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Abstract. This paper describes a proof of the Church-Rosser theorem
within the Higher Order Logic (HOL) theorem prover. This follows the
proof by Tait/Martin-L�of, preserving the elegance of the classic presenta-
tion by Barendregt. We model the lambda calculus with a name-carrying
syntax, as in practical languages. The proof is simpli�ed by forming a
quotient of the name-carrying syntax by the �-equivalence relation, thus
separating the concerns of �-equivalence and �-reduction.

1 Introduction

The Church-Rosser theorem states the conuence property, that if an expression
may be evaluated in two di�erent ways, both will lead to the same result. Since
the �rst attempts to prove this in 1936, many improvements have been found, in-
cluding the Tait/Martin-L�of simpli�cation and the Takahashi Triangle. A classic
presentation may be found in Barendregt [1]. The proofs involve sophisticated
inductive arguments, whose patterns have also intrigued researchers in mechani-
cally checked proof. The �rst mechanical proof was presented by Shankar [9], and
has been followed by Huet [5], Nipkow [7], Pfenning [8], Vestergaard/Brotherston
[11], and Ford/Mason [2]. Of these, only Nipkow extends the work beyond �-
reduction to proofs of conuence for �- and ��-reduction.

One key issue in these proofs is whether the syntax of the lambda calculus
is represented using names for variables, or a de Bruijn representation, where
numbers are used for names. The de Bruijn syntax is more agreeable for the
Church-Rosser proof, as it evades the problem of �-equivalence. However, the
name-carrying syntax is more realistic, as this is more representative of pro-
gramming languages in general use. Because of the greater facility, many of the
mechanical Church-Rosser proofs mentioned prove conuence for the de Bruijn
syntax [5, 7, 8]. However, as in [2], we wish to address the issues of name-carrying
syntax, in order to relate more directly to practical programming languages.

The presence of names raises as key issues the de�nitions of �-equivalence,
substitution, and �-reduction. In two of the above proofs where names were
treated [9, 11], conuence was proved for an arbitrary intermixture of �- and
�-reduction. This intermixture bred an unfortunate complexity.
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The elegant presentation by Barendregt [1] axes this complexity by the
Barendregt Variable Convention (BVC). Our aim was to follow Barendregt as
closely as possible, including mechanizing the BVC. We divided the consideration
of �- and �-reduction into two layers, forming a new model of the syntax as the
quotient of the original name-carrying syntax divided by the �-equivalence rela-
tion. This quotient layer is exactly isomorphic to the de Bruijn syntax and greatly
simpli�es the Church-Rosser proof. This is the same approach as Ford/Mason [2].
We found that there was at least as much work involved in forming the quotient
of the original language as in all the remaining work of proving conuence.

Our HOL proof of Church-Rosser contains 7 main theories, which make 77
de�nitions and prove 359 theorems in 6 minutes, 54 seconds on a 300 MHz
Pentium II. The proofs here may seem to be reasoned in normal lambda calculus,
but are actually interpretations of the HOL tactics into mathematical English.

After proving Church-Rosser for �-reduction, we tested the clarity of the
foundation by extending this work in two ways: proving the diamond lemma by
the Takahashi triangle, and proving Church-Rosser for �- and ��-reduction [1].
The �rst took one half day, and the second took four days. Space precludes their
presentation here, but the HOL proofs are available [6].

The author wishes to thank Randolph Johnson, Bill Legato, Brad Martin,
Sylvan Pinsky, and Frank Taylor for many helpful comments and improvements.

2 The Pre-Lambda Calculus

We de�ne the pre-lambda calculus (�1), beginning with the type of terms, term1.
The type of variables is var. We also use �1 to abbreviate term1.

De�nition 1. �1 ::= var j �1�1 j �var:�1

This de�nes terms in the lambda calculus inductively as either being vari-
ables, applications of a term representing a function to another term representing
an argument, or abstractions of terms by a variable, which represent functions
of one argument. These terms may be compared for syntactic equality (=).

We will use t, u, e, M , and N as typical variables of type �1, w, x, y, and z
as typical variables of type var, r for sets of variables, and s for substitutions.

This de�nition is created in the HOL logic by the code

val _ = Hol_datatype

` term1 = Var1 of var

| App1 of term1 => term1

| Lam1 of var => term1 ` ;

This creates term1 as a new concrete recursive type within the HOL logic, and
Var1, App1, and Lam1 as constructor functions. When no confusion may result,
we will use x for Var1 x, t u for App1 t u, and �x: t for Lam1 x t. When term1 is
created, Hol datatype automatically proves several theorems that characterize
the behavior of values of this new type regarding structural induction, function
existence, cases, and constructor distinctiveness and one-to-one properties.
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We use the function existance theorem to de�ne the following functions by
primitive recursion, by induction on the structure of terms. We here use max
as an in�x operator that yields the maximum of its arguments.

De�nition 2 (Height of a term).

HEIGHT1(x)
def
= 0

HEIGHT1(t u)
def
= (HEIGHT1 t max HEIGHT1 u) + 1

HEIGHT1(�x: u)
def
= HEIGHT1 u+ 1

De�nition 3 (Free variables of a term).

FV1(x)
def
= fxg

FV1(t u)
def
= FV1 t [ FV1 u

FV1(�x: u)
def
= FV1 u� fxg

We express proper substitution on a term using explicit simultaneous substi-
tutions, as a separate data structure. These combine a �nite number of individual
substitutions of expressions for variables into one substitution, where all are ap-
plied simultaneously. The actual application of a substitution to an expression
is done by versions of the in�x binary operator �.

We model a simultaneous substitution as type (var # term1)list, a list of
pairs (x; e) of a variable x and an expression e to be substituted for x.

�1 ::= [ ] j (var := �1) :: �1

Notation: We will use := to create a single substitution pair, e.g., (x := e),
and :: for in�x Cons and [ ] for Nil to create lists of pairs, e.g., (x := e) :: [ ],
which is the same as [x := e]. Longer lists are expressed with commas as [x1 :=
e1; x2 := e2; x3 := e3], or, equivalently, as [x1; x2; x3 := e1; e2; e3]. Finally, for a
substitution of a list of variables ys for another list xs, we will use [xs := ys].

De�nition 4 (Substitution applied to a variable).

y �v
1 ((x := e) :: s)

def
= if y = x then e else y �v

1 s

y �v
1 [ ]

def
= Var1 y

De�nition 5 (Free variables of a substitution on a set of variables).

FVsubst1 s r
def
=
S
(image (FV1 Æ SUB1 s) r)

where we de�ne SUB1 s y = y�v
1 s, as a curried pre�x version of �v

1. For every
variable in the set r, its image under substitution by s is computed and the free
variables of the image are found. All of these free variable sets are unioned for
the result. Note if z is not mentioned in s, then z �v

1 s = z.
Simultaneous substitutions allow us to de�ne substitution on terms using

primitive recursion. For substitutions on abstractions, we carefully calculate a
change of bound variable and combine this with the existing substitution before
it is applied to the body of the abstraction.
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De�nition 6 (Substitution on terms).

x�1 s
def
= x�v

1 s

(t u)�1 s
def
= (t�1 s) (u�1 s)

(�x: u)�1 s
def
= let x0 = variant x (FVsubst1 s (FV1 u� fxg)) in

�x0: (u�1 ((x := x0) :: s))

Some other proposals [10, 11] (but not [2] or [4]) de�ne substitution on cases
where capture may occur either incorrectly or not at all. The further development
must then ensure that substitution is only applied safely.

By contrast, this de�nition of substitution is complete, correctly avoiding the
possibility of capture of bound variables. It chooses a new bound variable using
the variant function. We here de�ne variant x r to be x if x =2 r, otherwise to
choose some variable not in the set r. Thus in any case, variant x r =2 r. Similarly,
if the substitution s does not invite a capture, so that the bound variable x need
not change, de�nition 6 above ensures that in fact x0 = x.

Note that if a variable z 6= x is free in the abstraction body u but is not
explicitly mentioned by the substitution s, then FVsubst1 delivers z in its result.

At this point we have built the foundational theory of pre-lambda calculus
terms. However, it has one crucial aw. The one-to-one property of the construc-
tors states that �x1: t1 = �x2: t2 if and only if x1 = x2 and t1 = t2. But in fact
we want to consider, for example, �x1: x1 and �x2: x2 to mean the same term.
Intuitively, it should not matter what name one uses for a bound variable, as
long as one is consistent in how it is used. In fact, the Church-Rosser property
is not true for the pre-lambda calculus as presented. To prove this property, we
must derive a variant where distinctions such as above are blurred. The exact
blurring we wish to achieve is called �-equivalence.

3 �-Equivalence

In the past, �-equivalence has been de�ned as a relation between terms where
some bound variables are replaced in a consistent fashion. In Church and others
since, the renaming of bound variables was built into the semantic rules, as a
reduction relation. The above theory was extended by the axiom scheme

�x: t = �y: (t�1 [x := y]) (1)

where y is not free in �x: t [3].
However, several authors have taken a di�erent route, including Barendregt

[1], who prefer to identify �-equivalent terms at the syntactic level. Thus �x:x =
�y:y, etc. This is commonly assumed to be done by forming equivalence classes
of the existing terms, according to the �-equivalence relation, and letting these
classes be the new terms. In order to form these classes, the relation itself is
often de�ned similarly to (1).

This de�nition is not unsound. However, we question it on aesthetic grounds.
If we later use �-equivalence to simplify substitution, through the BVC, should
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we �rst use substitution in de�ning �-equivalence? This motivated us to search
for a de�nition of �-equivalence independent of substitution. We found this using
an auxiliary notion of contextual �-equivalence, which relate two terms in the
context of a list of lambda-bindings for each term. Shankar [10] is similar.

De�nition 7 (Contextual �-equivalence of variables). Let xs and ys be
two lists of variables, and denote the length of xs as kxsk. The contextual
�-equivalence of two variables w and z in the respective contexts xs and ys
(w xs

var�
ys
� z) is de�ned recursively on the list structure of xs and ys as

w x::xs
var �y::ys

� z
def
= (w = x ^ z = y ^ kxsk = kysk) _

(w 6= x ^ z 6= y ^ w xs
var�

ys
� z)

w
[ ]
var�

[ ]
� z

def
= (w = z)

This de�nition searches down the two context lists simultaneously to seek a
pair of variables which match w and z respectively. w and z are equivalent if the
two lists have the same length and if w and z both appear �rst in the contexts
at the corresponding location, or if they do not appear at all but are equal.

Lemma 8. (x xs
var�

ys
� y) , (kxsk = kysk ^

(x�v
1 [xs := ys] = Var1 y) ^

(y �v
1 [ys := xs] = Var1 x))

Proof: by list induction on xs and ys, and then considering cases for x and y.

De�nition 9 (Contextual �-equivalence of terms). Let xs and ys be two
lists of variables. The contextual �-equivalence of two terms t and u in the re-
spective contexts xs and ys (t xs�ys

� u) is de�ned inductively on the structure of
the terms t and u by the rules

x xs
var�

ys
� y

x xs�ys
� y

t1
xs�ys

� t2 ; u1
xs�ys

� u2

t1 u1
xs�ys

� t2 u2

t1
x::xs�y::ys

� t2
�x: t1

xs�ys
� �y: t2

This maps the test of equivalence down through the structure of the terms,
adding context whenever a lambda abstraction is penetrated, resolving eventu-
ally to comparisons of the variables in each term.

We have implemented this de�nition in HOL using Myra VanInwegen's rule
induction package. This package automatically proves theorems for the new rela-
tion's rules, the inversion of the rules, and weak and strong induction principles.
Notably, this package supports de�ning mutually recursive relations. [6]

De�nition 10 (�-equivalence of terms). The �-equivalence of two terms t
and u (t ��u) is de�ned as

t ��u
def
= t [ ]�[ ]

� u

Thus we have de�ned �-equivalence between terms without appeal to sub-
stitution. Despite the brevity of the substitution-based de�nition (1), we believe
that this is actually simpler, without hidden subtleties.

It is not hard to prove in HOL that this relation is reexive, symmetric,
and transitive (theorems ALPHA REFL, ALPHA SYM, ALPHA TRANS). Given this �-
equivalence relation, we can now form the pure lambda calculus as a quotient.
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4 The Pure Lambda Calculus

We de�ne the new type of terms of the pure lambda calculus as a quotient of
the pre-term type by the �-equivalence relation, isomorphic to de Bruijn terms.

De�nition 11. �
def
= �1=��

This is accomplished in HOL by a new package to de�ne quotient types [6].

val term_QUOTIENT =

define_quotient_type "term" "term_ABS" "term_REP"

ALPHA_REFL ALPHA_SYM ALPHA_TRANS;

The function define quotient type de�nes the new type term based on the
reexive, symmetric, and transitive properties of the equivalence relation. It also
de�nes two new functions, an abstraction function term ABS to map from term1

to term, with notation btc, and a representation function term REP to map from a
term to a (�xed) representative term1, with notation dte. define quotient type

returns a theorem term QUOTIENT that completely characterizes these functions:

Theorem 12 (Abstraction/representation mappings for terms).

(8a: bdaec = a) ^ (8r r0: r �� r0 , (brc = br0c))

The package also provides functions to prove various other results directly
from this theorem, for example,

` 8r: dbrce �� r ` 8a1 a2: (a1 = a2), (da1e �� da2e)

In addition to creating the new type term (which we abbreviate �), we need
to recreate the logical environment, with all de�ned constants and theorems that
existed for �1, except for �-equivalence which is represented in � by equality.

First, using these abstraction and representation functions and the original
constructor functions, we de�ne the corresponding pure constructor functions.

De�nition 13 (Term constructors).

Var x
def
= bVar1 xc

App t u
def
= bApp1 dte duec

Lam x t
def
= bLam1 x dtec

Now we recreate in � functions corresponding to those in �1. However, a
technical problem arises; not every function de�nable in �1 can be realized in
�. In particular, the function must respect �-equivalence in the following sense:
if the function is called twice with arguments which are �-equivalent, then the
results should be �-equivalent. Of course, if the result type is not �1, the results
should be equal. We call such a function respectful.



The Church-Rosser Theorem in Higher Order Logic 7

Recreating a function de�nition in � takes three steps; �rst, prove that the
function respects �-equivalence, then de�ne the new function using the abstrac-
tion and representation functions, and �nally prove as a theorem in � the same
form of the de�nition in �1. This pattern is repeated for every function we wish
to recreate in �. Proving respectfulness may be arbitrarily diÆcult.

Lemma 14. t1
xs�ys

� t2 ^ x 2 FV1 t1 ) 9y: y 2 FV1 t2 ^ x xs
var�

ys
� y

Proof: by strong rule induction on t1
xs�ys

� t2, and de�nitions 3 and 7.

De�nition 15 (Free variables of a term).

Respectfulness: t1 �� t2 ) (FV1 t1 = FV1 t2)

De�nition: FV t
def
= FV1 dte

Recreated
de�nition:

FV(x) = fxg
FV(t u) = FV t [ FV u
FV(�x: u) = FV u� fxg

The respectfulness theorem is proven using de�nition 10, the symmetry of
xs�ys

� , lemma 14, and the de�nition of FV1. The recreated de�nition is proven
using respectfulness, the de�nition, and the original de�nition in �1.

The HEIGHT function is recreated in an exactly analogous way. where re-
spectfulness is proven by an easy rule induction on t1

xs�ys
� t2.

With substitution things become more complex. The �rst task is to model
the type of substitutions in �. Without going into the details, we extend the
�-equivalence relation in the obvious way �rst to pairs of a variable and a term
(�pair

� ), and then to lists of such pairs (�subst
� ). The quotient package [6] pro-

vides tools to create the appropriate mapping functions between the �1 and �
substitution types. We will use the same bsc and dse notation for the mappings
between the substitution types. These tools maintain the pair and list structure,
so substitutions may be considered de�ned by list recursion, with constructors.

De�nition 16 (Substitution constructors in �).

(x := e) :: s
def
= b(x := dee) :: dsec

[ ]
def
= b[ ]c

From this we can derive the standard characterization as in theorem 12.

De�nition 17 (Substitution on a variable).

Respectfulness: s1 �
subst
� s2 ) y �v

1 s1 �� y �v
1 s2

De�nition: y �v s
def
= by �v

1 dsec
Recreated

de�nition:
y �v ((x := e) :: s) = if y = x then e else y �v s
y �v [ ] = Var y

Respectfulness is proven by list induction on the substitutions, the reexivity of
��, the de�nition of �subst

� , and de�nition 4. The recreated de�nition is proven
from the de�nition above and de�nitions 4 and 16. Analogous to SUB1, we de�ne
SUB s y = y �v s as a curried pre�x version of �v.
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Lemma 18. (FV Æ SUB s) = (FV1 Æ SUB1dse)

Proof: By the de�nitions of SUB and SUB1, we need to prove FV(x �v s) =
FV1(x�

v
1dse). By de�nitions 15 and 17, this is FV1(dbx�

v
1dsece) = FV1(x�

v
1dse).

By the respectfulness of FV1, this follows from dbx�v
1 dsece �� x�v

1 dse. This
is true by theorem 12.

De�nition 19 (Free variables of a substitution on a set of variables).

Respectfulness: s1 �
subst
� s2 ) FVsubst1 s1 r = FVsubst1 s2 r

De�nition: FVsubst s r
def
= FVsubst1 dse r

Recreated de�nition: FVsubst s r =
S
(image (FV Æ SUB s) r)

Respectfulness is proven by de�nition 5, the respectfulness of �v
1 and FV1, and

from de�nitions 15 and 17. The recreated de�nition is proven by the de�nition
above, de�nition 5, and lemma 18.

Before we can de�ne substitution on terms in �, we must �rst prove that
substitution in �1 respects �-equivalence. This has an interesting proof.

Theorem 20. ((kxsk = kysk), (kxs0k = kys0k)) ^
(8x: x 2 FV1 t1 ) x�v

1 [xs := ys] = x�v
1 [xs

0 := ys0]) ^
(8y: y 2 FV1 t2 ) y �v

1 [ys := xs] = y �v
1 [ys

0 := xs0])

) ((t1
xs�ys

� t2), (t1
xs0�ys0

� t2))

Proof: by structural induction on t1. We have three cases:
Case 1. t1 = x. We will prove (t1

xs�ys
� t2), (t1

xs0�ys0

� t2) as a biconditional.
Subcase 1.1 ()) Assume t1

xs�ys
� t2. Then t2 must be of the form y. From

the hypotheses, x �v
1 [xs := ys] = x �v

1 [xs0 := ys0] and y �v
1 [ys := xs] =

y�v
1[ys

0 := xs0]. Then by lemma 8, (x xs
var�

ys
� y), (x xs0

var�
ys0

� y), so (x xs�ys
� y),

(x xs0�ys0

� y), and (t1
xs�ys

� t2), (t1
xs0�ys0

� t2). Subcase 1.2 (() Symmetrical.
Case 2. t1 = t u.
Subcase 2.1 ()) Assume t1

xs�ys
� t2. Then t2 must be of the form t0 u0.

From the inductive hypotheses, (t xs�ys
� t0), (t xs

0

�ys0

� t0) and (u xs�ys
� u0),

(u xs0�ys0

� u0). Then (t u xs�ys
� t0 u0), (t u xs0�ys0

� t0 u0) by de�nition 9 and so
(t1

xs�ys
� t2), (t1

xs0�ys0

� t2). Subcase 2.2 (() Symmetrical.
Case 3. t1 = �x: t.
Subcase 3.1 ()) Assume t1

xs�ys
� t2. Then t2 must be of the form t2 = �y: u.

By de�nition 9, t x::xs�y::ys
� u, and we need to show t x::xs0�y::ys0

� u. From the
inductive hypothesis, (t x::xs�y::ys

� u), (t x::xs
0

�y::ys0

� u) if

((kx :: xsk = ky :: ysk), (kx :: xs0k = ky :: ys0k)) ^
(8x0: x0 2 FV1 t ) x0

�
v
1 [x :: xs := y :: ys] = x0

�
v
1 [x :: xs0 := y :: ys0]) ^

(8y0: y0 2 FV1 u ) y0 �v
1 [y :: ys := x :: xs] = y0 �v

1 [y :: ys
0 := x :: xs0])

The �rst conjunct clearly follows from the hypotheses. For the other conjuncts,
if x0 = x, then both substitutions on x0 yield y. Likewise if y0 = y, then both
substitutions on y0 yield x. If x0 6= x or y0 6= y, then the substitutions simplify to
the cases covered by the hypotheses, as then x0 2 FV1(�x: t) or y

0 2 FV1(�y: u).
Subcase 3.2 (() Symmetrical.
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Corollary 21. �(x 2 FV1 t1) ^ �(y 2 FV1 t2)) (t1
x::xs�y::ys

� t2 , t1
xs�ys

� t2)

Proof: Directly from theorem 20, whose antecedents are proved by de�nition 4.

De�nition 22. This 8-argument notation contextually relates two substitutions
s1, s2 on sets of variables r1, r2, relative to before/after contexts on both sides.

s1 � r1
xs0

xs �
ys0

ys r2 � s2
def
= (kxs0k = kys0k) ^

(8x y: x 2 r1 ^ y 2 r2 ^ x xs
var�

ys
� y )

(x�v
1 s1)

xs0�ys0

� (y �v
1 s2))

Theorem 23 (Contextual respectfulness of substitution).

t1
xs�ys

� t2 ^ s1 � (FV1 t1)
xs0

xs �
ys0

ys (FV1 t2) � s2 )

(t1 �1 s1)
xs0�ys0

� (t2 �1 s2)

Proof: by strong rule induction on t1
xs�ys

� t2. There are three cases.
Case 1. We have x xs�ys

� y and s1 � fxg xs0

xs �
ys0

ys fyg � s2, and so x xs
var�

ys
� y

by de�nition 9 and then (x�v
1 s1)

xs0�ys0

� (y�v
1 s2) by de�nition 22. The goal is

(x�1 s1)
xs0�ys0

� (y �1 s2), which follows by de�nition 6.
Case 2. u1 v1

xs�ys
� u2 v2, so u1

xs�ys
� u2, v1

xs�ys
� v2 by de�nition 9, and

s1 � (FV1 u1 [ FV1 v1)
xs0

xs �
ys0

ys (FV1 u2 [ FV1 v2) � s2:

By de�nition 22, this implies s1 � FV1 u1
xs0

xs �
ys0

ys FV1 u2 � s2 and

s1 � FV1 v1
xs0

xs �
ys0

ys FV1 v2 � s2. The goal to be shown is

(u1 v1 �1 s1)
xs0�ys0

� (u2 v2 �1 s2) (goal)

, (u1 �1 s1) (v1 �1 s1)
xs0�ys0

� (u2 �1 s2) (v2 �1 s2) (defn: 6)

, (u1 �1 s1)
xs0�ys0

� (u2 �1 s2) ^ (v1 �1 s1)
xs0�ys0

� (v1 �1 s2) (defn: 9)

These last two conjuncts are implied by the inductive hypotheses.
Case 3. �x: u1

xs�ys
� �y: u2, so u1

x::xs�y::ys
� u2, and we also have

s1 � (FV1 u1 � fxg) xs
0

xs �
ys0

ys (FV1 u2 � fyg) � s2: (1)

The goal is (�x: u1�1 s1)
xs0�ys0

� (�y: u2�1 s2). According to de�nition 6, let x0

and y0 be the new bound variables replacing x and y induced by the substitutions
s1 and s2. Then by de�nition 9 the goal becomes

(u1 �1 ((x := x0) :: s1))
x0::xs0�y0::ys0

� (u2 �1 ((y := y0) :: s2))

Using the inductive hypothesis, it suÆces to prove

((x := x0) :: s1) � (FV1 u1)
x0::xs0

x::xs �y0::ys0

y::ys (FV1 u2) � ((y := y0) :: s2)

Opening up this goal and (1) above by de�nition 22, this means that given

8x00 y00: x00 2 FV1 u1 � fxg ^ y00 2 FV1 u2 � fyg ^ x00 xs
var�

ys
� y00 ) (2)

(x00
�
v
1 s1)

xs0�ys0

� (y00 �v
1 s2)
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we must prove

8x00 y00: x00 2 FV1 u1 ^ y00 2 FV1 u2 ^ x00 x::xs
var �y::ys

� y00 )

(x00
�
v
1 ((x := x0) :: s1))

x0::xs0�y0::ys0

� (y00 �v
1 ((y := y0) :: s2))

This is proven by taking four cases on whether or not x00 = x or y00 = y. If both
are equal, the goal's consequent is true by de�nitions 4, 7, and 9. If one is equal
and the other not, then the antecedent is false by de�nition 7. If both are not
equal, then the goal simpli�es using those de�nitions and corollary 21 to

x00 2 FV1 u1 ^ y00 2 FV1 u2 ^ x00 xs
var�

ys
� y00 )

(x00
�
v
1 s1)

xs0�ys0

� (y00 �v
1 s2)

and since x00 6= x and y00 6= y, this is proven by (2). Corollary 21 applies because
x0 and y0 were chosen by variant not in the free variables of u1�1 s1 and u2�1 s2.

Corollary 24 (Respectfulness of substitution).

t1 �� t2 ^ (8x: x 2 FV1 t1 ) (x �v
1 s1) �� (x�v

1 s2)) )
(t1 �1 s1) �� (t2 �1 s2)

Proof: directly from theorem 23 and de�nition 22 with empty variable lists.
Because of the respectfulness of FV1, FV1 t1 = FV1 t2.

This enables us to recreate the de�nition of substitution on terms in �.

De�nition 25 (Substitution on terms).

Respectfulness: t1 �� t2 ^ s1 �
subst
� s2 ) t1 �1 s1 �� t2 �1 s2

De�nition: t� s
def
= bdte�1 dsec

Recreated de�nition:
x� s = x�v s
(t u)� s = (t� s) (u� s)
(�x: u)� s = let x0 = variant x (FVsubst s (FV u� fxg)) in

�x0: (u� ((x := x0) :: s))

Respectfulness is proven from corollary 24. The recreated de�nition is proven
from respectfulness, theorem 12, and the de�nitions.

In addition to recreating these function de�nitions, we have also recreated the
theorems for induction, cases, and distinctiveness and one-to-one of constructors,
but not existence. For the most part these are direct analogs of �1, except for:

Theorem 26. (�x1: t1 = �x2: t2) ,
(t1� [x1 := x2] = t2) ^ (t2� [x2 := x1] = t1):

The proof is extensive and omitted for space.
In addition to the normal induction theorem, we have also proven a theorem

for induction on the height of a term. This will be frequently used.

Theorem 27 (Term height induction).

` 8P: (8x: P (x)) ^
(8t u: P t ^ P u ) P (t u)) ^
(8t: (8t0: HEIGHT t = HEIGHT t0 ) P t0) ) 8x: P (�x: t))
) (8t: P t)
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5 Barendregt Variable Convention

Barendregt [1] is the most encyclopedic compilation of lambda calculus theory,
and has been widely studied. He raises the issues of capture of bound variables
and the fallacies that may result, but then removes those issues by declaring
what has become known as the Barendregt Variable Convention (BVC):

\2.1.12. Convention. Terms that are �-congruent are identi�ed. : : : "
\2.1.13. Variable convention. If M1, : : : , Mn occur in a certain mathe-

matical context (e.g. de�nition, proof), then in these terms all bound variables
are chosen to be di�erent from the free variables. : : : "

\2.1.14. Moral. Using conventions 2.1.12 and 2.1.13 one can work with �-
terms in the naive way. Naive means that substitutions and other operations on
terms can be performed without questioning whether they are allowed."

This convention greatly simpli�es the proof of the Church-Rosser theorem.
However, at �rst glance, it appears to simply ignore the issues of capture, and
some have claimed this may be unsound. [11] presents a \rational reconstruction
of the BVC." In contrast, we have found a way to conduct proofs in the style
of the BVC using a special-purpose tactic we have written. This tactic �rst
searches the entire proof state for all free variables, then searches the current
goal for occurrences of abstractions (�x: M), chooses new bound variables for
the abstractions not appearing in the free variables, shifts the abstractions to
the new variables, and �nally moves substitutions inside the abstractions.

Here is an example of its use to prove Barendregt's Substitution Lemma.

Lemma 28 (Substitution lemma). If x 6= y and x =2 FV L, then

M � [x := N ]� [y := L] = M � [y := L]� [x := N � [y := L]]

Proof: by height induction on the structure of M . There are three cases.
Case 1. M is a variable z. Take cases on z = x, z = y, or neither (see [1]).
Case 2. M = M1 M2. Then the statement follows from the induction hy-

potheses and the de�nition of substitution.
Case 3. M = �x0: M1. The resulting goal in HOL is

Lam x' M <[ [(x,N)] <[ [(y,L)] =

Lam x' M <[ [(y,L)] <[ [(x,N <[ [(y,L)])]

------------------------------------

0. !t'.

(HEIGHT M = HEIGHT t') ==>

~(x = y) /\ ~(x IN FV L) ==>

(t' <[ [(x,N)] <[ [(y,L)] = t' <[ [(y,L)] <[ [(x,N <[ [(y,L)])])

1. ~(x = y)

2. ~(x IN FV L)

The special tactic SIMPLE SUBST TAC (no arguments) converts this to the goal

Lam z (M' <[ [(x,N)] <[ [(y,L)]) =

Lam z (M' <[ [(y,L)] <[ [(x,N <[ [(y,L)])])

------------------------------------
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0. !t'.

(HEIGHT M = HEIGHT t') ==>

~(x = y) /\ ~(x IN FV L) ==>

(t' <[ [(x,N)] <[ [(y,L)] = t' <[ [(y,L)] <[ [(x,N <[ [(y,L)])])

1. ~(x = y)

2. ~(x IN FV L)

3. ~(z = x')

4. ~(z IN FV N)

5. ~(z IN FV L)

6. ~(z = y)

7. ~(z = x)

8. ~(z IN FV M)

9. ~(z IN FV M DIFF {x'})

10. ~(x = y) /\ ~(x IN FV L) ==>

(M' <[ [(x,N)] <[ [(y,L)] = M' <[ [(y,L)] <[ [(x,N <[ [(y,L)])])

11. HEIGHT M = HEIGHT M'

12. Lam x' M = Lam z M'

The abstraction �x0: M has been shifted to �z: M 0, where z andM 0 are new.
This is stated directly in (12). z has been chosen so as to avoid all free variables
present in the proof, as is seen in (3) through (9). (10) is the specialization of
the height inductive hypothesis (0) for M 0, and simpli�ed by (11). Most impor-
tantly, for this choice of z and M 0, the substitutions may be treated naively, as
is accomplished in the goal, where they have penetrated to the bodies of the
abstractions with no concerns about capture, \in the naive way."

To �nish the proof, resolve (10) with (1) and (2) and rewrite the goal.
This achieves almost the same ease and simplicity of reasoning as the BVC,

requiring only that we use height induction and that we shift the abstractions
away from possible captures with SIMPLE SUBST TAC.

6 Reduction

Following Barendregt [1] section 3.1, we consider reduction in a general setting.

De�nition 29. A binary relation R on � is compatible (with the operations) if
for all M , M 0, Z 2 �, x 2 var,

RM M 0 ) R(Z M)(Z M 0) ^ R(M Z)(M 0 Z) ^ R(�x: M)(�x: M 0)

De�nition 30. � is de�ned by rule induction, by the single rule

� ((�x: M) N) (M � [x := N ])

De�nition 31. If � is a binary relation, the reexive closure of � (notation:
�=) is the least relation extending � that is reexive. The transitive closure
(notation: ��) is de�ned similarly. �=� is the reexive, transitive closure.

Each closure has its own inductive principle for proofs.
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De�nition 32. Let R be a notion of reduction on �, that is, a binary relation
on �. Then R induces the binary relations

!R one step R-reduction,
�R R-reduction and
=R R-equality,

inductively de�ned by rules as follows.
!R is the compatible closure of R:

R M N

M !R N

M !R N

Z M !R Z N

M !R N

M Z !R N Z

M !R N

�x: M !R �x: N
:

�R is the reexive, transitive closure of !R:

M !R N

M �R N M �R M

M �R N ; N �R L

M �R L
:

=R is the equivalence relation generated by �R:

M �R N

M =R N

M =R N

N =R M

M =R N ; N =R L

M =R L
:

These relations are de�ned in HOL with Myra VanInwegen's rule induction pack-
age [6]. In addition to the weak and strong rule induction principles provided,
we have also proved height-based generalizations of these.

De�nition 33 (Diamond property). Let � be a binary relation on a set.
Then � satis�es the diamond property (notation � j= �) if

8M M1 M2: M �M1 ^ M �M2 ) 9M3: M1 �M3 ^ M2 �M3

De�nition 34 (Church-Rosser). A notion of reduction R is Church-Rosser
(CR) if �R satis�es the diamond property (�R j= �).

7 The Church-Rosser Theorem

We follow Barendregt's presentation [1] of the proof by Tait and Martin-L�of.

Theorem 35. Let � be a binary relation on a set. Then � j= � ) �� j= �.

Proof: by two nested inductions on the transitive relation.

De�nition 36 (Parallel reduction). Let q! be de�ned by the rules

(1) M q!M (3)
M q!M 0 ; N q!N 0

M N q!M 0 N 0

(2) M q!M 0

�x: M q! �x: M 0
(4)

M q!M 0 ; N q!N 0

(�x: M) N q! M 0
� [x := N 0]

:

This de�nition is accompanied by strong and weak rule induction principles. In
addition, we prove height-based generalizations of these principles.
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Lemma 37. (�x: t1 = �y: t2) ) (t1 � [x := u] = t2 � [y := u])

Proof: By theorem 26 eliminate t1, then use height structural induction on t2.

Theorem 38. N q!N 0 ) M � [x := N ] q!M � [x := N 0].

Proof: by height induction on the structure of M . There are three cases:
Case 1. Show y � [x := N ] q! y � [x := N 0]. If y = x, then this simpli�es to

N q!N 0, which is given. If y 6= x, it becomes y q! y, true by de�nition 36(1).
Case 2. Show t u� [x := N ] q! t u� [x := N 0]. By the inductive hypotheses,

t � [x := N ] q! t � [x := N 0] and u� [x := N ] q! u� [x := N 0]. Then the goal
follows by de�nitions 6 and 36(3).

Case 3. Show �y: t � [x := N ] q! �y: t � [x := N 0]. We shift �y: t to
�y0: t0 such that capture cannot occur (as done in lemma 28). Then the goal
is �y0: (t0 � [x := N ]) q! �y0: (t0 � [x := N 0]). The inductive hypothesis gives us
t0 � [x := N ] q! t0 � [x := N 0]. The goal is solved by this and de�nition 36(2).

Lemma 39. (�x: t1 = �y: t01) ^ t1 q! t2 ) (�x: t2 = �y: (t2 � [x := y]))

Proof: The conclusion is true if y =2 FV(�x: t2). From t1 q! t2, FV t2 � FV t1, so
it suÆces if y =2 FV(�x: t1). This follows from �x: t1 = �y: t01.

Lemma 40. (�x: t1 = �y: t01) ^ t1 q! t2 ) t01 q! t2 � [x := y].

Proof: by theorem 26, t01 = t1 � [x := y]; rewrite the above goal as t1 q! t2 )
t1� [x := y] q! t2� [x := y] and prove by height strong rule induction on t1 q! t2.

Theorem 41. M q!M 0 ^ N q!N 0 ) M � [x := N ] q!M 0
� [x := N 0].

Proof: by height strong rule induction on M q!M 0.
Case 1. M q!M 0 is M q!M . Then the goal follows from theorem 38.
Case 2. M q! M 0 is t1 u1 q! t2 u2, and is a direct consequence of t1 q!

t2, u1 q! u2. By the inductive hypotheses, t1 � [x := N ] q! t2 � [x := N 0]
and u1 � [x := N ] q! u2 � [x := N 0]. Then (t1 � [x := N ]) (u1 � [x := N ]) q!
(t2 � [x := N 0]) (u2 � [x := N 0]), which is M � [x := N ] q!M 0

� [x := N 0].
Case 3. M q!M 0 is (�y: t1) u1 q! t2 � [y := u2], and is a direct consequence

of t1 q! t2, u1 q! u2. We shift �y: t1 to �z: t01 to avoid capture. By t1 q! t2 and
lemmas 39 and 40, �y: t2 = �z: t02 and t01 q! t02, where t

0

2 = t2 � [y := z]. Then

M � [x := N ] = (�y: t1) u1 � [x := N ]
= (�z: (t01 � [x := N ])) (u1 � [x := N ])
q! t02 � [x := N 0]� [z := u2 � [x := N 0]] (1)
= t02 � [z := u2]� [x := N 0] (2)
= t2 � [y := u2]� [x := N 0] (3)
= M 0

� [x := N 0]:

Notes: (1) by the induction hypotheses on t01 q! t02 and u1 q! u2, and defn. 36(4).
(2) by lemma 28, since by choice of z, z 6= x and z =2 FV N 0.
(3) by lemma 37, t2 � [y := u2] = t02 � [z := u2], since �y: t2 = �z: t02.
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Case 4. M q!M 0 is �y: t1 q!�y: t2, and is a direct consequence of t1 q! t2. We
shift the abstractions to �z: t01 and �z: t02 so no captures can occur. By lemma
40 and t1 q! t2, we have t

0

1 q! t2 � [y := z]. By theorem 26, t2 � [y := z] = t02, so
t01 q! t02. The ind. hyp. on t01 q! t02 gives us t01 � [x := N ] q! t02 � [x := N 0]. Then

M � [x := N ] = (�y: t1)� [x := N ]
= �z: (t01 � [x := N ])
q! �z: (t02 � [x := N 0]) by de�nition 36(2)
= (�y: t2)� [x := N 0]
= M 0

� [x := N 0]:

Lemma 42. (i) x q! t2 ) t2 = x
(ii) t u q! t2 )

(9t0 u0: t2 = t0 u0 ^ t q! t0 ^ u q! u0) _
(9x t1 t

0

1 u
0: t = �x: t1 ^ t2 = t01 � [x := u0] ^ t1 q! t01 ^ u q! u0)

(iii) �x: t q! t2 ) (9t0: t2 = �x: t0 ^ t q! t0)

Proof: by an easy application of the inversion theorems of the de�nition of q!.
For (iii), we have �x: t = �x0: t01, t2 = �x0: t02, and t01 q! t02. Then by lemmas 39
and 40 with t01 q! t02, we can take t0 = t02 � [x0 := x].

Theorem 43. q! satis�es the diamond property ( q! j= �).

Proof: by strong rule induction onM q!M1 it will be shown that for allM q!M2

there is a M3 such that M1 q!M3 and M2 q!M3.
Case 1. M q!M1 because M =M1. Then we can take M3 =M2.
Case 2. M q!M1 is �x: t q!�x: t0 and is a direct consequence of t q! t0. Then

by lemma 42(iii), M2 = �x: t00. By the induction hypothesis there is a term t000

such that t0 q! t000 and t00 q! t000, and we can take M3 = �x: t000.
Case 3. M q!M1 is t u q! t0 u0 and is a direct consequence of t q! t0, u q! u0.

By lemma 42(ii), there are two subcases.
Subcase 3.1. M2 = t00 u00 with t q! t00, u q!u00. Using the induction hypotheses

in the obvious way gives us t000 and u000 with t0 q! t000, t00 q! t000, and similarly for
the u's. Then we can take M3 = t000 u000.

Subcase 3.2. t = �x: t1, M2 = t001 � [x := u00] and t1 q! t001 , u q! u00. By lemma
42(iii), we have t0 = �x: t01 with t1 q! t01. By the de�nition of q!, �x: t1 q!�x: t001 .
which with the induction hypothesis for t q! t0, gives us t000 with �x: t01 q! t000,
�x: t001 q! t000. By lemma 42(iii), t000 = �x: t0001 with t01 q! t0001 and t001 q! t0001 . The
induction hypothesis for u q! u0 gives us u000 with u0

q! u000, u00
q! u000. Then by

theorem 41, we can take M3 = t0001 � [x := u000].
Case 4. M q!M1 is (�x: t) u q! t0 � [x := u0] and is a direct consequence of

t q! t0, u q! u0. Again, there are two subcases.
Subcase 4.1. M2 = (�x: t00) u00 with t q! t00, u q! u00. Using the induction

hypotheses in the obvious way give us t000, u000. Then by theorem 41, we can take
M3 = t000 � [x := u000].

Subcase 4.2. M2 = t001 � [x1 := u00] with t1 q! t001 , u q! u00, and �x: t = �x1: t1.
By lemmas 39 and 40, �x: t00 = �x1: t

00

1 and t q! t00 where t00 = t001 � [x1 := x].
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Using the induction hypotheses in the evident way gives us t000 and u000 with
t0 q! t000, t00 q! t000, u0

q! u000, u00
q! u000. Since �x: t00 = �x1: t

00

1 , by lemma 37 we
have t001 � [x1 := u00] = t00 � [x := u00], and then by theorem 41 we can take
M3 = t000 � [x := u000].

The above �lls an omission by Barendregt. Though M = (�x: t) u be the
same in M q!M1 and M q!M2, the x's and t's may be di�erent.

Theorem 44. �� is the transitive closure of q! (�� = q!�).

Proof: Note that as relations!=

� � q! ��� . Since�� is the transitive closure
of!=

� , so it is of q!. The HOL proof [6] uses 12 lemmas and theorems to support
this, but for reasons of space, here we give only Barendregt's justi�cation.

Theorem 45 (The Church-Rosser Theorem). � is CR.

Proof: by de�nition 34 and theorems 35, 43, and 44.

8 Summary and Conclusions

This proof of the Church-Rosser theorem modeled a name-carrying syntax, which
is relevant to practical programming languages. We separated two concerns,
where �-equivalence and �-reduction were analyzed in two distinct layers. As in
[2], this modularized and simpli�ed the proof over some previous e�orts.

Although not described here, the development has been extended with ease
to �-reduction and ��-reduction. This is an example of the simplicity that comes
from a separation of concerns, enabled by the quotient library [6].

Soli Deo Gloria.
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