
A Design Structure for Higher Order Quotients

Peter V. Homeier

U. S. Department of Defense
palantir@trustworthytools.com, http://www.trustworthytools.com

Abstract. The quotient operation is a standard feature of set theory,
where a set is partitioned into subsets by an equivalence relation. We
reinterpret this idea for higher order logic, where types are divided by
an equivalence relation to create new types, called quotient types. We
present a design to mechanically construct quotient types as new types
in the logic, and to support the automatic lifting of constants and theo-
rems about the original types to corresponding constants and theorems
about the quotient types. This design exceeds the functionality of Har-
rison’s package, creating quotients of multiple mutually recursive types
simultaneously, and supporting the equivalence of aggregate types, such
as lists and pairs. Most importantly, this design supports the creation of
higher order quotients, which enable the automatic lifting of theorems
with quantification over functions of any higher order.

1 Introduction

The quotient operation is a standard feature of mathematics, including set theory
and abstract algebra. It provides a way to cleanly identify elements that previ-
ously were distinct. This simplifies the system by removing unneeded structure.

Traditionally, quotients [4] have found many applications. Classic examples
are the construction of the integers from pairs of non-negative natural numbers,
or the rationals from pairs of integers. In the lambda calculus [1], it is common
to identify terms which are alpha-equivalent, that differ only by the choice of
local names used by binding operators. Other examples include the construction
of bags from lists by ignoring order, and sets from bags by ignoring duplicates.

The ubiquity of quotients has recommended their investigation within the
field of mechanical theorem proving. The first to appear was Ton Kalker’s 1989
package for HOL88 [11]. Isabelle/HOL [14] has mechanical support for the cre-
ation of higher order quotients by Oscar Slotosch [19], using partial equivalence
relations represented as a type class, with equivalence relations as a subclass.
That system provides a definitional framework for establishing quotient types,
including higher order. Independently, Larry Paulson has shown a construction
of first-order quotients in Isabelle without any use of the Hilbert choice operator
[17]. PVS uses quotients to support theory interpretations [15]. MetaPRL has
quotients in its foundations, as a type with a new equality [16]. Coq, based on
the Calculus of Constructions [9], supports first order quotients [5] but has some
difficulties with higher order [3]. These systems provide little automatic support.
In particular, there is no automatic lifting of constants or theorems.

John Harrison has developed a package for the HOL theorem prover which
supports first order quotients, including automation to define new quotient types
and to lift to the quotient level both constants and theorems previously estab-
lished [8]. This automatic lifting is key to practical support for quotients. A quo-
tient of a group would be incomplete without also mapping the original group
operation to a corresponding one for the quotient group. Similarly, theorems
about the group which are independent of the equivalence relation should also
be true of the quotient group. Mechanizing this lifting is vital for avoiding the
repetition of proofs at the higher level which were already proved at the lower
level. Such automation is not only practical, but mathematically incisive.

Despite the quality of Harrison’s excellent package, it does have limitations.
It can only lift one type at a time, and does not deal with aggregate types,
such as lists or pairs involving types being lifted, which makes it difficult to lift
a family of mutually nested recursive types. Most importantly, it is limited to
lifting only first order theorems, where quantification is permitted over the type
being lifted, but not over functions or predicates involving the type being lifted.

In this paper we describe a design for a new package for quotients [10] for the
Higher Order Logic theorem prover that meets all these concerns. It provides
a tool for lifting multiple types across multiple equivalence relations simultane-
ously. Aggregate equivalence relations are produced and used automatically. But
most significantly, this package supports the automatic lifting of theorems that
involve higher order functions, including quantification, of any finite order. This
is possible through the use of partial equivalence relations [2, 18], as a possibly
non-reflexive variant of equivalence relations, enabling the creation of quotients
of function types. The relationship between these partial equivalence relations
and their associated abstraction and representation functions (mapping between
the lower and higher types) is expressed in quotient theorems, which are central.

The precise definition in section 3 of the quotient relationship between the
original and lifted types, and the proof in section 5.2 of that relationship’s preser-
vation for a function type, given existing quotients for the function’s domain and
range, are the heart of this paper, and are presented in full detail. These form the
core theory that justifies the treatment of all higher order functions, including
higher order universal, existential, and unique existential quantification.

The structure of this paper is as follows. Section 2 discusses equivalence
relations and their extensions. Section 3 defines partial equivalence relations
and quotient theorems. Section 4 shows the construction of a new quotient type
in HOL. Section 5 explains the extension of quotients for aggregate and function
types. Section 6 explores an alternative design that avoids use of the Axiom of
Choice. Section 7 touches on highlights of the implementation and its required
inputs. Section 8 exhibits an example. Finally, section 9 presents our conclusions.

We thank the TPHOLs referees for their cogent and constructive comments.
We are grateful for the helpful comments and suggestions made by Rob Arthan,
Randolph Johnson, Sylvan Pinsky, Yvonne V. Shashoua, and Konrad Slind,
and especially Michael Mislove for identifying partial equivalence relations, and
William Schneeberger for the key idea in the proof of Theorem 19.

2 Equivalence Relations and Equivalence Theorems

Before considering quotients, we examine equivalence relations, on which such
traditional quotients as those mentioned in the introduction have been based.

Let τ be any type. A binary relation R on τ can be represented in HOL as a
curried function of type τ → (τ → bool). We will take advantage of the curried
nature of R, where R x y = (R x) y.

An equivalence relation is a binary relation E satisfying

reflexivity: ∀x : τ. E x x
symmetry: ∀x y : τ. E x y ⇒ E y x
transitivity: ∀x y z : τ. E x y ∧ E y z ⇒ E x z

These three properties are encompassed in the equivalence property:

equivalence: EQUIV E
def= ∀x y : τ. E x y ⇔ (E x = E y)

A theorem of the form ` EQUIV E is called an equivalence theorem on type τ .

2.1 Equivalence Extension Theorems

Given an equivalence relation E : τ → τ → bool on values of type τ , there is a
natural extension of E to values of lists of τ . This is expressed as LIST REL E ,
which forms an equivalence relation of type τ list→ τ list→ bool. Similarly,
equivalence relations on pairs, sums, and options may be formed from their
constituent types’ equivalence relations by the following operators.

Type Operator Type of operator

list LIST REL : (’a -> ’a -> bool) ->
’a list -> ’a list -> bool

pair ### : (’a -> ’a -> bool) -> (’b -> ’b -> bool) ->
’a # ’b -> ’a # ’b -> bool

sum +++ : (’a -> ’a -> bool) -> (’b -> ’b -> bool) ->
’a + ’b -> ’a + ’b -> bool

option OPTION REL : (’a -> ’a -> bool) ->
’a option -> ’a option -> bool

These operators are easily defined in the expected way [10]. They are used
to build an equivalence relation with a structure analogous to the type operator
structure of the type of the elements compared by the relation.

Using these relation extension operators, the aggregate type operators list,
prod, sum, and option have the following equivalence extension theorems:

LIST EQUIV: ` ∀E. EQUIV E ⇒ EQUIV (LIST REL E)
PAIR EQUIV: ` ∀E1 E2. EQUIV E1 ⇒ EQUIV E2 ⇒ EQUIV (E1 ### E2)
SUM EQUIV: ` ∀E1 E2. EQUIV E1 ⇒ EQUIV E2 ⇒ EQUIV (E1 +++ E2)
OPTION EQUIV: ` ∀E. EQUIV E ⇒ EQUIV (OPTION REL E)

3 Partial Equivalence Relations and Quotient Theorems

In this section we introduce a new definition of the quotient relationship, based
on partial equivalence relations (PERs), related to but different from equiva-
lence relations. Every equivalence relation is a partial equivalence relation, but
not every partial equivalence relation is an equivalence relation. An equivalence
relation is reflexive, symmetric and transitive, while a partial equivalence relation
is symmetric and transitive, but not necessarily reflexive on all of its domain.

Why use partial equivalence relations with a weaker reflexivity condition?
The reason involves forming quotients of higher order types, that is, functions
whose domains or ranges involve types being lifted. Unlike lists and pairs, the
equivalence relations for the domain and range do not naturally extend to a
useful equivalence relation for functions from the domain to the range.

The reason is that not all functions which are elements of the function type
are respectful of the associated equivalence relations, as described in [10]. For
example, given an equivalence relation E : τ → τ → bool, the set of func-
tions from τ to τ may contain a function f? where for some x and y which are
equivalent (E x y), the results of f? are not equivalent (¬(E (f? x) (f? y))).
Such disrespectful functions cannot be worked with; they do not correspond to
any function at the abstract quotient level. Suppose instead that f? did lift.
Let dφe be the lifted version of φ. As df?e is the lifted version of f?, it should
act just like f? on its argument, except that it should not consider the lower
level details that E disregards. Thus ∀u. df?edue = df? ue. Then certainly
∀u v. E u v ⇔ (due = dve), and because E x y, we must have dxe = dye. Ap-
plying df?e to both sides, df?edxe = df?edye. But this implies df? xe = df? ye,
which means that E (f? x) (f? y), which we have said is false, a contradiction.
Therefore such disrespectful functions cannot be lifted, and we must exclude
them. Using partial equivalence relations accomplishes this exclusion.

First, we say an element r respects R if and only if R r r.

Definition 1 (Quotient). A relation R with abstraction function abs and rep-
resentation function rep (between the representation, lower type τ and the ab-
stract, quotient type ξ) is a quotient (notated as 〈R,abs,rep〉) if and only if

(1) ∀a : ξ. abs (rep a) = a
(2) ∀a : ξ. R (rep a) (rep a)
(3) ∀r, s : τ. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)

Property 1 states that rep is a right inverse of abs.
Property 2 states that the range of rep respects R.
Property 3 states that two elements of τ are related by R if and only if each

element respects R and their abstractions are equal.
These three properties (1-3) describe the way the partial equivalence relation

R works together with abs and rep to establish the correct quotient relationship
between the lower type τ and the quotient type ξ. The precise definition of this
quotient relationship is a central contribution of this work. This relationship is
defined in the HOL logic as a new predicate:

QUOTIENT (R:’a -> ’a -> bool) (abs:’a -> ’b) (rep:’b -> ’a) ⇔
(∀a. abs (rep a) = a) ∧
(∀a. R (rep a) (rep a)) ∧
(∀r s. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s))

The relationship that R with abs and rep is a quotient is expressed in HOL as

` QUOTIENT R abs rep .

A theorem of this form is called a quotient theorem. The identity is ` 〈$=, I, I〉.
These three properties support the inference of a quotient theorem for a

function type, given quotient theorems for the domain and the range. This key
inference is central and necessary to enable higher order quotients.

4 Quotient Types

The user may specify a quotient of a type τ by a relation R (written τ/R) by
giving either a theorem that the relation is an equivalence relation, of the form

` ∀x y. R x y ⇔ (R x = R y) , (1)

or one that the relation is a nonempty partial equivalence relation, of the form

` (∃x. R x x) ∧ (∀x y. R x y ⇔ R x x ∧R y y ∧ (R x = R y)) . (2)

In this section we will develop the second, more difficult case. The first follows
immediately. In the following, x, y, r, s : τ , c : τ → bool, and a : τ/R.

New types may be defined in HOL using the function new type definition
[6, sections 18.2.2.3-5]. This function requires us to choose a representing type,
and a predicate on that type denoting a subset that is nonempty.

Definition 2. We define the new quotient type τ/R as isomorphic to the subset
of the representing type τ → bool by the predicate P : (τ → bool) → bool,
where P c

def= ∃x. R x x ∧ (c = R x).

P is nonempty because P (R x) for the x : τ such that R x x by (2). Let ξ = τ/R.
The HOL tool define new type bijections [6] automatically defines a function
absc : (τ → bool) → ξ and its right inverse repc : ξ → (τ → bool) satisfying

Definition 3. (a) ∀a : ξ. absc (repc a) = a
(b) ∀c : τ → bool. P c ⇔ repc (absc c) = c

PER classes are subsets of τ (of type τ → bool) which satisfy P . Then absc

and repc map between the quotient type ξ and PER classes (hence the “c”).

Lemma 4 (repc maps to PER classes). ∀a. P (repc a).

Proof: By Definition 3(a), absc (repc a) = a, so taking the repc of both sides,
repc (absc (repc a)) = repc a. By Definition 3(b), P (repc a). 2

Lemma 5. ∀r. R r r ⇒ (repc (absc (R r)) = R r).

Proof: Assume R r r; then P (R r). By Definition 3(b), the goal follows.

Lemma 6 (absc is one-to-one on PER classes).
∀r s. R r r ⇒ R s s ⇒ (absc (R r) = absc (R s) ⇔ R r = R s).

Proof: Assume R r r and R s s. The right-to-left implication of the biconditional
is trivial. Assume absc (R x) = absc (R y). Applying repc to both sides gives us
repc (absc (R x)) = repc (absc (R y)). Then by Lemma 5 twice, R x = R y. 2

The functions absc and repc map between PER classes of type τ → bool and
the quotient type ξ. Using these functions, we can define new functions abs and
rep between the original type τ and the quotient type ξ as follows.

Definition 7 (Quotient abstraction and representation functions).

abs : τ → ξ abs r
def= absc (R r)

rep : ξ → τ rep a
def= $@ (repc a) (= @r. repc a r)

The @ operator is a higher order version of Hilbert’s choice operator ε [6, 12].
It has type (α → bool) → α, and is usually used as a binder, where $@ P =
@x. P x. (The $ converts an operator to prefix syntax.) @ satisfies the HOL axiom
∀P x. P x ⇒ P ($@ P). Given any predicate P on a type, if any element of the
type satisfies the predicate, then $@ P returns an arbitrary element of that type
which satisfies P . If no element of the type satisfies P , then $@ P will return
simply some arbitrary, unknown element of the type. Such definitions have been
questioned by constructivist critics of the Axiom of Choice. An alternative design
for quotients avoiding the Axiom of Choice is described in section 6.

Lemma 8. ∀r. R r r ⇒ (R ($@ (R r)) = R r).

Proof: The axiom for the @ operator is ∀P x. P x ⇒ P ($@ P). Taking P = R r
and x = r, we have R r r ⇒ R r ($@ R r). Assuming R r r, R r ($@ (R r))
follows. Then by (2), R r ($@ (R r)) implies the equality R r = R ($@ (R r)). 2

Theorem 9. ∀a. abs (rep a) = a

Proof: By Lemma 4 and the definition of P , for each a there exists an r such
that R r r and repc a = R r. Then by Lemma 8, R ($@ (R r)) = R r. Now by
Definition 7, abs (rep a) = absc (R ($@ (repc a))), which simplifies by the above
and Definition 3(a) to a. 2

Theorem 10. ∀a. R (rep a) (rep a).

Proof: As before, for each a there exists an r such that R r r and repc a = R r.

R (rep a) (rep a) ⇔ R ($@ (repc a)) ($@ (repc a)) Definition 7
⇔ R ($@ (R r)) ($@ (R r)) selection of r
⇔ R r ($@ (R r)) Lemma 8
⇔ R ($@ (R r)) r symmetry of R
⇔ R r r ⇔ T Lemma 8, selection of r

2

Theorem 11. ∀r s. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)

Proof: R r s ⇔ R r r ∧ R s s ∧ (R r = R s) (2)
⇔ R r r ∧ R s s ∧ (absc (R r) = absc (R s)) Lemma 6
⇔ R r r ∧ R s s ∧ (abs r = abs s) Definition 7

2

Theorem 12. 〈R, abs, rep〉.

Proof: By Theorems 9, 10, and 11, with Definition 1. 2

5 Aggregate and Higher Order Quotient Theorems

Traditional quotients that lift τ to a set of τ also lift lists of τ to sets of lists of
τ . These sets are isomorphic to lists, but they are not lists. In this design, when
τ is lifted to ξ, then we lift lists of τ to lists of ξ. We preserve the type operator
structure built on top of the types being lifted. Similarly, we want to preserve
polymorphic constants. In a theorem being lifted, we want an occurrence of
HD : τ list→ τ to lift to an occurrence of HD : ξ list→ ξ. If such a constant is
not lifted to itself, the lifted version of the theorem will not look like the original.
Hence Definition 1 was designed to preserve the vital type operator structure.

In the process of lifting constants and theorems, quotient theorems are needed
for each argument and result type of each constant being lifted. For aggregate and
higher order types, the tool automatically proves any needed quotient theorems
from the available quotient theorems for the constituent subtypes. To accomplish
this, the tool uses quotient extension theorems (section 5.2). These are provided
preproven for some standard type operators. For others, new quotient extension
theorems may be manually proven and then included to extend the tool’s power.

5.1 Aggregate and Higher Order PERs and Map Operators

Some aggregate equivalence relation operators have been already described in
section 2, and these can equally be used to build aggregate partial equivalence
relations. In addition, for function types, the following is added:

Type Operator Type of operator

fun ===> : (’a -> ’a -> bool) -> (’b -> ’b -> bool) ->
(’a -> ’b) -> (’a -> ’b) -> bool

Definition 13. (R1 ===> R2) f g ⇔ ∀x y. R1 x y ⇒ R2 (f x) (g y).

Note R1 ===> R2 is not in general an equivalence relation (it is not reflexive).
It is reflexive at a function f , (R1 ===> R2) f f , if and only if f is respectful.

The quotient theorems created for aggregate types involve not only aggregate
partial equivalence relations, but also aggregate abstraction and representation
functions. These are constructed from the component abstraction and represen-
tation functions using the following “map” operators.

Type Operator Type of operator, examples of abs and rep fns

list MAP : (’a -> ’b) -> ’a list -> ’b list
examples: (MAP abs) , (MAP rep)

pair ## : (’a -> ’b) -> (’c -> ’d) ->
’a # ’c -> ’b # ’d

examples: (abs1 ## abs2) , (rep1 ## rep2)

sum ++ : (’a -> ’b) -> (’c -> ’d) ->
’a + ’c -> ’b + ’d

examples: (abs1 ++ abs2) , (rep1 ++ rep2)

option OPTION MAP : (’a -> ’b) -> ’a option -> ’b option
examples: (OPTION MAP abs) , (OPTION MAP rep)

fun --> : (’a -> ’b) -> (’c -> ’d) ->
(’b -> ’c) -> ’a -> ’d

examples: (rep1 --> abs2) , (abs1 --> rep2)

The above operators are easily defined in the expected way [10], if not already
present in standard HOL. The identity quotient map operator is the identity
operator I : α → α. The function map operator definition is of special interest:

Definition 14. (f --> g) h x
def= g (h (f x)).

5.2 Quotient Extension Theorems

Here are the quotient extension theorems for the list, prod, sum, option, and,
most significantly, fun type operators:

LIST QUOTIENT:
` ∀R abs rep. 〈R, abs, rep〉 ⇒ 〈LIST REL R, MAP abs, MAP rep〉

PAIR QUOTIENT:
` ∀R1 abs1 rep1. 〈R1, abs1, rep1〉 ⇒ ∀R2 abs2 rep2. 〈R2, abs2, rep2〉 ⇒

〈R1 ### R2, abs1 ## abs2, rep1 ## rep2〉

SUM QUOTIENT:
` ∀R1 abs1 rep1. 〈R1, abs1, rep1〉 ⇒ ∀R2 abs2 rep2. 〈R2, abs2, rep2〉 ⇒

〈R1 +++ R2, abs1 ++ abs2, rep1 ++ rep2〉

OPTION QUOTIENT:
` ∀R abs rep. 〈R, abs, rep〉 ⇒

〈OPTION REL R, OPTION MAP abs, OPTION MAP rep〉

FUN QUOTIENT:
` ∀R1 abs1 rep1. 〈R1, abs1, rep1〉 ⇒ ∀R2 abs2 rep2. 〈R2, abs2, rep2〉 ⇒

〈R1 ===> R2, rep1 --> abs2, abs1 --> rep2〉

This last theorem is of central and critical importance to forming higher
order quotients. We present here its proof in detail.

Theorem 15 (Function quotients). If relations R1 and R2 with abstraction
functions abs1 and abs2 and representation functions rep1 and rep2, respectively,
are quotients, then R1 ===> R2 with abstraction function rep1 --> abs2 and
representation function abs1 --> rep2 is a quotient.

Proof: We need to prove the three properties of Definition 1:
Property 1. Prove for all a, (rep1 --> abs2) ((abs1 --> rep2) a) = a.

Proof: The equality here is between functions, and by extension, true if for all
values x in a’s domain, (rep1 --> abs2) ((abs1 --> rep2) a) x = a x.
By the definition of -->, this is abs2 ((abs1 --> rep2) a (rep1 x)) = a x, and
then abs2 (rep2 (a (abs1 (rep1 x)))) = a x. By Property 1 of 〈R1,abs1,rep1〉,
abs1 (rep1 x) = x, and by Property 1 of 〈R2,abs2,rep2〉, ∀b. abs2 (rep2 b) = b,
so this reduces to a x = a x, true.

Property 2. Prove (R1 ===> R2) ((abs1 --> rep2) a) ((abs1 --> rep2) a).
Proof: By the definition of ===>, this is
∀x, y. R1 x y ⇒ R2 ((abs1 --> rep2) a x) ((abs1 --> rep2) a y). Assume R1 x y,
and show R2 ((abs1 --> rep2) a x) ((abs1 --> rep2) a y). By the definition of
-->, this is R2 (rep2 (a (abs1 x))) (rep2 (a (abs1 y))). Now since R1 x y, by
Property 3 of 〈R1,abs1,rep1〉, abs1 x = abs1 y. Substituting this into our goal,
we must prove R2 (rep2 (a (abs1 y))) (rep2 (a (abs1 y))). But this is an instance
of Property 2 of 〈R2,abs2,rep2〉, and so the goal is proven.

Property 3. Prove (R1 ===> R2) r s ⇔
(R1 ===> R2) r r ∧ (R1 ===> R2) s s ∧ ((rep1 --> abs2) r = (rep1 --> abs2) s).
The last conjunct on the right side is equality between functions, so by extension
this is (R1 ===> R2) r s ⇔ (R1 ===> R2) r r ∧ (R1 ===> R2) s s ∧

(∀x. (rep1 --> abs2) r x = (rep1 --> abs2) s x).
By the definitions of ===> and -->, this is (1) ⇔ (2) ∧ (3) ∧ (4), where

(1) (∀x y. R1 x y ⇒ R2 (r x) (s y))
(2) (∀x y. R1 x y ⇒ R2 (r x) (r y))
(3) (∀x y. R1 x y ⇒ R2 (s x) (s y))
(4) (∀x. (abs2 (r (rep1 x)) = abs2 (s (rep1 x))).

We prove (1) ⇔ (2) ∧ (3) ∧ (4) as a biconditional with two goals.
Goal 1. (⇒) Assume (1). Then we must prove (2), (3), and (4).
Subgoal 1.1. (Proof of (2)) Assume R1 x y. We must prove R2 (r x) (r y).

From R1 x y and Property 3 of 〈R1,abs1,rep1〉, we also have R1 x x and R1 y
y. From (1) and R1 x y, we have R2 (r x) (s y). From (1) and R1 y y, we have
R2 (r y) (s y). Then by symmetry and transitivity of R2, the goal is proven.

Subgoal 1.2. (Proof of (3)) Similar to the previous subgoal.

Subgoal 1.3. (Proof of (4)) R1 (rep1 x) (rep1 x) follows from Property 2 of
〈R1,abs1,rep1〉. From (1), we have R2 (r (rep1 x)) (s (rep1 x)). Then the goal
follows from this and the third conjunct of Property 3 of 〈R2,abs2,rep2〉.

Goal 2. (⇐) Assume (2), (3), and (4). We must prove (1). Assume R1 x y.
Then we must prove R2 (r x) (s y). From R1 x y and Property 3 of 〈R1,abs1,rep1〉,
we also have R1 x x, R1 y y, and abs1 x = abs1 y. By Property 3 of 〈R2,abs2,rep2〉,
the goal is R2 (r x) (r x) ∧ R2 (s y) (s y) ∧ abs2 (r x) = abs2 (s y). This breaks
into three subgoals.

Subgoal 2.1. Prove R2 (r x) (r x). This follows from R1 x x and (2).
Subgoal 2.2. Prove R2 (s y) (s y). This follows from R1 y y and (3).
Subgoal 2.3. Prove abs2 (r x) = abs2 (s y).

Lemma. If 〈R,abs,rep〉 and R z z, then R (rep (abs z)) z.
R (rep (abs z)) (rep (abs z)), by Property 2 of 〈R,abs,rep〉.
From the hypothesis, R z z. From Property 1 of 〈R,abs,rep〉,
abs (rep (abs z)) = abs z. From these three statements and
Property 3 of 〈R,abs,rep〉, we have R (rep (abs z)) z. 2

By the lemma and R1 x x, we have R1 (rep1 (abs1 x)) x. Similarly, by
the lemma and R1 y y, we have R1 (rep1 (abs1 y)) y. Then by (2), we have
R2 (r (rep1 (abs1 x))) (r x), and by (3), R2 (s (rep1 (abs1 y))) (s y). From these
and Property 3 of 〈R2,abs2,rep2〉,

abs2 (r (rep1 (abs1 x))) = abs2 (r x) and
abs2 (s (rep1 (abs1 y))) = abs2 (s y).

But by abs1 x = abs1 y and (4), the left hand sides of these two equations are
equal, so their right hand sides must be also, abs2 (r x) = abs2 (s y), which
proves the goal. 2

6 The Axiom of Choice

Gregory Moore wrote that “Rarely have the practitioners of mathematics, a dis-
cipline known for the certainty of its conclusions, differed so vehemently over one
of its central premises as they have done over the Axiom of Choice. Yet without
the Axiom, mathematics today would be quite different” [13]. Today, this discus-
sion continues. Some theorem provers are based on classical logic, and others on
a constructivist logic. In higher order logic, the Axiom of Choice is represented
by Hilbert’s ε-operator [12, §4.4], also called the indefinite description opera-
tor. Paulson’s lucid recent work [17] exhibits an approach to quotients which
avoids the use of Hilbert’s ε-operator, by instead using the definite description
operator ι [14, §5.10]. These two operators may be axiomatized as follows:

∀P x. P x ⇒ P (ε P) or ∀P. (∃x. P x) ⇒ P (ε P)
∀P x. P x ⇒ (∀y. P y ⇒ x = y) ⇒ P (ι P) or ∀P. (∃!x. P x) ⇒ P (ι P)

The ι-operator yields the single element of a singleton set, ι{z} = z, but its result
on non-singleton sets is indeterminate. By contrast, the ε-operator chooses some

indeterminate element of any non-empty set, even if nondenumerable. The ι-
operator is weaker than the ε-operator, and less objectionable to constructivists.

Thus it is of interest to determine if a design for higher order quotients may
be formulated using only ι, not ε. Inspired by Paulson, we investigate this by
forming an alternative design, eliminating the representation functions.

Definition 16 (Constructive quotient, replacing Definition 1).
A relation R with abstraction function abs (between the representation type τ
and the abstraction type ξ) is a quotient (notated as 〈R, abs〉) if and only if

(1) ∀a : ξ. ∃r : τ. R r r ∧ (abs r = a)
(2) ∀r s : τ. R r s ⇔ R r r ∧ R s s ∧ (abs r = abs s)

Property 1 states that for every abstract element a of ξ there exists a repre-
sentative in τ which respects R and whose abstraction is a.

Property 2 states that two elements of τ are related by R if and only if each
element respects R and their abstractions are equal.

The quotients for new quotient types based on (partial) equivalence relations
may now be constructed by a modified version of §4, where the representation
function rep is omitted from Definition 7, so there is no use of the Hilbert ε-
operator. Property 1 follows from Lemma 4. The identity quotient is 〈$=, I〉.
From Definition 16 also follow analogs of the quotient extension theorems, e.g.,

∀R abs. 〈R, abs〉 ⇒ 〈LIST REL R, MAP abs〉

for lists and similarly for pairs, sums and option types. Functions are lifted by
the abstraction operation for functions, which requires two new definitions:

(abs ⇓ R) a r
def= R r r ∧ abs r = a

(reps +-> abs) f x
def= ι (IMAGE abs (IMAGE f (reps x)))

Note that for the identity quotient, (I ⇓ $=) = $=.
The critical quotient extension theorem for functions has also been proven:

Theorem 17 (Function quotient extension).

〈R1, abs1〉 ⇒ 〈R2, abs2〉 ⇒ 〈R1 ===> R2, (abs1 ⇓ R1) +-> abs2〉

Unfortunately, the proof requires using the Axiom of Choice. In fact, this theorem
implies the Axiom of Choice, in that it implies the existence of an operator which
obeys the axiom of the Hilbert ε-operator, as seen by the following development.

Theorem 18 (Partial abstraction quotients). If f is any function from
type α to β, and Q is any predicate on α, such that ∀y:β. ∃x:α. Q x∧ (f x = y),
then the partial equivalence relation R = λr s. Q r ∧ Q s ∧ (f r = f s) with
abstraction function f is a quotient (〈R, f〉).

Proof: Follows easily from substituting R in Definition 16 and simplifying. 2

Theorem 19 (Partial inverses exist). If f is any function from type α to β,
and Q is any predicate on α, such that ∀y:β. ∃x:α. Q x ∧ (f x = y), then there
exists a function g such that f ◦ g = I and ∀y. Q (g y). [William Schneeburger]

Proof: Assuming the function quotient extension theorem 17, we apply it to two
quotient theorems; first, the identity quotient 〈$=, I〉 for type β, and second, the
partial abstraction quotient 〈R, f〉 from Theorem 18. This yields the quotient
〈$= ===> R, $= +-> f〉, since (I ⇓ $=) = $=. By Property 1 of Definition 16,
∀a. ∃r. ($= ===> R) r r ∧ (($= +-> f)r = a). Specializing a = I : β → β,
and renaming r as g, we obtain ∃g. ($= ===> R) g g ∧ ($= +-> f)g = I). By the
definition of ===>, ($= ===> R)g g is ∀x y. x = y ⇒ R (g x) (g y), which simplifies
by the definition of R to ∀y. Q (g y). The right conjunct is ($= +-> f)g = I, which
by the definition of +-> is (λx. ι (IMAGE f (IMAGE g ($= x)))) = I. But $= x is the
singleton {x}, so since IMAGE h {z} = {h z}, ι{z} = z, and (λx. f (g x)) = f ◦g,
this simplifies to f ◦ g = I, and the conclusion follows. 2

Theorem 20 (Existence of Hilbert choice). There exists an operator c :
(α → bool) → α which obeys the Hilbert choice axiom, ∀P x. P x ⇒ P (c P).

Proof: In Theorem 19, let Q = (λ(P :α → bool, a:α). (∃x. P x) ⇒ P a) and
f = FST. Then its antecedent is ∀P ′.∃(P, a). ((∃x.P x) ⇒ P a)∧(FST(P, a) = P ′).
For any P ′, take P = P ′, and if ∃x. P x, then take a to be such an x. Otherwise
take a to be any value of α. In either case the antecedent is true. Therefore by
Theorem 19 there exists a function g such that FST ◦ g = I and ∀P. Q (g P),
which is ∀P. (∃x. (FST (g P)) x) ⇒ (FST (g P)) (SND (g P)). The operator c is
taken as SND ◦ g, and since FST (g P) = P , the Hilbert choice axiom follows. 2

The significance of Theorem 20 is that even if we are able to avoid all use
of the Axiom of Choice up to this point, it is not possible to prove the function
quotient extension theorem 17 without it. This section’s design may be used to
build a theory of quotients which is constructive and which extends naturally to
quotients of lists, pairs, sums, and options. However, it is not possible to extend
it to higher order quotients while remaining constructive. Therefore the designs
presented in this paper cannot be used to create higher order quotients in strictly
constructive theorem provers. Alternatively, in theorem provers like HOL which
admit the Hilbert choice operator, if higher order quotients are desired, there is
no advantage in avoiding using the Axiom of Choice through using the design
of this section. The main design presented earlier is much simpler to automate.

7 Implementation

The design for higher order quotients presented here has been implemented in a
package for the Higher Order Logic theorem prover. This section will touch on
only a few interesting aspects of the implementation; for further details, see [10].

This implementation provides a tool which accomplishes all the three tasks
of lifting types, constants, and theorems. To do these, the tool requires inputs of
several kinds. For each new quotient type to be created, the user must provide a

(partial) equivalence theorem (§4). For each kind of aggregate type involved, the
user must provide a quotient extension theorem, and if possible, an equivalence
extension theorem. For every constant which is mentioned in a theorem to be
lifted, there must be a respectfulness theorem showing that the constant respects
the equivalence relations. In addition, for polymorphic constants that can apply
to arguments of either the lower or the quotient types, both a respectfulness
theorem and a preservation theorem must be provided, which shows that the
function of the polymorphic constant is preserved across the quotient operation.

COND RSP: 〈R, abs, rep〉 ⇒ (a1 = a2) ∧ R b1 b2 ∧ R c1 c2 ⇒
R (if a1 then b1 else c1) (if a2 then b2 else c2)

COND PRS: 〈R, abs, rep〉 ⇒ if a then b else c = abs (if a then rep b else rep c)
RES FORALL RSP: 〈R, abs, rep〉 ⇒ (R ===> $=) f g ⇒

RES FORALL(respects R) f = RES FORALL(respects R) g
FORALL PRS: 〈R, abs, rep〉 ⇒ ($∀ f = RES FORALL(respects R) ((abs --> I) f)

Interestingly, ∀ is not respectful. To lift, theorems using ∀ are automatically con-
verted to ones using RES FORALL. RES FORALL (respects R) P is the universal
quantification of P , restricted to values of the argument of P which respect R. A
large number of these respectfulness and preservation theorems have been pre-
proven for standard operators, including, e.g., the unique existential quantifier.
The natural power of higher order quotients is smoothly exploited in enabling
these respectfulness and preservation theorems to be used to lift theorems con-
taining curried operators with none, some, or all of their arguments present.

8 Example: Finite Sets

To demonstrate the higher order quotients package, we create finite sets as a
new type, starting from the existing type of lists, ’a list.

Lists are represented in HOL as a free algebra with two distinct constructors,
NIL and CONS, also written as [] and infix :: respectively. Let A, B, C be lists.

We intend to create the new type of finite sets as the quotient of lists by the
equivalence relation ∼, generated by rule induction on the following six rules:

a::(b::A) ∼ b::(a::A) [] ∼ []
A ∼ B
B ∼ A

a::(a::A) ∼ a::A
A ∼ B

a::A ∼ a::B
A ∼ B, B ∼ C

A ∼ C

It is easy to prove that ∼ is in fact an equivalence relation, reflexive, sym-
metric, and transitive, and so fset EQUIV: ` ∀A B. A ∼ B ⇔ ($∼ A = $∼ B).

Theorems may be proved by induction using the list induction principle:

∀P : ’a list→ bool. P [] ∧ (∀t. P t ⇒ ∀h. P (h::t)) ⇒ ∀l. P l

Membership and concatenation (which lifts to “union”) are predefined:

MEM x [] = F ∧ MEM x (h::t) = (x = h) ∨ MEM x t
APPEND [] l = l ∧ APPEND (h::l1) l2 = h::(APPEND l1 l2)

We define new constants by primitive recursion, and prove extensionality:

[] Delete1 x = []
(a::A) Delete1 x = if a = x then A Delete1 x else a::(A Delete1 x)

Fold1 f g z [] = z
Fold1 f g z (a::A) = if (∀u v. f u v = f v u) ∧

(∀u v w. f u (f v w) = f (f u v) w)
then if MEM a A then Fold1 f g z A

else f (g a) (Fold1 f g z A)
else z

A ∼ B ⇔ ∀a. MEM a A ⇔ MEM a B

Before invoking the quotient package, we must first prove the respectfulness
theorems of each of the operators we wish to lift, NIL RSP, CONS RSP, etc., e.g.,

[] ∼ []

A ∼ B

a::A ∼ a::B

A ∼ B

MEM a A = MEM a B

A1 ∼ A2, B1 ∼ B2

APPEND A1 B1 ∼ APPEND A2 B2

A ∼ B

Card1A = Card1B

A ∼ B

A Delete1 a ∼ B Delete1 a

A ∼ B

Fold1 f g z A = Fold1 f g z B

We intend to lift the following constants on lists to new ones on finite sets:

[] 7→ Empty MEM 7→ In APPEND 7→ Union Delete1 7→ Delete
:: 7→ Insert Card1 7→ Card Inter1 7→ Inter Fold1 7→ Fold

We now create the new type ’a finite set from the quotient of lists by ∼.

val [In, Union, finite_set_EXTENSION, ... finite_set_INDUCT] =
define_quotient_types{
types = [{name = "finite_set", equiv = fset_EQUIV}],
defs=[{def_name="In_def",fname="In", fixity=Infix(NONASSOC,425),

func=‘‘MEM:’a -> ’a list -> bool‘‘}, ...],
tyop_equivs = [],
tyop_quotients = [FUN_QUOTIENT],
tyop_simps = [FUN_REL_EQ, FUN_MAP_I],
respects = [NIL_RSP, CONS_RSP, MEM_RSP, APPEND_RSP,

Card1_RSP, Delete1_RSP, Inter1_RSP, Fold1_RSP],
poly_preserves = [FORALL_PRS, EXISTS_PRS, COND_PRS],
poly_respects = [RES_FORALL_RSP, RES_EXISTS_RSP, COND_RSP],
old_thms = [MEM, APPEND, list_EXTENSION, ... list_INDUCT]};

This proves and stores the quotient theorem

` QUOTIENT $∼ finite set ABS finite set REP.

It also defines the lifted versions of the constants, for example

` ∀T1 T2. T1 Insert T2 = finite set ABS (T1 :: finite set REP T2)

The theorems listed in old thms are automatically soundly lifted to the quotient
level, with the types changed, now concerning not lists but finite sets, e.g.,

x In Empty = F ∧ x In (h Insert t) = (x = h) ∨ x In t
Empty Union l = l ∧ (h Insert l1) Union l2 = h Insert (l1 Union l2)

Empty Delete x = Empty
(a Insert A) Delete x = if a = x then A Delete x

else a Insert (A Delete x)
Fold f g z Empty = z

Fold f g z (a Insert A) = if (∀u v. f u v = f v u) ∧
(∀u v w. f u (f v w) = f (f u v) w)

then if a In A then Fold f g z A
else f (g a) (Fold f g z A)

else z

A = B ⇔ ∀a. a In A ⇔ a In B

∀P. P Empty ∧ (∀t. P t ⇒ ∀h. P (h Insert t)) ⇒ ∀l. P l

The if ... then ... else in the Delete definition now yields a finite set, not a
list. The last theorem requires higher order quotients to lift, because it involves
quantification over functions, in this case P of type ’a finite set→ bool.

9 Conclusions

We have presented a design for mechanically creating higher order quotients
which is a conservative, definitional extension of higher order logic. The package
implemented from this design [10] automatically lifts not only types, but also
constants and theorems from the original level to the quotient level.

The relationship between the lower type and the quotient type is charac-
terized by the partial equivalence relation, the abstraction function, and the
representation function. As a key contribution, three necessary algebraic prop-
erties have been identified for these to properly describe a quotient, which are
preserved in the creation of both aggregate and higher order quotients.

The Axiom of Choice was used in this design. We showed that an alternative
design may be constructed without dependence on the Axiom of Choice, but that
it may not be extended to higher order quotients while remaining constructive.

Prior to this work, only Harrison [8] went beyond support for modeling the
quotient types to provide automation for the lifting of constant definitions and
theorems from their original statements concerning the original types to the
corresponding analogous statements concerning the new quotient types. This is
important for the practical application of quotients to sizable problems like quo-
tients on the syntax of complex, realistic programming or specification languages.
These may be modelled as recursive types, where terms which are partially equiv-
alent by being well-typed and alpha-equivalent are identified by taking quotients.
This eases the traditional problem of the capture of bound variables [7].

Such quotients may now be more easily and practically modeled within a
variety of theorem provers, using the design described here.

Soli Deo Gloria.

References

1. Barendregt, H.P.: TheLambdaCalculus, Syntax and Semantics. North-Holland, 1981.
2. Bruce, K., Mitchell, J. C.: ‘PER models of subtyping, recursive types and higher-

order polymorphism’, in Principles of Programming Languages 19, Albequerque,
New Mexico, 1992, pp. 316-327.

3. Chicli, L., Pottier, L., Simpson, C.: ‘Mathematical Quotients and Quotient Types
in Coq’, Proceedings of TYPES 2002, Lecture Notes in Computer Science, vol. 2646
(Springer-Verlag, 2002).

4. Enderton, H. B.: Elements of Set Theory. Academic Press, 1977.
5. Geuvers, H., Pollack, R., Wiekijk, F., Zwanenburg, J.: ‘A constructive algebraic

hierarchy in Coq’, in Journal of Symbolic Computation, 34(4), 2002, pp. 271-286.
6. Gordon, M. J. C., Melham, T. F.: Introduction to HOL. Cambridge University Press,

Cambridge, 1993.
7. Gordon, A. D., Melham, T. F.: ‘Five Axioms of Alpha Conversion’, in Theorem

Proving in Higher Order Logics: 9th International Conference, TPHOLs’96, edited
by J. von Wright, J. Grundy and J. Harrison, Lecture Notes in Computer Science,
vol. 1125 (Springer-Verlag, 1996), pp. 173-190.

8. Harrison, J.: Theorem Proving with the Real Numbers, §2.11, pp. 33-37. Springer-
Verlag 1998.

9. Hofmann, M.: ‘A simple model for quotient types,’ in Typed Lambda Calculus and
Applications, Lecture Notes in Computer Science, vol. 902 (Springer-Verlag, 1995),
pp. 216-234.

10. Homeier, P. V.: ‘Higher Order Quotients in Higher Order Logic.’ In preparation;
draft available at http://www.cis.upenn.edu/~hol/quotients.

11. Kalker, T.: at www.ftp.cl.cam.ac.uk/ftp/hvg/info-hol-archive/00xx/0082.
12. Leisenring, A. C.: Mathematical Logic and Hilbert’s ε-Symbol. Gordon and Breach,

1969.
13. Moore, G. H.: Zermelo’s Axiom of Choice: It’s Origins, Development, and Influ-

ence. Springer-Verlag 1982.
14. Nipkow, T., Paulson, L. C., Wenzel, M.: Isabelle/HOL. Springer-Verlag 2002.
15. Owre, S., Shankar, N.: Theory Interpretations in PVS, Technical Report SRI-CSL-

01-01, Computer Science Lab., SRI International, Menlo Park, CA, April 2001.
16. Nogin, A.: ‘Quotient Types: A Modular Approach,’ in Theorem Proving in

Higher Order Logics: 15th International Conference, TPHOLs 2002, edited by
V. A. Carreño, C. Muñoz, and S. Tahar, Lecture Notes in Computer Science, vol.
2410 (Springer-Verlag, 2002), pp. 263-280.

17. Paulson, L.: ‘Defining Functions on Equivalence Classes,’ ACM Transactions on
Computational Logic, in press. Previously issued as Report, Computer Lab, Univer-
sity of Cambridge, April 20, 2004.

18. Robinson, E.: ‘How Complete is PER?’, in Fourth Annual Symposium on Logic in
Computer Science (LICS), 1989, pp. 106-111.

19. Slotosch, O.: ‘Higher Order Quotients and their Implementation in Isabelle
HOL’, in Theorem Proving in Higher Order Logics: 10th International Conference,
TPHOLs’97, edited by Elsa L. Gunter and Amy Felty, Lecture Notes in Computer
Science, vol. 1275 (Springer-Verlag, 1997), pp. 291-306.

