

)

k

 = VAR

str

 (

n

+

k

). For any finite set

s

, this definition of

variant

 will terminate, but unfortunately, it is not primitive recursive on the set

s

, and
so does not conform to the requirements of HOL’s recursive function definition
operator. As a substitute, we wanted to define the

variant

 function using

new_specification

 by specifying its properties, as
1) (

variant x s

)

is_variant

x

, and
2) ~(

variant x s

 IN

s

), and
3)

∀

z

. if (

z

is_variant

x

)

∧

 ~(

z

 IN

s

), then Index(

variant x s

)

≤

 Index(

z

),
where

y is_variant x

 = (Base(

y

) = Base(

x

)

∧

 Index(

x

)

≤

 Index(

y

)).
But even the above specification did not easily support the proof of the

existence theorem, that such a variant existed for any

x

 and

s

, because the set of values
for

z

 satisfying the third property’s antecedent is infinite, and we were working strictly
with finite sets. The solution was to introduce the function

variant_set

, where

variant_set x n

 returns the set of the first

n

 variants of

x

, all different from each other,
so CARD (

variant_set x n

) =

n

. The definition of

variant_set

 is

variant_set x 0 = EMPTY ∧
variant_set x (SUC n) = INSERT (mk_variant x n) (variant_set x n).

Then by the pigeonhole principle, we are guaranteed that there must be at least one
variable in variant_set x (SUC (CARD s)) which is not in the set s. This leads to the
needed existence theorem. We then defined variant with the following properties:

1’) (variant x s) IN variant_set x (SUC (CARD s)), and
2’) ~(variant x s IN s), and
3’) ∀ z.if z IN variant_set x (SUC (CARD s)) ∧ ~(z IN s),

 then Index(variant x s) ≤ Index(z).
From this definition, we then proved both the original set of properties (1)–(3), and
also the constructive function definition given above (*), as theorems.

5 Programming and Assertion Languages

The syntax of the programming language PL is

Most of these constructs are standard. n is an unsigned integer; x is a variable;
++ is the increment operator; abort causes an immediate abnormal termination; the
while loop requires an invariant assertion to be supplied. The notation used above is
for ease of reading; each phrase is actually formed by a constructor function, e.g.,
ASSIGN:var->exp->cmd for assignment. We overload the same operator in
different languages, asking the reader to disambiguate by context.

The syntax of the associated assertion language AL is

Again, most of these expressions are standard. a1 => a2 | a3 is a conditional
expression, yielding the value of a2 or a3 depending on the value of a1. close a forms
the universal closure of a, which is true when a is true for all possible assignments to
its free variables. Again, the notation is for readability; e.g., the constructor
AVAR:var->vexp creates a vexp from a variable.

6 Operational Semantics

The semantics of the programming language is expressed by the following
three relations, where a state is a mapping from variables to num:

E e s1 n s2: numeric expression e:exp evaluated in state s1 yields numeric value
n:num and state s2.

B b s1 t s2: boolean expression b:bexp evaluated in state s1 yields truth value
t:bool and state s2.

C c s1 s2 : command c:cmd evaluated in state s1 yields state s2.

Here is the structural operational semantics [12] of the programming language
PL, given as rules inductively defining the three relations E, B, and C. These relations
are defined within HOL using Tom Melham’s excellent rule induction package [2,8].
The notation s[v/x] indicates the state s updated so that (s[v/x])(x) = v.

exp: e ::= n | x | ++x | e1 + e2 | e1 – e2

bexp: b ::= e1 = e2 | e1 < e2 | b1 ∧ b2 | b1 ∨ b2 | ~b

cmd: c ::= skip | abort | x := e | c1; c2 |
if b then c1 else c2 | assert a while b do c

Table 1. Programming Language Syntax

vexp: v ::= n | x | v1 + v2 | v1 – v2 | v1 * v2

aexp: a ::= true | false | v1 = v2 | v1 < v2 | a1 ∧ a2 | a1 ∨ a2 | ~a |
a1 ⇒ a2 | a1 = a2 | a1 => a2 | a3 | close a | ∀ x. a | ∃ x. a

Table 2. Assertion Language Syntax

The semantics of the assertion language AL is given by recursive functions
defined on the structure of the construct, in a directly denotational fashion:

V v s: numeric expression v:vexp evaluated in state s, yields a numeric value in num.
A a s: boolean expression a:aexp evaluated in state s, yields a truth value in bool.

E

Number: Variable: Increment:

Addition: Subtraction:

B

Equality: Less Than:

Conjunction: Disjunction: Negation:

C

Skip: Conditional:

Abort:

(no rules)

Assignment:
Iteration:

Sequence:

Table 3. Programming Language Structural Operational Semantics

E n() s n s

E x() s s x() s

E x s1 n s2

E ++x() s1 n 1+() s2 n 1+() x⁄[]

E e1 s1 n1 s2 E e2 s2 n2 s3,
E e1 e2+() s1 n1 n2+() s3

--
E e1 s1 n1 s2 E e2 s2 n2 s3,

E e1 e2–() s1 n1 n2–() s3
--

E e1 s1 n1 s2 E e2 s2 n2 s3,
B e1 e2=() s1 n1 n2=() s3

--
E e1 s1 n1 s2 E e2 s2 n2 s3,

B e1 e2<() s1 n1 n2<() s3
--

B b1 s1 t1 s2 B b2 s2 t2 s3,
B b1 b2∧() s1 t1 t2∧() s3

B b1 s1 t1 s2 B b2 s2 t2 s3,
B b1 b2∨() s1 t1 t2∨() s3

B b s1t s2

B ~b() s1 ~t() s2
--

C skip s s
------------------------ B b s1 T s2 C c1 s2 s3,

C if b then c1 else c2() s1 s3

B b s1 F s2 C c2 s2 s3,
C if b then c1 else c2() s1 s3

E e() s1 n s2

C x e:=() s1 s2 n x⁄[]
--- B b s1 T s2 C c s2 s3,

C assert a while b do c() s3 s4
C assert a while b do c() s1 s4

C c1 s1 s2 C c2 s2 s3,
C c1 c2;() s1 s3

B b s1 F s2

C assert a while b do c() s1 s2
--

7 Substitution

We define proper substitution on assertion language expressions using the
technique of simultaneous substitutions, following Stoughton [11]. The usual
definition of proper substitution is a fully recursive function. Unfortunately, HOL only
supports primitive recursive definitions. To overcome this, we use simultaneous
substitutions, which are represented by functions of type subst = var->aexp.
This describes a family of substitutions, all of which are considered to take place
simultaneously. This family is in principle infinite, but in practice all but a finite
number of the substitutions are the identity substitution ι . The virtue of this approach
is that the application of a simultaneous substitution to an assertion language
expression may be defined using only primitive recursion, not full recursion, and then
the normal single substitution operation of [v/x] may be defined as a special case:

[v/x] = λy.(y=x => v | AVAR y).
We apply a substitution by the infix operator w. Thus, awss denotes the

application of the simultaneous substitution ss to the expression a, where a can be
either vexp or aexp. Therefore aw[v/x] denotes the single substitution of the
expression v for the variable x wherever x appears free in a. Finally, there is a dual
notion of applying a simultaneous substitution to a state, instead of to an expression;
this is called semantic substitution, and is defined as swss = λy.(V (ss y) s).

Most of the cases of the definition of the application of a substitution to an
expression are simply the distribution of the substitution across the immediate
subexpressions. The interesting cases of the definition of awss are where a is a
quantified expression, e.g.:

(∀ x. a) w ss = let free = in

let y = variant x free in
∀ y. a w (ss[(AVAR y) / x])

Here FV is a function that returns the set of free variables in an expression, and variant
x free is a function that yields a new variable as a variant of x, guaranteed not to be in
the set free.

Once we have defined substitution as a syntactic manipulation, we can then
prove the following two theorems about the semantics of substitution:

V

V n s = n
V x s = s(x)
V (v1 + v2) s = V v1 s + V v2 s

(–, * treated analogously)

A

A true s = T
A false s = F
A (v1 = v2) s = (V v1 s = V v2 s) (< treated analogously)
A (a1 ∧ a2) s = (A a1 s ∧ A a2 s)

(∨ , ~, ⇒ , a1=a2, a1=>a2|a3 treated analogously)
A (close a) s = (∀ s1. A a s1)
A (∀ x. a) s = (∀ n. A a s[n/x])
A (∃ x. a) s = (∃ n. A a s[n/x])

Table 4. Assertion Language Denotational Semantics

FV ss z()
z FV a() x{ }–∈

∪

+ ∀ v s ss. V (v w ss) s = V v (s w ss)

+ ∀ a s ss. A (a w ss) s = A a (s w ss)

This is our statement of the Substitution Lemma of logic, and essentially says
that syntactic substitution is equivalent to semantic substitution.

8 Translation

Expressions have typically not been treated in previous work on verification;
there are some exceptions, notably Sokolowski [10]. Expressions with side effects
have been particularly excluded. Since expressions did not have side effects, they
were often considered to be a sublanguage, common to both the programming
language and the assertion language. Thus one would see expressions such as p ∧ b,
where p was an assertion and b was a boolean expression from the programming
language.

One of the key realizations of this work was the need to carefully distinguish
these two languages, and not confuse their expression sublanguages. This then
requires us to translate programming language expressions into the assertion language
before the two may be combined as above. In fact, since we allow expressions to have
side effects, there are actually two results of translating a programming language
expression e:

• an assertion language expression, representing the
value of e in the state “before” evaluation, and

• a simultaneous substitution, representing the change in
state from “before” evaluating e to “after” evaluating e.

For example, the translator for numeric expressions is defined using a helper function:

VE1: exp -> subst -> (aexp # subst):

VE1 (n) ss = n, ss (where comma (,) makes a pair)
VE1 (x) ss = ss x, ss
VE1 (++x) ss = (ss x) + 1, ss[((ss x) + 1) / x]
VE1 (e1 + e2) ss = (VE1 e1 → λv1. (VE1 e2 → λv2 ss2. (v1 + v2, ss2))) ss
VE1 (e1 – e2) ss = (VE1 e1 → λv1. (VE1 e2 → λv2 ss2. (v1 – v2, ss2))) ss

where → is a “translator continuation” operator, defined as
(f → k) ss = let (v, ss') = f ss in k v ss'

Then define
VE e = fst (VE1 e ι) (where ι is the identity substitution
VE_state e = snd(VE1 e ι) and fst and snd select the members of a pair)

We can then prove that these translation functions, as syntactic manipulations,
are semantically correct, according to the following theorem:

+ ∀ e s1 n s2. (E e s1 n s2) = (n = V (VE e) s1 ∧ s2 = s1w(VE_state e))

A similar set of functions are used to translate boolean expressions. We define the
helper function AB1 and the main translation functions AB and AB_state, and prove
their correctness as

+ ∀ b s1 t s2. (B b s1 t s2) = (t = A (AB b) s1 ∧ s2 = s1w(AB_state b))

These theorems mean that every evaluation of a programming language expression has
its semantics completely captured by the two translation functions for its type. These
are essentially small compiler correctness proofs.

As a product, we may now define the simultaneous substitution that
corresponds to an assignment statement, overriding the expression’s state change with
the change of the assignment:

[x := e] = (VE_state e)[(VE e) / x]

9 Axiomatic Semantics

We define the semantics of Floyd/Hoare partial correctness formulae as follows:

Given these formulae, we can now express the axiomatic semantics of the
programming language, and prove each rule as a theorem from the previous structural
operational semantics:

aexp: {a} =
=

close a (the universal closure of a)
∀ s. A a s (a is true in all states)

exp: {p}e{q} = ∀ p q e n s1 s2. A p s1 ∧ E e s1 n s2 ⇒ A q s2

bexp: {p}b{q} = ∀ p q b t s1 s2. A p s1 ∧ B b s1 t s2 ⇒ A q s2

cmd: {p}c{q} = ∀ p q c s1 s2. A p s1 ∧ C c s1 s2 ⇒ A q s2

Table 5. Floyd/Hoare Partial Correctness Formulae Semantics

Skip: Conditional:

Abort:

Assignment:

Iteration:

Sequence:

Table 6. Programming Language Axiomatic Semantics

q{ } skip q{ }

false{ } abort q{ }

--

p AB b()∧{ } b r1{ }
p ~AB b()∧{ } b r2{ }

r1{ } c1 q{ }
r2{ } c2 q{ }

p{ } if b then c1 else c2 q{ }

q x e:=[]w{ } x e:= q{ }

p{ } c1 r{ } r{ } c2 q{ },
p{ } c1 c2; q{ }

a AB b()∧{ } b p{ }
a ~AB b()∧{ } b q{ }

p{ } c a{ }
a{ } assert a while b do c q{ }

The most interesting of these proofs was that of the while-loop rule. It was
necessary to prove a subsidiary lemma first, by the strong version of rule induction for
command semantics provided by Tom Melham’s rule induction package. This lemma
thus used versions of itself for “lower levels” in the relation built up by rule induction
to prove each instance, and so needed strong induction to present as a usable
assumption each hypothesized lower-level tuple in the relation. The subsidiary lemma
was necessary because the while-loop rule as a theorem was not in the right syntactic
form for the induction tactic. The lemma we proved is

+ ∀ a b c p q . {p}c{a} ∧ {a ∧ (AB b)}b{p} ∧ {a ∧ ~(AB b)}b{q} ⇒
∀ w s1 s4. C w s1 s4 ⇒

((w = assert a while b do c) ⇒ (A a s1 ⇒ A q s4))

Although we did prove analogous theorems as an axiomatic semantics for both
the numeric and boolean expressions in the programming language, it turned out that
there was a better way to handle them provided through the use of the translation
functions. Using these translation functions, we may define functions to compute the
appropriate precondition to an expression, given the postcondition, as follows.

We may now prove the following axiomatic semantics for expressions:

These precondition functions now allow us to revise the rules of inference for
conditionals and loops, as follows.

vexp
ve_pre e v = v w (VE_state e)
vb_pre b v = v w (AB_state b)

aexp
ae_pre e a = a w (VE_state e)
ab_pre b a = a w (AB_state b)

Table 7. Expression Precondition Functions

Numeric expression precondition: Boolean expression precondition:

Table 8. Programming Language Expression Axiomatic Semantics

Conditional:

Iteration:

Table 9. Programming Language Axiomatic Semantics (revisions)

ae_pre e q{ } e q{ }

ab_pre b q{ } b q{ }

--

r1{ } c1 q{ } r2{ } c2 q{ },

AB b => ab_pre b r1 ab_pre b r2{ } if b then c1 else c2 q{ }

a AB b∧ ab_pre b p⇒{ }
a ~ AB b()∧ ab_pre b q⇒{ }

p{ } c a{ }

a{ } assert a while b do c q{ }

10 Verification Condition Generator

We now define a verification condition generator for this programming
language. To begin, we first define a helper function vcg1 , of type cmd->aexp->
(aexp # (aexp)list). This function takes a command and a postcondition, and
returns a precondition and a list of verification conditions that must be proved in order
to verify that command with respect to the precondition and postcondition. This
function does most of the work of calculating verification conditions.

This is called by the main verification condition generator function, vcg,
defined with type aexp—>cmd—>aexp—>(aexp)list. vcg takes a precondition, a
command, and a postcondition, and returns a list of the verification conditions for that
command.

In these definitions, comma (,) makes a pair of two items, square brackets ([])
delimit lists, semicolon (;) within a list separates elements, and ampersand (&) is an
infix version of HOL’s APPEND operator to join two lists.

The correctness of these VCG functions is established by proving the following
theorems from the axioms and rules of inference of the axiomatic semantics:

every P lst is defined in HOL as being true when for every element x in the list
lst, the predicate P is true when applied to x. Accordingly, every close h means that
the universal closure of every verification condition in h is true.

vcg1

vcg1 (skip) q = q, []
vcg1 (abort) q = true, []
vcg1 (x := e) q = qw[x := e], []
vcg1 (c1 ; c2) q = let (r,h2) = vcg1 c2 q in

let (p,h1) = vcg1 c1 r in
p, (h1 & h2)

vcg1 (if b then c1 else c2) q =
let (r1,h1) = vcg1 c1 q in
let (r2,h2) = vcg1 c2 q in

(AB b => ab_pre b r1 | ab_pre b r2), (h1 & h2)
vcg1 (assert a while b do c) q =

let (p,h) = vcg1 c a in
a, [a ∧ AB b ⇒ ab_pre b p ;

a ∧ ~(AB b) ⇒ ab_pre b q] & h

vcg
vcg p c q = let (r,h) = vcg1 c q in

[p ⇒ r] & h

Table 10. Verification Condition Generator

VCG1_THM
+ ∀ c q. let (p,h) = vcg1 c q in

(every close h ⇒ {p}c{q})

VCG_THM + ∀ p c q. every close (vcg p c q) ⇒ {p}c{q}

Table 11. Verification of Verification Condition Generator

These theorems are proven from the axiomatic semantics by induction on the
structure of the command involved. This verifies the VCG. It shows that the vcg
function is sound, that the correctness of the verification conditions it produces suffice
to establish the correctness of the annotated program. This does not show that the vcg
function is complete, that if a program is correct, then the vcg function will produce a
set of verification conditions sufficient to prove the program correct from the
axiomatic semantics [3]. However, this soundness result is quite useful, in that we
may directly apply these theorems in order to prove individual programs partially
correct within HOL, as seen in the next section.

11 Example Programs

Given the vcg function defined in the last section and its associated correctness
theorem, proofs of program correctness may now be partially automated with security.
This has been implemented in an HOL tactic, called VCG_TAC, which transforms a
given program correctness goal to be proved into a set of subgoals which are the
verification conditions returned by the vcg function. These subgoals are then proved
within the HOL theorem proving system, using all the power and resources of that
theorem prover, directed by the user’s ingenuity.

As an example, we will take the quotient/remainder algorithm for integer
division by repeated subtraction. The program to be verified, with the annotations of
the loop invariant and pre- and postconditions, is

{x0 = x ∧ y0 = y}
r := x;
q := 0;
assert x0 = q * y0 + r ∧ y0 = y
while ~(r < y) do

r := r – y;
q := ++q

od
{x0 = q * y0 + r ∧ r < y0}

With the assumption that the program cannot change the values of x0 and y0,
this specification means that if the program terminates, the final value of q must be the
quotient of the division of x0 by y0, and r the remainder. (We could also prove that the
final values of x and y are unchanged by this algorithm.)

Applying VCG_TAC to this goal produces the following three verification conditions:

VC1: x0 = x ∧ y0 = y ⇒ x0 = 0 * y0 + x ∧ y0 = y

VC2: x0 = q * y0 + r ∧ y0 = y ∧ ~(r < y)
⇒ x0 = (q + 1) * y0 + (r – y) ∧ y0 = y

VC3: x0 = q * y0 + r ∧ y0 = y ∧ r < y
⇒ x0 = q * y0 + r ∧ r < y0

Here is a transcript of the application of VCG_TAC to this problem. We have written a
parser for the subject language, using the parser library in HOL, invoked using the
delimiters “[[” and “]]”. The partial correctness goal is parsed and converted into the
abstract syntax form used internally, which is printed as the current goal. VCG_TAC
then converts that goal into verification conditions in the Object Language of HOL.

#g [[{x0 = x /\ y0 = y}
r := x;
q := 0;
assert x0 = q * y0 + r /\ y0 = y
while ~(r < y) do
r := r - y;
q := ++q
od
{x0 = q * y0 + r /\ r < y0}
]];;
"CSPEC
 (AAND
 (AEQ(AVAR(VAR `x0` 0))(AVAR(VAR `x` 0)))
 (AEQ(AVAR(VAR `y0` 0))(AVAR(VAR `y` 0))),
 SEQ
 (SEQ
 (ASSIGN(VAR `r` 0)(PVAR(VAR `x` 0)))
 (ASSIGN(VAR `q` 0)(NUM 0)))
 (WHILE
 (AAND
 (AEQ
 (AVAR(VAR `x0` 0))
 (APLUS
 (AMULT(AVAR(VAR `q` 0))(AVAR(VAR `y0` 0)))
 (AVAR(VAR `r` 0))))
 (AEQ(AVAR(VAR `y0` 0))(AVAR(VAR `y` 0))))
 (NOT(LESS(PVAR(VAR `r` 0))(PVAR(VAR `y` 0))))
 (SEQ
 (ASSIGN(VAR `r` 0)(MINUS(PVAR(VAR `r` 0))(PVAR(VAR `y` 0))))
 (ASSIGN(VAR `q` 0)(INC(VAR `q` 0))))),
 AAND
 (AEQ
 (AVAR(VAR `x0` 0))
 (APLUS
 (AMULT(AVAR(VAR `q` 0))(AVAR(VAR `y0` 0)))
 (AVAR(VAR `r` 0))))
 (ALESS(AVAR(VAR `r` 0))(AVAR(VAR `y0` 0))))"

() : void
Run time: 6.1s

#e(VCG_TAC);;
OK..
3 subgoals
"!x0 q y0 r y.
 ((x0 = (q * y0) + r) /\ (y0 = y)) /\ r < y ==>
 (x0 = (q * y0) + r) /\ r < y0"

"!x0 q y0 r y.
 ((x0 = (q * y0) + r) /\ (y0 = y)) /\ ~r < y ==>
 (x0 = ((q + 1) * y0) + (r - y)) /\ (y0 = y)"

"!x0 x y0 y.
 (x0 = x) /\ (y0 = y) ==> (x0 = (0 * y0) + x) /\ (y0 = y)"

() : void
Run time: 80.3s
Intermediate theorems generated: 5643

These verification conditions are each solved as a subgoal by normal HOL techniques.

The Object Language variables involved in these verification conditions are
constructed to have names similar to the original program variable names; if there is a
non-zero variant number, it is appended to the variable name. Thus, if one changed the
name of program variable x to z in the example above, the verification conditions
would be the same but with the OL variable z in place of x.

Here is the HOL definition of the VCG_TAC tactic:

let VCG_TAC =
(a) MATCH_MP_TAC vcg_THM
(b) THEN REWRITE_TAC[vcg;vcg1]

 THEN CONV_TAC (DEPTH_CONV let_CONV)
(c) THEN REWRITE_TAC[ab_pre;assign]
(d) THEN REPEAT (CHANGED_TAC

 (BETA_TAC THEN
 REWRITE_TAC[VE1_DEF;VE_DEF;VE_state_DEF;
 AB1_DEF;AB_DEF;AB_state_DEF;

 IDENT_SS_var;trans_cont]))
 THEN REWRITE_TAC[a_subst_IDENT]

(e) THEN CONV_TAC vcg_CONV
(f) THEN REWRITE_TAC[APPEND_INFIX;APPEND;EVERY_DEF;CLOSE]
(g) THEN CONV_TAC (TOP_DEPTH_CONV INTERPRET_aexp_CONV)
(h) THEN REWRITE_TAC[V_DEF]

 THEN CONV_TAC (DEPTH_CONV var_BND_CONV)
 THEN REPEAT CONJ_TAC
 THEN (GEN_TAC ORELSE ALL_TAC)

(i) THEN INTERPRET_PROG_VARS_TAC;;

The VCG_TAC tactic first (a) applies the theorem VCG_THM, the last theorem
of Table 11 of the previous section, to the current goal using the HOL tactic
MATCH_MP_TAC to reason backwards from the program correctness statement to the
invocation of the vcg function. By the theorem, the proof of these verification
conditions will establish the proof of the original program correctness statement.

The next step of VCG_TAC is to “execute” the various syntactic manipulation
functions mentioned in the current goal by symbolically rewriting the goal using the
definitions of the functions. This applies (b) to the vcg function, (c) to the operators
that create substitutions, (d) to the translation functions, (e) to the substitution
functions, and others. Because the rewriting process is done symbolically, instead of
actually executing a program, it is relatively slow, but complete soundness is assured.
This “execution” converts the invocation of the vcg function on the annotated program
into the actual set of verification conditions that the vcg function returns.

The tactic makes use at (e) of a set of conversions, culminating in vcg_CONV,
to test the equality of variables (var_EQ_CONV), lookup a variable in a simultaneous
substitution (var_BND_CONV), calculate a variant of a variable (variant_CONV),
apply a substitution to an expression (subst_CONV), and reduce a term with nested
“let” and substitution operators in an efficient order (vcg_CONV), among others.

After performing these conversions, the program correctness goal is left as a set
of “constant” verification conditions in the assertion language. VCG_TAC then (f–i)
uses the definitions of the semantics of the assertion language to rewrite these
verification conditions into equivalent statements in the Object Language of HOL,
beginning with (f) the definition of close, then proceeding with (g) the definitions of A
and (h) V. In particular, (g) all quantification over assertion language variables, and (i)
all references to assertion language variables within program states, are converted to
references to similarly-named OL variables. These verification conditions are then
presented to the user as the necessary subgoals that need to be solved in order to
complete the proof of the program originally presented.

12 Future Work

In the future, we intend to extend this work to include several more language
features, principally mutually recursive procedures and concurrency. In addition, we
also intend to cover total correctness, beyond the partial correctness issues dealt with
in this paper.

The work on mutually recursive procedures requires many new concepts and
techniques to define the semantics and perform verification condition generator proofs.
These include declarations of procedures, their collection into environments, their
verification independent of actual use of the procedures, well-formedness conditions
on programs, and the very delicate issue of parameter passing. We wish to find a
method of proving the total correctness of systems of mutually recursive procedures
which is efficient and suitable for processing by a VCG.

Concurrency raises a whole host of new issues, ranging from the level of
structural operational semantics (“big-step” versus “small-step”), to dealing with
assertions describing temporal sequences of states instead of single states, to issues of
fairness. We believe that a proper treatment of concurrency will exhibit qualities of
modularity and compositionality. Modularity means that a specification for a process
should state both (a) the assumptions under which it should operate, and (b) the task
(or commitment) which it should meet, given those assumptions. Compositionality
means that the specification of a system of processes should be verifiable in terms of
the specifications of the individual constituent processes.

13 Summary and Conclusions

The fundamental contribution of this work is the exhibition of a tool to ease the
task of proving programs which is itself proven to be sound. This verification
condition generator tool performs an automatic, syntactic transformation of the
annotated program into a set of verification conditions. The verification conditions
produced are themselves proven within HOL, establishing the correctness of the
program within the same system wherein the VCG was verified.

This proof of the correctness of the VCG may be considered as an instance of a
compiler correctness proof, with the VCG translating from annotated programs to lists
of verification conditions. Each of these has its semantics defined, and the VCG
correctness theorem closes the commutative diagram, showing that the truth of the
verification conditions implies the truth of the annotated program.

The programming language and its associated assertion language are
represented by new concrete recursive datatypes. This implies that they are
completely independent of other data types and operations existing in the HOL system,
without any hidden associations that might affect the validity of proof. This requires
substantial work in defining their semantics and in proving the axioms and rules of
inference of the axiomatic semantics from the operational semantics. However, this
deeply embedded approach yields great expressiveness, ductility, and the ability to
prove as theorems within HOL the correctness of various syntactic manipulations,
which could only be stated as meta-theorems before. These theorems encapsulate a
level of reasoning which now does not need to be repeated every time a program is
verified, raising the level of proof from the semantic level to the syntactic. But the
most important part of this work is the degree of trustworthiness of this syntactic
reasoning. Verification condition generators are not new, but we are not aware of any
other proofs of their correctness to this level of rigor. This enables program proofs
which are both trustworthy and effective to a degree not previously seen together.

References

1. Sten Agerholm, “Mechanizing Program Verification in HOL”, in Proceedings of
the 1991 International Workshop on the HOL Theorem Proving System and its
Applications, Davis, August 1991, edited by M. Archer, J. J. Joyce, K. N. Levitt,
and P. J. Windley (IEEE Computer Society Press, 1992), pp. 208–222.

2. J. Camilleri and T. Melham, “Reasoning with Inductively Defined Relations in
the HOL Theorem Prover”, Technical Report No. 265, University of Cambridge
Computer Laboratory, August 1992.

3. Stephen A. Cook, “Soundness and Completeness of an Axiom System for
Program Verification”, in SIAM Journal on Computing, Vol. 7, No. 1, February
1978, pp. 70–90.

4. G. Cousineau, M. Gordon, G. Huet, R. Milner, L. Paulson, and C. Wadsworth,
The ML Handbook (INRIA, 1986).

5. Michael J. C. Gordon, “Mechanizing Programming Logics in Higher Order
Logic”, in Current Trends in Hardware Verification and Automated Theorem
Proving, ed. P.A. Subrahmanyam and Graham Birtwistle, Springer-Verlag, New
York, 1989, pp. 387–439.

6. Michael J. C. Gordon, and T. F. Melham, Introduction to HOL, A theorem
proving environment for higher order logic, Cambridge University Press,
Cambridge, 1993.

7. S. Igarashi, R. L. London, and D. C. Luckham, “Automatic Program Verification
I: A Logical Basis and its Implementation”, ACTA Informatica 4, 1975, pp. 145–
182.

8. Tom Melham, “A Package for Inductive Relation Definitions in HOL”, in
Proceedings of the 1991 International Workshop on the HOL Theorem Proving
System and its Applications, Davis, August 1991, edited by M. Archer, J. J.
Joyce, K. N. Levitt, and P. J. Windley (IEEE Computer Society Press, 1992), pp.
350–357.

9. L. C. Ragland, “A Verified Program Verifier”, Technical Report No. 18,
Department of Computer Sciences, University of Texas at Austin, May 1973.

10. Stefan Sokolowski, “Partial Correctness: The Term-Wise Approach”, Science of
Computer Programming, Vol. 4, 1984, pp. 141–157.

11. Allen Stoughton, “Substitution Revisited”, Theoretical Computer Science, Vol.
59, 1988, pp. 317–325.

12. Glynn Winskel, The Formal Semantics of Programming Languages, An
Introduction, The MIT Press, Cambridge, Massachusetts, 1993.

